Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = Solibacillus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5202 KiB  
Article
Ultrasonic-Assisted Extraction of Polysaccharides from Brassica rapa L. and Its Effects on Gut Microbiota in Humanized Mice
by Mengying Zhang, Wei Wang, Wei Li, Zhipeng Wang, Kaiyue Bi, Yanbo Li, Yuhan Wu, Yu Zhao, Rui Yang and Qingping Du
Foods 2025, 14(11), 1994; https://doi.org/10.3390/foods14111994 - 5 Jun 2025
Viewed by 497
Abstract
This study optimized ultrasound-assisted extraction (UAE) for polysaccharide isolation from Brassica rapa L. using Box–Behnken design, achieving a maximum yield of 41.12% under conditions of 60 °C, 60 min, 175 W ultrasonic power, and 30 mL/g liquid–solid ratios. The crude polysaccharide (BRAP) was [...] Read more.
This study optimized ultrasound-assisted extraction (UAE) for polysaccharide isolation from Brassica rapa L. using Box–Behnken design, achieving a maximum yield of 41.12% under conditions of 60 °C, 60 min, 175 W ultrasonic power, and 30 mL/g liquid–solid ratios. The crude polysaccharide (BRAP) was purified via DEAE-52 cellulose and Sephadex G-100 chromatography, yielding BRAP1-1 with the highest recovery rate. Structural analyses (FT-IR, HPGPC, SEM, SEC-MALLS-RI) identified BRAP1-1 as a β-glycosidic pyranose polysaccharide (32.55 kDa) composed of fucose, rhamnose, arabinose, galactose, and galacturonic acid (molar ratio 0.81:4.30:3.61:1.69:89.59). In a humanized mouse model via fecal microbiota transplantation (FMT), BRAP1-1 significantly increased α-diversity indices (ACE, Chao1; p < 0.05) and altered β-diversity, with PCA explaining 73% variance (PC1: 60.70%, PC2: 13.53%). BRAP1-1 elevated beneficial genera (Lysinibacillus, Solibacillus, Bacteroides, etc.) while suppressing pathogens (Treponema, Flavobacterium, etc.). Six genera, including [Eubacterium]_coprostanoligenes_group and Bacteroidales (p < 0.05), correlated with acetic/propionic acid production. These findings demonstrate BRAP1-1’s potential to modulate gut microbiota composition and enhance intestinal homeostasis. Full article
Show Figures

Figure 1

24 pages, 3892 KiB  
Article
Rotenone Induces Parkinsonism with Constipation Symptoms in Mice by Disrupting the Gut Microecosystem, Inhibiting the PI3K-AKT Signaling Pathway and Gastrointestinal Motility
by Li Liu, Yan Zhao, Weixing Yang, Yuqin Fan, Lixiang Han, Jun Sheng, Yang Tian and Xiaoyu Gao
Int. J. Mol. Sci. 2025, 26(5), 2079; https://doi.org/10.3390/ijms26052079 - 27 Feb 2025
Viewed by 1049
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases. Constipation is a prodromal symptom of PD. It is important to investigate the pathogenesis of constipation symptoms in PD. Rotenone has been successfully used to establish PD animal models. However, the specific [...] Read more.
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases. Constipation is a prodromal symptom of PD. It is important to investigate the pathogenesis of constipation symptoms in PD. Rotenone has been successfully used to establish PD animal models. However, the specific mechanism of rotenone-induced constipation symptoms is not well understood. In this work, we found that constipation symptoms appeared earlier than motor impairment in mice gavaged with a low dose of rotenone (30 mg/kg·BW). Rotenone not only caused loss of dopaminergic neurons and accumulation of α-synuclein, but also significantly reduced serum 5-HT levels and 5-HTR4 in the striatum and colon. The mRNA expression of aquaporins, gastrointestinal motility factors (c-Kit, Cx43, smMLCK and MLC-3) in mouse colon was also significantly regulated by rotenone. In addition, both colon and brain showed rotenone-induced inflammation and barrier dysfunction; the PI3K/AKT pathway in the substantia nigra and colon was also significantly inhibited by rotenone. Importantly, the structure, composition and function of the gut microbiota were also significantly altered by rotenone. Some specific taxa were closely associated with motor and constipation symptoms, inflammation, and gut and brain barrier status in PD mice. Akkermansia, Staphylococcus and Lachnospiraceae_UCG006 may play a role in exacerbating constipation symptoms, whereas Acinetobacter, Lactobacillus, Bifidobacterium, Solibacillus and Eubacterium_xylanophilum_groups may be beneficial in stimulating gastrointestinal peristalsis, maintaining motor function and alleviating inflammation and barrier damage in mice. In conclusion, low-dose rotenone can cause parkinsonism with constipation symptoms in mice by disrupting the intestinal microecosystem and inhibiting the PI3K-AKT pathway and gastrointestinal motility. Full article
Show Figures

