Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = South Pole landing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 23271 KiB  
Article
Comprehensive Evaluation of the Lunar South Pole Landing Sites Using Self-Organizing Maps for Scientific and Engineering Purposes
by Hengxi Liu, Yongzhi Wang, Shibo Wen, Sheng Zhang, Kai Zhu and Jianzhong Liu
Remote Sens. 2025, 17(9), 1579; https://doi.org/10.3390/rs17091579 - 29 Apr 2025
Viewed by 902
Abstract
The permanently shadowed regions of the lunar South Pole have become a key target for international lunar exploration due to their unique scientific value and engineering challenges. In order to effectively screen suitable landing zones near the lunar South Pole, this research proposes [...] Read more.
The permanently shadowed regions of the lunar South Pole have become a key target for international lunar exploration due to their unique scientific value and engineering challenges. In order to effectively screen suitable landing zones near the lunar South Pole, this research proposes a comprehensive evaluation method based on a self-organizing map (SOM). Using multi-source remote sensing data, the method classifies and analyzes candidate landing zones by combining scientific purposes (such as hydrogen abundance, iron oxide abundance, gravity anomalies, water ice distance analysis, and geological features) and engineering constraints (such as Sun visibility, Earth visibility, slope, and roughness). Through automatic clustering, the SOM model finds the important regions. Subsequently, it integrates with a supervised learning model, a random forest, to determine the feature importance weights in more detail. The results from the research indicate the following: the areas suitable for landing account for 9.05%, 5.95%, and 5.08% in the engineering, scientific, and synthesized perspectives, respectively. In the weighting analysis of the comprehensive data, the weights of Earth visibility, hydrogen abundance, kilometer-scale roughness, and slope data all account for more than 10%, and these are thought to be the four most important factors in the automated site selection process. Furthermore, the kilometer-scale roughness data are more important in the comprehensive weighting, which is in line with the finding that the kilometer-scale roughness data represent both surface roughness from an engineering perspective and bedrock geology from a scientific one. In this study, a local examination of typical impact craters is performed, and it is confirmed that all 10 possible landing sites suggested by earlier authors are within the appropriate landing range. The findings demonstrate that the SOM-model-based analysis approach can successfully assess lunar South Pole landing areas while taking multiple constraints into account, uncovering spatial distribution features of the region, and offering a rationale for choosing desired landing locations. Full article
(This article belongs to the Special Issue Planetary Geologic Mapping and Remote Sensing (Second Edition))
Show Figures

Figure 1

40 pages, 14878 KiB  
Article
Selection of Landing Sites for the Chang’E-7 Mission Using Multi-Source Remote Sensing Data
by Fei Zhao, Pingping Lu, Tingyu Meng, Yanan Dang, Yao Gao, Zihan Xu, Robert Wang and Yirong Wu
Remote Sens. 2025, 17(7), 1121; https://doi.org/10.3390/rs17071121 - 21 Mar 2025
Cited by 1 | Viewed by 1785
Abstract
The Chinese Chang’E-7 (CE-7) mission is planned to land in the lunar south polar region, and then deploy a mini-flying probe to fly into the cold trap to detect the water ice. The selection of a landing site is crucial for ensuring both [...] Read more.
The Chinese Chang’E-7 (CE-7) mission is planned to land in the lunar south polar region, and then deploy a mini-flying probe to fly into the cold trap to detect the water ice. The selection of a landing site is crucial for ensuring both a safe landing and the successful achievement of its scientific objectives. This study presents a method for landing site selection in the challenging environment of the lunar south pole, utilizing multi-source remote sensing data. First, the likelihood of water ice in all cold traps within 85°S is assessed and prioritized using neutron spectrometer and hyperspectral data, with the most promising cold traps selected for sampling by CE-7’s mini-flying probe. Slope and illumination data are then used to screen feasible landing sites in the south polar region. Feasible landing sites near cold traps are aggregated into larger landing regions. Finally, high-resolution illumination maps, along with optical and radar images, are employed to refine the selection and identify the optimal landing sites. Six potential landing sites around the de Gerlache crater, an unnamed cold trap at (167.10°E, 88.71°S), Faustini crater, and Shackleton crater are proposed. It would be beneficial for CE-7 to prioritize mapping these sites post-launch using its high-resolution optical camera and radar for further detailed landing site investigation and evaluation. Full article
(This article belongs to the Special Issue Remote Sensing and Photogrammetry Applied to Deep Space Exploration)
Show Figures

