Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = Sn-based solder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1909 KB  
Article
A Robust 3D Fixed-Area Quality Inspection Framework for Production Lines
by Haijian Li, Kuangrong Hao, Tao Zhuang, Ping Zhang, Bing Wei and Xue-song Tang
Processes 2025, 13(10), 3300; https://doi.org/10.3390/pr13103300 - 15 Oct 2025
Viewed by 237
Abstract
Introducing deep learning methods into the quality inspection of production lines can reduce labor and improve efficiency, with great potential for the development of manufacturing systems. However, in specific closed production-line environments, robust and high-quality 3D fixed-area quality inspection is a common and [...] Read more.
Introducing deep learning methods into the quality inspection of production lines can reduce labor and improve efficiency, with great potential for the development of manufacturing systems. However, in specific closed production-line environments, robust and high-quality 3D fixed-area quality inspection is a common and challenging problem due to improper assembly, high data resolution, pose perturbation, and other reasons. In this article, we propose a robust 3D fixed-area quality inspection framework for production lines consisting of two steps: recursive segmentation and one-class classification. First, a Focal Segmentation Module (FSM) is proposed to gradually focus on the areas to be inspected by recursively segmenting the downsampled low-resolution point cloud, thereby ensuring efficient high-resolution segmentation. Moreover, Local Reference Frame (LRF)-based rotation-invariant local feature extraction is introduced to improve the robustness of the proposed method to pose variations. Second, a uniquely designed Semi-Nested Point Cloud Autoencoder (SN-PAE) is proposed to improve data imbalance and hard-to-classify samples. Particularly, we first introduce rotation-invariant feature extraction to a point cloud autoencoder to learn descriptive latent variables, then measure the latent variables using a semi-nested Latent Autoencoding Module (LAM). This avoids unreliable chamfer distance measurement and makes SN-PAE a more robust measurement method. In addition, we implement a set of experiments using solder joints as an example. Compared with PointNet++, the memory usage of recursive segmentation is reduced by 92%, and the time cost is reduced by 97.5%. The recall of SN-PAE on unaligned samples exceeds that of competitors by nearly 30% in the classification stage. The results demonstrate the feasibility and effectiveness of the proposed framework. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

15 pages, 8984 KB  
Article
Sintering for High Power Optoelectronic Devices
by Hannes Schwan, Nihesh Mohan, Maximilian Schmid, Rocky Kumar Saha, Holger Klassen, Klaus Müller and Gordon Elger
Micromachines 2025, 16(10), 1164; https://doi.org/10.3390/mi16101164 - 14 Oct 2025
Viewed by 367
Abstract
Residual-free eutectic Au80Sn20 soldering is still the dominant assembly technology for optoelectronic devices such as high-power lasers, LEDs, and photodiodes. Due to the high cost of gold, alternatives are desirable. This paper investigates the thermal performance of copper-based sintering for optoelectronic submodules on [...] Read more.
Residual-free eutectic Au80Sn20 soldering is still the dominant assembly technology for optoelectronic devices such as high-power lasers, LEDs, and photodiodes. Due to the high cost of gold, alternatives are desirable. This paper investigates the thermal performance of copper-based sintering for optoelectronic submodules on first and second level to obtain thermally efficient thin bondlines. Sintered interconnects obtained by a new particle-free copper ink, based on complexed copper salt, are compared with copper flake and silver nanoparticle sintered interconnects and benchmarked against AuSn solder interconnects. The copper ink is dispensed and predried at 130 °C to facilitate in situ generation of Cu nanoparticles by thermal decomposition of the metal salt before sintering. Submounts are then sintered at 275 °C for 15 min under nitrogen with 30 MPa pressure, forming uniform 2–5 µm copper layers achieving shear strengths above 31 MPa. Unpackaged LEDs are bonded on first level using the copper ink but applying only 10 MPa to avoid damaging the semiconductor dies. Thermal performance is evaluated via transient thermal analysis. Results show that copper ink interfaces approach the performance of thin AuSn joints and match silver interconnects at second level. However, at first level, AuSn and sintered interconnects of commercial silver and copper pastes remained superior due to the relative inhomogeneous thickness of the thin Cu copper layer after predrying, requiring higher bonding pressure to equalize surface inhomogeneities. Full article
(This article belongs to the Special Issue Emerging Trends in Optoelectronic Device Engineering)
Show Figures