Figure 1

22 pages, 8916 KiB  
Article
The Positive Regulatory Effect of DBT on Lipid Metabolism in Postpartum Dairy Cows
by Zheng Zhou, Kang Yong, Zhengzhong Luo, Zhenlong Du, Tao Zhou, Xiaoping Li, Xueping Yao, Liuhong Shen, Shumin Yu, Yixin Huang and Suizhong Cao
Metabolites 2025, 15(1), 58; https://doi.org/10.3390/metabo15010058 - 16 Jan 2025
Cited by 1 | Viewed by 1039
Abstract
Background/Objectives: The transition from a non-lactating to a lactating state is a critical period for lipid metabolism in dairy cows. Danggui Buxue Tang (DBT), stimulating energy metabolism, ameliorates diseases related to lipid metabolism disorders and is expected to be an effective supplement for [...] Read more.
Background/Objectives: The transition from a non-lactating to a lactating state is a critical period for lipid metabolism in dairy cows. Danggui Buxue Tang (DBT), stimulating energy metabolism, ameliorates diseases related to lipid metabolism disorders and is expected to be an effective supplement for alleviating excessive lipid mobilisation in periparturient dairy cows. This study aimed to investigate the effects of supplemental DBT on serum biochemical indices, faecal microbial communities, and plasma metabolites in dairy cows. Methods: Thirty cows were randomly divided into three groups: H-DBT group, L-DBT group, and control group. DBT administration was started on the day of calving and continued once daily for seven days. Faecal and blood samples were collected on calving day, 7 days after calving, and 14 days after calving. The levels of serum biochemical indices were measured at three time points in the three groups using commercial kits. Cows in the H-DBT group and control group were selected for metabolome and 16S rRNA amplicon sequencing. Results: Our research shows that, in dairy cows 7 days postpartum, DBT significantly reduced serum 3-hydroxybutyric acid (BHB) concentrations and the number of cows with BHB concentrations ≥ 1 mmol/L. Additionally, DBT increased serum total cholesterol contents at both 7 and 14 days postpartum. Analysis of the microbiota community showed that DBT modulated the composition and structure of the hindgut microbiota. Metabolomic analysis revealed decreased plasma acetylcarnitine, 2-hydroxybutyric acid, and BHB levels 7 days postpartum, whereas the TCA cycle was enhanced. At 14 days postpartum, DBT altered the plasma bile acid profile, especially glycine-conjugated bile acids, including GCDCA, GUDCA, and GDCA. Correlation analyses showed that the relative abundances of Bacillus, Solibacillus, Dorea, and Romboutsia were strongly correlated with the differential metabolites, which is crucial for the beneficial effects of DBT. Conclusions: DBT improves energy status and lipid metabolism in postpartum dairy cows by modulating hindgut microbiota and serum lipid metabolites. Full article
(This article belongs to the Special Issue Research on Lipid Metabolism in Animals)
Show Figures