Figure 1

24 pages, 30044 KiB  
Article
Minimum-Fuel Trajectories and Near-Optimal Explicit Guidance for Pinpoint Landing from Low Lunar Orbit
by Matteo Caruso, Giulio De Angelis, Edoardo Maria Leonardi and Mauro Pontani
Aerospace 2025, 12(3), 183; https://doi.org/10.3390/aerospace12030183 - 25 Feb 2025
Viewed by 732
Abstract
This research addresses minimum-fuel pinpoint lunar landing at the South Pole, focusing on trajectory design and near-optimal guidance aimed at driving a spacecraft from a circular low lunar orbit (LLO) to an instantaneous hovering state above the lunar surface. Orbit dynamics is propagated [...] Read more.
This research addresses minimum-fuel pinpoint lunar landing at the South Pole, focusing on trajectory design and near-optimal guidance aimed at driving a spacecraft from a circular low lunar orbit (LLO) to an instantaneous hovering state above the lunar surface. Orbit dynamics is propagated in a high-fidelity ephemeris-based framework, which employs spherical coordinates as the state variables and includes several harmonics of the selenopotential, as well as third-body gravitational perturbations due to the Earth and Sun. Minimum-fuel two-impulse descent transfers are identified using Lambert problem solutions as initial guesses, followed by refinement in the high-fidelity model, for a range of initial LLO inclinations. Then, a feedback Lambert-based impulsive guidance algorithm is designed and tested through a Monte Carlo campaign to assess the effectiveness under non-nominal conditions related to injection and actuation errors. Because the last braking maneuver is relatively large, a finite-thrust, locally flat, near-optimal guidance is introduced and applied. Simplified dynamics is assumed for the purpose of defining a minimum-time optimal control problem along the last thrust arc. This admits a closed-form solution, which is iteratively used until the desired instantaneous hovering condition is reached. The numerical results in non-nominal flight conditions testify to the effectiveness of the guidance approach at hand in terms of propellant consumption and precision at landing. Full article
(This article belongs to the Special Issue Advances in Lunar Exploration)
Show Figures

Figure 1

16 pages, 11407 KiB  
Article
YOLOv8-LCNET: An Improved YOLOv8 Automatic Crater Detection Algorithm and Application in the Chang’e-6 Landing Area
by Jing Nan, Yexin Wang, Kaichang Di, Bin Xie, Chenxu Zhao, Biao Wang, Shujuan Sun, Xiangjin Deng, Hong Zhang and Ruiqing Sheng
Sensors 2025, 25(1), 243; https://doi.org/10.3390/s25010243 - 3 Jan 2025
Cited by 2 | Viewed by 1813
Abstract
The Chang’e-6 (CE-6) landing area on the far side of the Moon is located in the southern part of the Apollo basin within the South Pole–Aitken (SPA) basin. The statistical analysis of impact craters in this region is crucial for ensuring a safe [...] Read more.
The Chang’e-6 (CE-6) landing area on the far side of the Moon is located in the southern part of the Apollo basin within the South Pole–Aitken (SPA) basin. The statistical analysis of impact craters in this region is crucial for ensuring a safe landing and supporting geological research. Aiming at existing impact crater identification problems such as complex background, low identification accuracy, and high computational costs, an efficient impact crater automatic detection model named YOLOv8-LCNET (YOLOv8-Lunar Crater Net) based on the YOLOv8 network is proposed. The model first incorporated a Partial Self-Attention (PSA) mechanism at the end of the Backbone, allowing the model to enhance global perception and reduce missed detections with a low computational cost. Then, a Gather-and-Distribute mechanism (GD) was integrated into the Neck, enabling the model to fully fuse multi-level feature information and capture global information, enhancing the model’s ability to detect impact craters of various sizes. The experimental results showed that the YOLOv8-LCNET model performs well in the impact crater detection task, achieving 87.7% Precision, 84.3% Recall, and 92% AP, which were 24.7%, 32.7%, and 37.3% higher than the original YOLOv8 model. The improved YOLOv8 model was then used for automatic crater detection in the CE-6 landing area (246 km × 135 km, with a DOM resolution of 3 m/pixel), resulting in a total of 770,671 craters, ranging from 13 m to 19,882 m in diameter. The analysis of this impact crater catalogue has provided critical support for landing site selection and characterization of the CE-6 mission and lays the foundation for future lunar geological studies. Full article
Show Figures