Graphical abstract

13 pages, 2422 KiB  
Article
Effects of Different Dietary Combinations on Blood Biochemical Indicators and Rumen Microbial Ecology in Wenshan Cattle
by Dongwang Wu, Xiaoming He, Ying Lu, Zhendong Gao, Yuqing Chong, Jieyun Hong, Jiao Wu, Weidong Deng and Dongmei Xi
Microorganisms 2024, 12(11), 2154; https://doi.org/10.3390/microorganisms12112154 - 26 Oct 2024
Viewed by 1116
Abstract
With the continuous optimization of feed ingredients in livestock production, barley has garnered significant attention as a potential substitute for corn in feed. This study aims to investigate the effects of replacing part of the corn and soybean meal with barley, wheat bran, [...] Read more.
With the continuous optimization of feed ingredients in livestock production, barley has garnered significant attention as a potential substitute for corn in feed. This study aims to investigate the effects of replacing part of the corn and soybean meal with barley, wheat bran, and rapeseed meal on Wenshan cattle, focusing on the rumen microbial community, blood physiological and biochemical indicators, and growth traits. Through an intensive feeding experiment with two different dietary ratios, we found that adding barley to the diet significantly reduced the host’s blood lipid concentration and significantly increased the height, body length, heart girth, and average daily weight gain of Wenshan cattle. Analysis of the rumen microbial community structure showed that the addition of barley significantly affected the relative abundance of Firmicutes, Proteobacteria, and Bacteroidetes, with the relative abundance of Spirochaetes being significantly lower than that of the control group (p < 0.05). The dominant bacterial groups mainly included Acinetobacter, Solibacillus, and Lysinibacillus. In summary, this study reveals the potential of different feed ingredient ratios involving barley, wheat bran, and rapeseed meal in the production performance of Wenshan cattle. By regulating blood physiology and improving the rumen micro-ecological structure, it provides new scientific evidence for optimizing livestock and poultry feeding management strategies. Future research will further explore the optimal application ratio of barley under different feeding conditions and its long-term impact on animal health and production performance. Full article
(This article belongs to the Special Issue Nutritional Regulation on Gut Microbiota, 2nd Edition)
Show Figures

Figure 1

18 pages, 4613 KiB  
Article
Integrated Analysis of the Transcriptome and Microbial Diversity in the Intestine of Miniature Pig Obesity Model
by Wenjing Qi, Siran Zhu, Lingli Feng, Jinning Liang, Xiaoping Guo, Feng Cheng, Yafen Guo, Ganqiu Lan and Jing Liang
Microorganisms 2024, 12(2), 369; https://doi.org/10.3390/microorganisms12020369 - 10 Feb 2024
Cited by 3 | Viewed by 2439
Abstract
Obesity, a key contributor to metabolic disorders, necessitates an in-depth understanding of its pathogenesis and prerequisites for prevention. Guangxi Bama miniature pig (GBM) offers an apt model for obesity-related studies. In this research, we used transcriptomics and 16S rRNA gene sequencing to discern [...] Read more.
Obesity, a key contributor to metabolic disorders, necessitates an in-depth understanding of its pathogenesis and prerequisites for prevention. Guangxi Bama miniature pig (GBM) offers an apt model for obesity-related studies. In this research, we used transcriptomics and 16S rRNA gene sequencing to discern the differentially expressed genes (DEGs) within intestinal (jejunum, ileum, and colon) tissues and variations in microbial communities in intestinal contents of GBM subjected to normal diets (ND) and high-fat, high-carbohydrate diets (HFHCD). After a feeding duration of 26 weeks, the HFHCD-fed experimental group demonstrated notable increases in backfat thickness, BMI, abnormal blood glucose metabolism, and blood lipid levels alongside the escalated serum expression of pro-inflammatory factors and a marked decline in intestinal health status when compared to the ND group. Transcriptomic analysis revealed a total of 1669 DEGs, of which 27 had similar differences in three intestinal segments across different groups, including five immune related genes: COL6A6, CYP1A1, EIF2AK2, NMI, and LGALS3B. Further, we found significant changes in the microbiota composition, with a significant decrease in beneficial bacterial populations within the HFHCD group. Finally, the results of integrated analysis of microbial diversity with transcriptomics show a positive link between certain microbial abundance (Solibacillus, norank_f__Saccharimonadaceae, Candidatus_Saccharimonas, and unclassified_f__Butyricicoccaceae) and changes in gene expression (COL6A6 and NMI). Overall, HFHCD appears to co-contribute to the initiation and progression of obesity in GBM by aggravating inflammatory responses, disrupting immune homeostasis, and creating imbalances in intestinal flora. Full article
(This article belongs to the Special Issue Intestinal Dysbiosis)
Show Figures

Figure 1

19 pages, 3467 KiB  
Article
Diversity of Fast-Growth Spore-Forming Microbes and Their Activity as Plant Partners
by María Daniela Artigas Ramírez, Shin-ichiro Agake, Masumi Maeda, Katsuhiro Kojima, Naoko Ohkama-Ohtsu and Tadashi Yokoyama
Microorganisms 2023, 11(2), 232; https://doi.org/10.3390/microorganisms11020232 - 17 Jan 2023
Cited by 2 | Viewed by 3289
Abstract
Biofertilizers are agricultural materials capable of reducing the usage amounts of chemical fertilizers. Spore-forming microorganisms (SFM) could be used for plant growth promotion or to improve plant health. Until now, biofertilizers based on SFM have been applied for rice and other crops. In [...] Read more.
Biofertilizers are agricultural materials capable of reducing the usage amounts of chemical fertilizers. Spore-forming microorganisms (SFM) could be used for plant growth promotion or to improve plant health. Until now, biofertilizers based on SFM have been applied for rice and other crops. In this study, we isolated and characterized SFM, which were colonized on the Oryza sativa L. roots. SFM were analyzed regarding the short-term effects of biofertilization on the nursery growths. Analysis was performed without nitrogen or any inorganic fertilizer and was divided into two groups, including bacteria and fungi. SF-bacteria were dominated by the Firmicutes group, including species from Viridibacillus, Lysinibacillus, Solibacillus, Paenibacillus, Priestia, and mainly Bacillus (50%). The fungi group was classified as Mucoromycota, Basidiomycota, and mainly Ascomycota (80%), with a predominance of Penicillium and Trichoderma species. In plant performance in comparison with B. pumilus TUAT1, some bacteria and fungus isolates significantly improved the early growth of rice, based on 48 h inoculum with 107 CFU mL−1. Furthermore, several SFM showed positive physiological responses under abiotic stress or with limited nutrients such as phosphorous (P). Moreover, the metabolic fingerprint was obtained. The biofertilizer based on SFM could significantly reduce the application of the inorganic fertilizer and improve the lodging resistances of rice, interactively enhancing better plant health and crop production. Full article
(This article belongs to the Special Issue Agriculture-Related Microorganisms and Carbon Cycle)
Show Figures