Figure 1

12 pages, 3014 KiB  
Article
Design and Development of Energy Particle Detector on China’s Chang’e-7
by Liping Wang, Guohong Shen, Huanxin Zhang, Donghui Hou, Shenyi Zhang, Xianguo Zhang, Zida Quan, Jiajie Liao, Wentao Ji and Ying Sun
Aerospace 2024, 11(11), 893; https://doi.org/10.3390/aerospace11110893 - 30 Oct 2024
Cited by 2 | Viewed by 1088
Abstract
Particle radiation on the Moon is influenced by a combination of galactic cosmic rays, high-energy solar particles, and secondary particles interacting on the lunar surface. When China’s Chang’e-7 lander lands at the Moon’s South Pole, it will encounter this complex radiation environment. Therefore, [...] Read more.
Particle radiation on the Moon is influenced by a combination of galactic cosmic rays, high-energy solar particles, and secondary particles interacting on the lunar surface. When China’s Chang’e-7 lander lands at the Moon’s South Pole, it will encounter this complex radiation environment. Therefore, a payload detection technology was developed to comprehensively measure the energy spectrum, direction, and radiation effects of medium- and high-energy charged particles on the lunar surface. During the ground development phase, the payload performance was tested against the design specifications. The verification results indicate that the energy measurement ranges are 30 keV to 300 MeV for protons, 30 keV to 12 MeV for electrons, and 8 to 400 MeV/n for heavy ions. The energy resolution is 10.81% for 200 keV electrons of the system facing the lunar surface; the dose rate measurement sensitivity is 7.48 µrad(Si)/h; and the LET spectrum measurement range extends from 0.001 to 37.014 MeV/(mg/cm2). These comprehensive measurements are instrumental in establishing a lunar surface particle radiation model, enhancing the understanding of the lunar radiation environment, and supporting human lunar activities. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

14 pages, 24142 KiB  
Article
The Lunar Regolith Thickness and Stratigraphy of the Chang’E-6 Landing Site
by Jin Li, Chengxiang Yin, Siyue Chi, Wenshuo Mao, Xiaohui Fu and Jiang Zhang
Remote Sens. 2024, 16(21), 3976; https://doi.org/10.3390/rs16213976 - 25 Oct 2024
Cited by 3 | Viewed by 2676
Abstract
The Chang’E-6 (CE-6) mission successfully returned 1935.3 g of lunar soil samples from the Apollo basin within the South Pole–Aitken basin. One of its scientific objectives is to investigate the subsurface structure and regolith thickness at the landing site. Using remote sensing datasets, [...] Read more.
The Chang’E-6 (CE-6) mission successfully returned 1935.3 g of lunar soil samples from the Apollo basin within the South Pole–Aitken basin. One of its scientific objectives is to investigate the subsurface structure and regolith thickness at the landing site. Using remote sensing datasets, we estimated the regolith and basalt thicknesses at the landing site by employing the crater morphology method and crater excavation technique. A total of 53 concentric craters and 108 fresh craters with varying excavation depths were identified. Our results indicate that the regolith thickness at the CE-6 landing site ranges from 1.1 to 7.0 m, with an average thickness of 3.5 m. Beneath the regolith, the basalt layer consists of high-Ti basalt overlaying low-Ti basalt, with a total thickness of approximately 64 to 82 m, of which the high-Ti basalt layer accounts for about 22 to 30 m. Based on the local geological history, we proposed a stratigraphy at the CE-6 landing site. These findings provide valuable geological context for interpreting the Lunar Penetrating Radar data and analyzing the returned samples. Full article
Show Figures