Figure 1

13 pages, 1628 KiB  
Article
Host Species Affects Bacterial Evenness, but Not Diversity: Comparison of Fecal Bacteria of Cows and Goats Offered the Same Diet
by Tiziana Maria Mahayri, Kateřina Olša Fliegerová, Silvana Mattiello, Stefania Celozzi, Jakub Mrázek, Chahrazed Mekadim, Hana Sechovcová, Simona Kvasnová, Elie Atallah and Giuseppe Moniello
Animals 2022, 12(16), 2011; https://doi.org/10.3390/ani12162011 - 9 Aug 2022
Cited by 12 | Viewed by 3301
Abstract
The aim of this study was to compare the diversity and composition of fecal bacteria in goats and cows offered the same diet and to evaluate the influence of animal species on the gut microbiome. A total of 17 female goats (Blond Adamellan) [...] Read more.
The aim of this study was to compare the diversity and composition of fecal bacteria in goats and cows offered the same diet and to evaluate the influence of animal species on the gut microbiome. A total of 17 female goats (Blond Adamellan) and 16 female cows (Brown Swiss) kept on an organic farm were fed pasture and hay. Bacterial structure in feces was examined by high-throughput sequencing using the V4–V5 region of the 16S rRNA gene. The Alpha diversity measurements of the bacterial community showed no statistical differences in species richness and diversity between the two groups of ruminants. However, the Pielou evenness index revealed a significant difference and showed higher species evenness in cows compared to goats. Beta diversity measurements showed statistical dissimilarities and significant clustering of bacterial composition between goats and cows. Firmicutes were the dominant phylum in both goats and cows, followed by Bacteroidetes, Proteobacteria, and Spirochaetes. Linear discriminant analysis with effect size (LEfSe) showed a total of 36 significantly different taxa between goats and cows. Notably, the relative abundance of Ruminococcaceae UCG-005, Christensenellaceae R-7 group, Ruminococcaceae UCG-010, Ruminococcaceae UCG-009, Ruminococcaceae UCG-013, Ruminococcaceae UCG-014, Ruminococcus 1, Ruminococcaceae UCG-002, Lachnospiraceae NK4A136 group, Treponema 2, Lachnospiraceae AC2044 group, and Bacillus was higher in goats compared to cows. In contrast, the relative abundance of Turicibacter, Solibacillus, Alloprevotella, Prevotellaceae UCG-001, Negativibacillus, Lachnospiraceae UCG-006, and Eubacterium hallii group was higher in cows compared with goats. Our results suggest that diet shapes the bacterial community in feces, but the host species has a significant impact on community structure, as reflected primarily in the relative abundance of certain taxa. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

14 pages, 2001 KiB  
Article
Temporal Response of Bacterial Community Associated Fe(III) Reduction to Initial pH Shift of Paddy Soils
by Rong Jia, Fangmei Fan, Lina Li and Dong Qu
Agronomy 2022, 12(6), 1304; https://doi.org/10.3390/agronomy12061304 - 29 May 2022
Cited by 2 | Viewed by 2153
Abstract
The temporal response of bacterial community, especially that of bacteria with Fe(III) reducing ability, in flooded paddy soils to initial pH changes, is not well-documented. This work demonstrated variations in concentration of Fe species, bacterial activity and community succession in paddy soils with [...] Read more.
The temporal response of bacterial community, especially that of bacteria with Fe(III) reducing ability, in flooded paddy soils to initial pH changes, is not well-documented. This work demonstrated variations in concentration of Fe species, bacterial activity and community succession in paddy soils with initial pH shift to acidic or alkaline level. The causal links of pH shift-induced bacterial community succession with Fe(III) reduction was also assessed. Results showed that soil initial pH shifts greatly influenced bacterial community and Fe(III) reduction. A soil pH shift from acidic to alkaline level enhanced bacterial abundance and dehydrogenase activity (DHA), which accordingly caused an increase in Fe(III) reducing ratio by 22.26% on day One of flooding. The stimulated putative Fe(III) reducing species, Bacillus and Solibacillus, caused stimulation of Fe(III) reduction with pH increase. However, there was continuous inhibition of Fe(III) reduction with a pH shift from alkaline to acidic, with Fe(III) reducing ratios decreased by 11.98–40.04%. The inhibited DHA and Fe(III) reducing bacteria were amenable for the suspension of Fe(III) reduction. This study suggests that bacterial activity and Fe(III) concentration, in responses to initial soil pH shift, are primarily responsible for pH shift-induced Fe(III) reduction in paddy soils. Full article
(This article belongs to the Special Issue Soil Microbiome and Agriculture Management)
Show Figures