Figure 1

31 pages, 34074 KiB  
Article
The Generation of High-Resolution Mapping Products for the Lunar South Pole Using Photogrammetry and Photoclinometry
by Pengying Liu, Xun Geng, Tao Li, Jiujiang Zhang, Yuying Wang, Zhen Peng, Yinhui Wang, Xin Ma and Qiudong Wang
Remote Sens. 2024, 16(12), 2097; https://doi.org/10.3390/rs16122097 - 10 Jun 2024
Cited by 5 | Viewed by 2597
Abstract
High-resolution and high-accuracy mapping products of the Lunar South Pole (LSP) will play a vital role in future lunar exploration missions. Existing lunar global mapping products cannot meet the needs of engineering tasks, such as landing site selection and rover trajectory planning, at [...] Read more.
High-resolution and high-accuracy mapping products of the Lunar South Pole (LSP) will play a vital role in future lunar exploration missions. Existing lunar global mapping products cannot meet the needs of engineering tasks, such as landing site selection and rover trajectory planning, at the LSP. The Lunar Reconnaissance Orbiter (LRO)’s narrow-angle camera (NAC) can acquire submeter images and has returned a large amount of data covering the LSP. In this study, we combine stereo-photogrammetry and photoclinometry to generate high-resolution digital orthophoto maps (DOMs) and digital elevation models (DEMs) using LRO NAC images for a candidate landing site at the LSP. The special illumination and landscape characteristics of the LSP make the derivation of high-accuracy mapping products from orbiter images extremely difficult. We proposed an easy-to-implement shadow recognition and contrast stretching method based on the histograms of the LRO NAC images, which is beneficial for photogrammetric and photoclinometry processing. In order to automatically generate tie points, we designed an image matching method considering LRO NAC images’ features of long strips and large data volumes. The terrain and smoothness constraints were introduced into the cost function of photoclinometry adjustment, excluding pixels in shadow areas. We used 61 LRO NAC images to generate mapping products covering an area of 400 km2. The spatial resolution of the generated DOMs was 1 m/pixel, and the grid spacing of the derived DEMs was 1 m (close to the spatial resolution of the original images). The generated DOMs achieved a relative accuracy of better than 1 pixel. The geometric accuracy of the DEM derived from photoclinometry was consistent with the lunar orbiter laser altimeter (LOLA) DEM with a root mean square error of 0.97 m and an average error of 0.17 m. Full article
(This article belongs to the Special Issue Remote Sensing and Photogrammetry Applied to Deep Space Exploration)
Show Figures

Figure 1

14 pages, 21676 KiB  
Technical Note
A Catalogue of Impact Craters and Surface Age Analysis in the Chang’e-6 Landing Area
by Yexin Wang, Jing Nan, Chenxu Zhao, Bin Xie, Sheng Gou, Zongyu Yue, Kaichang Di, Hong Zhang, Xiangjin Deng and Shujuan Sun
Remote Sens. 2024, 16(11), 2014; https://doi.org/10.3390/rs16112014 - 4 Jun 2024
Cited by 18 | Viewed by 2531
Abstract
Chang’e-6 (CE-6) is the first sample-return mission from the lunar farside and will be launched in May of 2024. The landing area is in the south of the Apollo basin inside the South Pole Aitken basin. Statistics and analyses of impact craters in [...] Read more.
Chang’e-6 (CE-6) is the first sample-return mission from the lunar farside and will be launched in May of 2024. The landing area is in the south of the Apollo basin inside the South Pole Aitken basin. Statistics and analyses of impact craters in the landing area are essential to support safe landing and geologic studies. In particular, the crater size–frequency distribution information of the landing area is critical to understanding the provenance of the CE-6 lunar samples to be returned and can be used to verify and refine the lunar chronology model by combining with the radioisotope ages of the relevant samples. In this research, a digital orthophoto map (DOM) mosaic with resolution of 3 m/pixel of the CE-6 landing area was generated from the 743 Narrow Angle Camera of the Lunar Reconnaissance Orbiter Camera. Based on the DOM, craters were extracted by an automated method and checked manually. A total of 770,731 craters were extracted in the whole area of 246 km × 135 km, 511,484 craters of which were within the mare area. Systematic analyses of the crater distribution, completeness, spatial density, and depth-to-diameter ratio were conducted. Geologic model age estimation was carried out in the mare area that was divided into three geologic units according to the TiO2 abundance. The result showed that the east part of the mare had the oldest model age of μ3.270.045+0.036 Ga, and the middle part of the mare had the youngest model age of μ2.490.073+0.072 Ga. The crater catalogue and the surface model age analysis results were used to support topographic and geologic analyses of the pre-selected landing area of the CE-6 mission before the launch and will contribute to further scientific researches after the lunar samples are returned to Earth. Full article
(This article belongs to the Special Issue Planetary Geologic Mapping and Remote Sensing (Second Edition))
Show Figures

Graphical abstract

14 pages, 5359 KiB  
Technical Note
Detection of Surface Rocks and Small Craters in Permanently Shadowed Regions of the Lunar South Pole Based on YOLOv7 and Markov Random Field Algorithms in SAR Images
by Tong Xia, Xuancheng Ren, Yuntian Liu, Niutao Liu, Feng Xu and Ya-Qiu Jin
Remote Sens. 2024, 16(11), 1834; https://doi.org/10.3390/rs16111834 - 21 May 2024
Cited by 2 | Viewed by 2276
Abstract
Excluding rough areas with surface rocks and craters is critical for the safety of landing missions, such as China’s Chang’e-7 mission, in the permanently shadowed region (PSR) of the lunar south pole. Binned digital elevation model (DEM) data can describe the undulating surface, [...] Read more.
Excluding rough areas with surface rocks and craters is critical for the safety of landing missions, such as China’s Chang’e-7 mission, in the permanently shadowed region (PSR) of the lunar south pole. Binned digital elevation model (DEM) data can describe the undulating surface, but the DEM data can hardly detect surface rocks because of median-averaging. High-resolution images from a synthetic aperture radar (SAR) can be used to map discrete rocks and small craters according to their strong backscattering. This study utilizes the You Only Look Once version 7 (YOLOv7) tool to detect varying-sized craters in SAR images. It also employs the Markov random field (MRF) algorithm to identify surface rocks, which are usually difficult to detect in DEM data. The results are validated by optical images and DEM data in non-PSR. With the assistance of the DEM data, regions with slopes larger than 10° are excluded. YOLOv7 and MRF are applied to detect craters and rocky surfaces and exclude regions with steep slopes in the PSRs of craters Shoemaker, Slater, and Shackleton, respectively. This study proves SAR images are feasible in the selection of landing sites in the PSRs for future missions. Full article
(This article belongs to the Special Issue Planetary Exploration Using Remote Sensing—Volume II)
Show Figures

Figure 1

17 pages, 7767 KiB  
Article
Slope Stability Analysis and Soil Mechanical Properties of Impact Craters around the Lunar South Pole
by Yantong Huang, Jiang Zhang, Bo Li and Shengbo Chen
Remote Sens. 2024, 16(2), 371; https://doi.org/10.3390/rs16020371 - 17 Jan 2024
Cited by 2 | Viewed by 3294
Abstract
Water ice has been found in the permanently shadowed regions of impact craters around the lunar South Pole, which makes them ideal areas for in situ exploration missions. However, near the rim of impact craters, construction and exploration activities may cause slope instability. [...] Read more.
Water ice has been found in the permanently shadowed regions of impact craters around the lunar South Pole, which makes them ideal areas for in situ exploration missions. However, near the rim of impact craters, construction and exploration activities may cause slope instability. As a result, a better understanding of the shear strength of lunar soil under higher stress conditions is required. This paper mainly uses the finite element method to analyze slope stability to determine the position and shape of the slip surface and assess the safety factor. The height and gradient of the slope, the shear strength of lunar soil, and the lunar surface mission all influence the stability of the slope. We also analyze the soil mechanical properties of a soil slope adjacent to the traverse path of the Chang’E-4 Yutu-2 rover. Determining the stability of the slope at the lunar South Pole impact crater under various loading conditions will enhance the implementation of the lunar surface construction program. In this respect, this paper simulates a lunar mission landing at the Shackleton and Shoemaker craters and indicates that areas with higher cohesion lunar soil may be more stable for exploration in the more complex terrain of the South Pole. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

23 pages, 23254 KiB  
Article
Analysis of Illumination Conditions in the Lunar South Polar Region Using Multi-Temporal High-Resolution Orbital Images
by Yifan Zhang, Bin Liu, Kaichang Di, Shaoran Liu, Zongyu Yue, Shaojin Han, Jia Wang, Wenhui Wan and Bin Xie
Remote Sens. 2023, 15(24), 5691; https://doi.org/10.3390/rs15245691 - 11 Dec 2023
Cited by 8 | Viewed by 3852
Abstract
The illumination conditions of the lunar south pole region are complex due to the rugged terrain and very low solar elevation angles, posing significant challenges to the safety of lunar landing and rover explorations. High-spatial and temporal-resolution analyses of the illumination conditions in [...] Read more.
The illumination conditions of the lunar south pole region are complex due to the rugged terrain and very low solar elevation angles, posing significant challenges to the safety of lunar landing and rover explorations. High-spatial and temporal-resolution analyses of the illumination conditions in the south pole region are essential to support mission planning and surface operations. This paper proposes a method for illumination condition analysis in the lunar pole region using multi-temporal high-resolution orbital images with a pre-selected landing area of Chang’E-7 as the study area. Firstly, a database of historical multi-temporal high-resolution (0.69–1.97 m/pixel) orbital images, with associated image acquisition time, solar elevation angle, and azimuth angle, is established after preprocessing and registration. Secondly, images with the nearest solar elevation and azimuth at the planned time for mission operations are retrieved from the database for subsequent illumination condition analysis and exploration support. The differences in the actual solar positions at the mission moments from that of the nearest sun position image are calculated and their impact on illumination conditions is evaluated. Experimental results of the study area demonstrate that the constructed image database and the proposed illumination analysis method using multi-temporal images, with the assistance of DEM in a small number of cases, can effectively support the mission planning and operations for the Chang’E-7 mission in the near future. Full article
(This article belongs to the Special Issue Remote Sensing and Photogrammetry Applied to Deep Space Exploration)
Show Figures