Figure 1

13 pages, 8311 KiB  
Article
Enhanced Biogas Production by Ligninolytic Strain Enterobacter hormaechei KA3 for Anaerobic Digestion of Corn Straw
by Qing Zhang, Jing Zhang, Shuai Zhao, Peizhi Song, Yanli Chen, Pu Liu, Chunlan Mao and Xiangkai Li
Energies 2021, 14(11), 2990; https://doi.org/10.3390/en14112990 - 21 May 2021
Cited by 16 | Viewed by 3314
Abstract
Lignin-feeding insect gut is a natural ligninolytic microbial bank for the sustainable conversion of crop straw to biogas. However, limited studies have been done on highly efficient microbes. Here, an efficient ligninolytic strain Enterobacter hormaechei KA3 was isolated from the gut microbiomes of [...] Read more.
Lignin-feeding insect gut is a natural ligninolytic microbial bank for the sustainable conversion of crop straw to biogas. However, limited studies have been done on highly efficient microbes. Here, an efficient ligninolytic strain Enterobacter hormaechei KA3 was isolated from the gut microbiomes of lignin-feeding Hypomeces squamosus Fabricius, and its effects on lignin degradation and anaerobic digestion were investigated. No research has been reported. Results showed that strain KA3 had better lignin-degrading ability for corn straw with a higher lignin-degrading rate (32.05%) and lignin peroxidase activity (585.2 U/L). Furthermore, the highest cumulative biogas yield (59.19 L/kg-VS) and methane yield (14.76 L/kg-VS) were obtained for KA3 inoculation, which increased by 20% and 31%, respectively, compared to CK. Higher removal rates of COD, TS, and vs. of 41.6%, 43.11%, and 66.59% were also found. Moreover, microbial community diversity increased as digestion time prolonged in TG, and bacteria were more diverse than archaea. The dominant genus taxon, for methanogens, was Methanosate in TG, while in CK was Methanosarcina. For bacteria, dominant taxa were similar for all groups, which were Solibacillus and Clostridium. Therefore, strain KA3 improved the methane conversion of the substrate. This study could provide a new microbial resource and practical application base for lignin degradation. Full article
(This article belongs to the Special Issue Enhanced Biogas Production)
Show Figures

Graphical abstract

28 pages, 6493 KiB  
Article
Microbial Diversity of Psychrotolerant Bacteria Isolated from Wild Flora of Andes Mountains and Patagonia of Chile towards the Selection of Plant Growth-Promoting Bacterial Consortia to Alleviate Cold Stress in Plants
by Paulina Vega-Celedón, Guillermo Bravo, Alexis Velásquez, Fernanda P. Cid, Miryam Valenzuela, Ingrid Ramírez, Ingrid-Nicole Vasconez, Inaudis Álvarez, Milko A. Jorquera and Michael Seeger
Microorganisms 2021, 9(3), 538; https://doi.org/10.3390/microorganisms9030538 - 5 Mar 2021
Cited by 57 | Viewed by 7517
Abstract
Cold stress decreases the growth and productivity of agricultural crops. Psychrotolerant plant growth-promoting bacteria (PGPB) may protect and promote plant growth at low temperatures. The aims of this study were to isolate and characterize psychrotolerant PGPB from wild flora of Andes Mountains and [...] Read more.
Cold stress decreases the growth and productivity of agricultural crops. Psychrotolerant plant growth-promoting bacteria (PGPB) may protect and promote plant growth at low temperatures. The aims of this study were to isolate and characterize psychrotolerant PGPB from wild flora of Andes Mountains and Patagonia of Chile and to formulate PGPB consortia. Psychrotolerant strains were isolated from 11 wild plants (rhizosphere and phyllosphere) during winter of 2015. For the first time, bacteria associated with Calycera, Orites, and Chusquea plant genera were reported. More than 50% of the 130 isolates showed ≥33% bacterial cell survival at temperatures below zero. Seventy strains of Pseudomonas, Curtobacterium, Janthinobacterium, Stenotrophomonas, Serratia, Brevundimonas, Xanthomonas, Frondihabitans, Arthrobacter, Pseudarthrobacter, Paenarthrobacter, Brachybacterium, Clavibacter, Sporosarcina, Bacillus, Solibacillus, Flavobacterium, and Pedobacter genera were identified by 16S rRNA gene sequence analyses. Ten strains were selected based on psychrotolerance, auxin production, phosphate solubilization, presence of nifH (nitrogenase reductase) and acdS (1-aminocyclopropane-1-carboxylate (ACC) deaminase) genes, and anti-phytopathogenic activities. Two of the three bacterial consortia formulated promoted tomato plant growth under normal and cold stress conditions. The bacterial consortium composed of Pseudomonas sp. TmR5a & Curtobacterium sp. BmP22c that possesses ACC deaminase and ice recrystallization inhibition activities is a promising candidate for future cold stress studies. Full article
Show Figures