Figure 1

23 pages, 4454 KiB  
Article
A Lunar-Orbiting Satellite Constellation for Wireless Energy Supply
by Francesco Lopez, Anna Mauro, Stefano Mauro, Giuseppe Monteleone, Domenico Edoardo Sfasciamuro and Andrea Villa
Aerospace 2023, 10(11), 919; https://doi.org/10.3390/aerospace10110919 - 28 Oct 2023
Cited by 11 | Viewed by 3199
Abstract
The goal of this research is to define a lunar-orbiting system that provides power to the lunar surface through wireless power transmission. To meet the power demand of a lunar base, a constellation of satellites placed in stable orbits is used. Each satellite [...] Read more.
The goal of this research is to define a lunar-orbiting system that provides power to the lunar surface through wireless power transmission. To meet the power demand of a lunar base, a constellation of satellites placed in stable orbits is used. Each satellite of this constellation consists of solar arrays and batteries that supply a power transmission system. This system is composed of a laser that transmits power to receivers on the lunar surface. The receivers are photonic power converters, photovoltaic cells optimized for the laser’s monochromatic light. The outputs of this work will cover the architecture of the system by studying different orbits, specifically analyzing some subsystems such as the laser, the battery pack and the receiver placed on the lunar ground. The study is conducted considering two different energy demands and thus two different receivers location: first, at the strategic location of the Artemis missions’ landing site, the Shackleton Crater near the lunar south pole; second, on the lunar equator, in anticipation of future and new explorations. The goal is to evaluate the possible configurations to satisfy the power required for a lunar base, estimated at approximately 100 kW. To do this, several cases were analyzed: three different orbits, one polar, one frozen and one equatorial (Earth–Moon distant retrograde orbit) with different numbers of satellites and different angles of the receiver’s cone of transmission. The main objective of this paper is to perform a comprehensive feasibility study of the aforementioned system, with specific emphasis placed on selected subsystems. While thermal control, laser targeting, and attitude control subsystems are briefly introduced and discussed, further investigation is required to delve deeper into these areas and gain a more comprehensive understanding of their implementation and performance within the system. Full article
(This article belongs to the Special Issue Advanced Spacecraft/Satellite Technologies)
Show Figures

Figure 1

14 pages, 9332 KiB  
Article
Image-Based Lunar Hazard Detection in Low Illumination Simulated Conditions via Vision Transformers
by Luca Ghilardi and Roberto Furfaro
Sensors 2023, 23(18), 7844; https://doi.org/10.3390/s23187844 - 13 Sep 2023
Cited by 3 | Viewed by 2151
Abstract
Hazard detection is fundamental for a safe lunar landing. State-of-the-art autonomous lunar hazard detection relies on 2D image-based and 3D Lidar systems. The lunar south pole is challenging for vision-based methods. The low sun inclination and the terrain rich in topographic features create [...] Read more.
Hazard detection is fundamental for a safe lunar landing. State-of-the-art autonomous lunar hazard detection relies on 2D image-based and 3D Lidar systems. The lunar south pole is challenging for vision-based methods. The low sun inclination and the terrain rich in topographic features create large areas in shadow, hiding the terrain features. The proposed method utilizes a vision transformer (ViT) model, which is a deep learning architecture based on the transformer blocks used in natural language processing, to solve this problem. Our goal is to train the ViT model to extract terrain features information from low-light RGB images. The results show good performances, especially at high altitudes, beating the UNet, one of the most popular convolutional neural networks, in every scenario. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