Figure 1

24 pages, 3328 KiB  
Article
Metagenomics and Culture Dependent Insights into the Distribution of Firmicutes across Two Different Sample Types Located in the Black Hills Region of South Dakota, USA
by Tanvi Govil, Manasi Paste, Dipayan Samanta, Aditi David, Kian Mau Goh, Xiangkai Li, David R. Salem and Rajesh K. Sani
Microorganisms 2021, 9(1), 113; https://doi.org/10.3390/microorganisms9010113 - 6 Jan 2021
Cited by 19 | Viewed by 4013
Abstract
Firmicutes is almost a ubiquitous phylum. Several genera of this group, for instance, Geobacillus, are recognized for decomposing plant organic matter and for producing thermostable ligninolytic enzymes. Amplicon sequencing was used in this study to determine the prevalence and genetic diversity of [...] Read more.
Firmicutes is almost a ubiquitous phylum. Several genera of this group, for instance, Geobacillus, are recognized for decomposing plant organic matter and for producing thermostable ligninolytic enzymes. Amplicon sequencing was used in this study to determine the prevalence and genetic diversity of the Firmicutes in two distinctly related environmental samples—South Dakota Landfill Compost (SDLC, 60 °C), and Sanford Underground Research Facility sediments (SURF, 45 °C). Although distinct microbial community compositions were observed, there was a dominance of Firmicutes in both the SDLC and SURF samples, followed by Proteobacteria. The abundant classes of bacteria in the SDLC site, within the phylum Firmicutes, were Bacilli (83.2%), and Clostridia (2.9%). In comparison, the sample from the SURF mine was dominated by the Clostridia (45.8%) and then Bacilli (20.1%). Within the class Bacilli, the SDLC sample had more diversity (a total of 11 genera with more than 1% operational taxonomic unit, OTU). On the other hand, SURF samples had just three genera, about 1% of the total population: Bacilli, Paenibacillus, and Solibacillus. With specific regard to Geobacillus, it was found to be present at a level of 0.07% and 2.5% in SURF and SDLC, respectively. Subsequently, culture isolations of endospore-forming Firmicutes members from these samples led to the isolation of a total of 117 isolates. According to colony morphologies, and identification based upon 16S rRNA and gyrB gene sequence analysis, we obtained 58 taxonomically distinct strains. Depending on the similarity indexes, a gyrB sequence comparison appeared more useful than 16S rRNA sequence analysis for inferring intra- and some intergeneric relationships between the isolates. Full article
(This article belongs to the Special Issue Microbial Diversity in Extreme Environments)
Show Figures