13 pages, 2679 KiB  
Article
Life Cycle Assessment for Soybean Supply Chain: A Case Study of State of Pará, Brazil
by Thyago Brito, Rui Fragoso, Leovigildo Santos, José António Martins, Anabela Afonso Fernandes Silva and José Aranha
Agronomy 2023, 13(6), 1648; https://doi.org/10.3390/agronomy13061648 - 19 Jun 2023
Cited by 5 | Viewed by 5148
Abstract
Brazil has emerged as the world’s largest soybean producer and exporter in recent years. In the Brazilian Amazon Biome, the state of Pará has become a new agricultural frontier over the last two decades due to a significant increase in soybean cultivation throughout [...] Read more.
Brazil has emerged as the world’s largest soybean producer and exporter in recent years. In the Brazilian Amazon Biome, the state of Pará has become a new agricultural frontier over the last two decades due to a significant increase in soybean cultivation throughout its territory. However, it is essential to understand the associated effects on the environment at every point in the supply chain. This research aims to measure the effects on the environment of the soybean supply chain of two production poles utilising openLCA software and the life cycle assessment (LCA) methodology in the northeast (Paragominas) and south (Redenção) of the state of Pará in Brazil. In addition, we determine which is the most efficient route between the shipment port and the ultimate destination. The Recipe Midpoint (H) and Intergovernmental Panel on Climate Change (IPCC) methods of environmental impact categories were used in accordance with the cradle-to-grave scope. The BRLUC regionalised model (v1.3) was used to quantify land use change (LUC). According to the observed results, LUC was primarily responsible (between 3.8 and 32.69 tCO2 Eq·ha−1·year−1) for the global warming potential (GWP) of the soybean supply chain when rainforest-occupied land was converted into cropland. The soybean harvest in the Redenção pole is better loaded through the port of Itaqui (TEGRAM), which is in São Luis (state of Maranhão), due to the use of multiple modes of transport (lorry + train), allowing for better logistical performance and less impact on the environment, despite the longest distance (road + railway = 1306 km). Due to the short road distance (approximately 350 km) and consequently lower environmental impact, soybean harvested in the Paragominas pole is better loaded through the ports around Barcarena in the state of Pará. Full article
Show Figures

Figure 1

20 pages, 7023 KiB  
Article
Climatic Trend of Wind Energy Resource in the Antarctic
by Kai-Shan Wang, Di Wu, Tao Zhang, Kai Wu, Chong-Wei Zheng, Cheng-Tao Yi and Yue Yu
J. Mar. Sci. Eng. 2023, 11(5), 1088; https://doi.org/10.3390/jmse11051088 - 22 May 2023
Cited by 4 | Viewed by 2133
Abstract
Wind energy resource is an important support for the sustainable development of Antarctica. The evaluation of wind energy potential determines the feasibility and economy of wind power generation in Antarctica, among which mastering the variation rule of wind energy resource is the key [...] Read more.
Wind energy resource is an important support for the sustainable development of Antarctica. The evaluation of wind energy potential determines the feasibility and economy of wind power generation in Antarctica, among which mastering the variation rule of wind energy resource is the key to realizing the effective utilization of polar wind energy. Based on the 6-h ERA-5 reanalysis data of ECMWF from January 1981 to December 2020, this paper systematically analyzed the long-term variation trend of Antarctic wind energy resource by using the climate statistical analysis method and the least square fitting, with the comprehensive consideration of a series of key indicators such as Wind Power Density, Effective Wind Speed Occurrence, Energy Level Occurrence, and Stability. The results show that it indicates a positive trend for wind power density (0.5~2 W × m−2 × a−1), effective wind speed occurrence (2~3%/a), energy level occurrence (0.1~0.2%/a), and coefficient of variation (−0.005/a) in the South Pole—Kunlun station and the central region of Queen Maud land. The westerly belt exhibits a decreasing index (−0.5%/a) in terms of stability trend, indicating a positive potential. Kemp Land, the Ross Island—Balleny Islands waters show shortages in all indicators. The wind power density in the Antarctic region is stronger in spring and summer than in autumn and winter, with the weakest in autumn. Based on the above indicators, the variation trend in the East Antarctic coast, Wilhelm II Land—Wilkes Land, the South Pole—Kunlun station, and the westerlies is generally superior. Full article
Show Figures

Figure 1

Back to TopTop