Figure 1

17 pages, 7463 KiB  
Article
A Sustainable Approach for the Green Synthesis of Silver Nanoparticles from Solibacillus isronensis sp. and Their Application in Biofilm Inhibition
by Priyanka Singh, Santosh Pandit, VRSS Mokkapati, Jørgen Garnæs and Ivan Mijakovic
Molecules 2020, 25(12), 2783; https://doi.org/10.3390/molecules25122783 - 16 Jun 2020
Cited by 54 | Viewed by 4691
Abstract
The use of bacteria as nanofactories for the green synthesis of nanoparticles is considered a sustainable approach, owing to the stability, biocompatibility, high yields and facile synthesis of nanoparticles. The green synthesis provides the coating or capping of biomolecules on nanoparticles surface, which [...] Read more.
The use of bacteria as nanofactories for the green synthesis of nanoparticles is considered a sustainable approach, owing to the stability, biocompatibility, high yields and facile synthesis of nanoparticles. The green synthesis provides the coating or capping of biomolecules on nanoparticles surface, which confer their biological activity. In this study, we report green synthesis of silver nanoparticles (AgNPs) by an environmental isolate; named as AgNPs1, which showed 100% 16S rRNA sequence similarity with Solibacillus isronensis. UV/visible analysis (UV/Vis), transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FTIR) were used to characterize the synthesized nanoparticles. The stable nature of nanoparticles was studied by thermogravimetric analysis (TGA) and inductively coupled plasma mass spectrometry (ICP-MS). Further, these nanoparticles were tested for biofilm inhibition against Escherichia coli and Pseudomonas aeruginosa. The AgNPs showed minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 3.12 µg/mL and 6.25 µg/mL for E. coli, and 1.56 µg/mL and 3.12 µg/mL for P. aeruginosa, respectively. Full article
(This article belongs to the Special Issue Green Synthesis and Application of Gold and Silver Nanoparticles)
Show Figures

Figure 1

14 pages, 4306 KiB  
Article
Low Temperature (15 °C) Reduces Bacterial Diversity and Prolongs the Preservation Time of Volvariella volvacea
by Xiuling Wang, Shunjie Liu, Mingjie Chen, Changxia Yu, Yan Zhao, Huanling Yang, Lei Zha and Zhengpeng Li
Microorganisms 2019, 7(10), 475; https://doi.org/10.3390/microorganisms7100475 - 20 Oct 2019
Cited by 8 | Viewed by 4700
Abstract
Straw mushroom (Volvariella volvacea) is the most commonly cultivated edible fungus in the world, but the challenges associated with the preservation have limited its marketability. Microbiology, especially bacteria, play a key role in the deterioration of food, this study aimed to [...] Read more.
Straw mushroom (Volvariella volvacea) is the most commonly cultivated edible fungus in the world, but the challenges associated with the preservation have limited its marketability. Microbiology, especially bacteria, play a key role in the deterioration of food, this study aimed to reveal the succession of the bacterial community on the surfaces of V. volvacea fruit bodies under different temperature conditions. We amplified 16S rRNA genes of V4 regions, obtained the bacterial species information by using high-throughput sequencing technology, and analyzed the effects of environmental temperature and preservation time on bacterial communities. The relative abundances of Firmicutes, Bacilli, and Bacillales increased significantly when straw mushrooms began to rot. Furthermore, the relative abundances of Paenibacillus, Lysinibacillus and Solibacillus, which belong to Bacillales, increased with the decay of straw mushroom. The Shannon and Simpson indices of V. volvacea stored at 30 °C were significantly higher than those of V. volvacea stored at 15 °C, which indicates that a high temperature contributes to the improvement in the species diversity. According to the linear discriminant analysis (LDA) effect size (LEfSe) results, the number of biomarkers in the 30 °C group (32, 42.11%) was significantly higher than that in the 15 °C group (17, 22.37%), indicating that a high temperature has a clustering effect on some bacterial communities. A Spearman correlation analysis showed that Pseudomonas, Stenotrophomonas and Solibacillus promoted the decay of straw mushroom. In conclusion, a high temperature increases the bacterial diversity on the straw mushroom surfaces and has a clustering effect on the bacterial communities. The bacterial community consisting of Firmicutes, Bacilli, Bacillales, Paenibacillus, Lysinibacillus, Pseudomonas, Stenotrophomonas and Solibacillus could promote the decay of straw mushroom, so new preservation materials research can focus on inhibiting anaerobic and decay-causing bacteria to prolong preservation time. Full article
Show Figures

Figure 1

Back to TopTop