Figure 1

18 pages, 6513 KB  
Article
Analysis of Grain Growth Behavior of Intermetallic Compounds on Plated Pure Sn for Micropump Solder Caps
by Hwa-Sun Park, Chang-Yun Na, Jong-Wook Kim, Woon-Seok Jung, Jae-Hyuk Park, Jong-Woo Lim and Youn-Goo Yang
Materials 2025, 18(19), 4602; https://doi.org/10.3390/ma18194602 - 3 Oct 2025
Viewed by 605
Abstract
We evaluated for the morphology and growth behavior of IMC grain according to number of reflows of solder cap pure Sn microbumps. In the structure of Ni barrier/Cu layer between Cu pillar and pure Sn, solder cap pure Sn on the top layer [...] Read more.
We evaluated for the morphology and growth behavior of IMC grain according to number of reflows of solder cap pure Sn microbumps. In the structure of Ni barrier/Cu layer between Cu pillar and pure Sn, solder cap pure Sn on the top layer was analyzed for the behavior change of IMC grain according to the number of reflows. The height and diameter of the bumps on the wafer were designed to be 40 μm and 30 μm, respectively. The vertical structure of the microbump consisted of Ti/Cu (1000 Å/2000 Å), Cu pillar (20 µm), Ni barrier (3 µm), and Cu (1 µm). The overall height of the bump is about 40 μm. Additionally, the height of the solder cap pure Sn as the last layer is 20 μm. The diameter of the bump is 30 μm. It was formed using plating. After plating to solder cap Sn, it was finally formed for the microbump using reflow. Samples were prepared according to the number of reflows (1, 3, 5, 7, and 9). To observe the grain morphology of the IMC, the pure Sn on the upper layer (solder cap) was removed using SupraBond RO-22 etchant. In the removed state, the morphology of the IMC grain was evaluated to the inside surface of bump using SEM and a 3D scope. The average number of IMC grains decreased linearly during reflow cycles 1 to 5 and then gradually decreased during reflow cycles 7 to 10. The average surface area of IMC grains was 18.243 μm when reflow was performed once. The average surface area of IMC grains increased proportionally for reflow cycles 1 to 10. Based on the experimental results, when the count of reflow was performed more than 10 times, it was confirmed that the solder cap pure Sn was reduced by more than 50% due to the increase in the area of IMC grain. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

22 pages, 15273 KB  
Article
Investigation on the Microstructure and Mechanical Properties of FeGa3 Surface Film on SKD11 Substrate
by Roonie Protasius, Masaki Tanaka, Shigeto Yamasaki, Tatsuya Morikawa, Kazuyuki Yagi, Masahiko Tezuka, Yasufumi Yoshida, Yukinari Yoshida and Makoto Higashionna
Materials 2025, 18(18), 4427; https://doi.org/10.3390/ma18184427 - 22 Sep 2025
Viewed by 343
Abstract
Gallium-based liquid metal is corrosive to steel alloys, forming FeGa3 surface films which can potentially be applied as a solid lubricant to enhance wear resistance and mitigate liquid metal-induced corrosion. However, the characteristics of these films remain insufficiently explored. In this study, [...] Read more.
Gallium-based liquid metal is corrosive to steel alloys, forming FeGa3 surface films which can potentially be applied as a solid lubricant to enhance wear resistance and mitigate liquid metal-induced corrosion. However, the characteristics of these films remain insufficiently explored. In this study, Ga-In-Sn alloy was ultrasonically soldered onto annealed and decarburised substrates, followed by heating in a vacuum chamber to form a 30 μm thick FeGa3 reaction layer. The film on the annealed samples with an alpha-ferrite microstructure exhibited high porosity and a surface roughness of 1.97 Ra. In contrast, the film on the decarburised samples with a ferritic microstructure showed minimal porosity and a lower surface roughness of 1.29 Ra. Nanoindentation tests revealed Young modulus values of 231 GPa and 242 GPa and hardness values of 11.4 GPa and 12.7 GPa for the annealed and decarburised samples, respectively. The high porosity in the annealed samples is attributed to the suppression of FeGa3 formation in regions containing chromium carbides. Shear stress for fracture, measured by microcantilever tests at the interface between the substrate and the inner matrix of the surface film, showed lower fracture shear stress in the annealed sample, attributed to the presence of larger pores within its microstructure. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Graphical abstract

19 pages, 5923 KB  
Article
Microstructure and Properties of Bi-Sn, Bi-Sn-Sb, and Bi-Sn-Ag Solder Alloys for Electronic Applications
by Andrei-Alexandru Ilie, Florentina Niculescu, Gheorghe Iacob, Ion Pencea, Florin Miculescu, Robert Bololoi, Dumitru-Valentin Drăguț, Alexandru-Cristian Matei, Mihai Ghiţă, Adrian Priceputu and Constantin Ungureanu
Metals 2025, 15(8), 915; https://doi.org/10.3390/met15080915 - 18 Aug 2025
Viewed by 1140
Abstract
The Bi-Sn, Bi-Sn-Ag, and Bi-Sn-Sb solder alloy systems represent lead-free, environmentally friendly alternatives for reliable electronic assembly. These alloys comply with increasingly strict environmental and health regulations, while offering low melting points suitable for soldering temperature-sensitive components. Microstructural analysis revealed distinct phase segregation [...] Read more.
The Bi-Sn, Bi-Sn-Ag, and Bi-Sn-Sb solder alloy systems represent lead-free, environmentally friendly alternatives for reliable electronic assembly. These alloys comply with increasingly strict environmental and health regulations, while offering low melting points suitable for soldering temperature-sensitive components. Microstructural analysis revealed distinct phase segregation in all alloys, with Sb promoting coarse Sn2Sb3 intermetallic compounds and Ag inducing fine needle-like Ag3Sn precipitates. Eutectic refinement and compositional contrast were confirmed by SEM-BSE and EDS mapping. Vickers microhardness measurements revealed increased hardness in Sb- and Ag-modified Bi–Sn alloys, with Ag3Sn dispersion yielding the highest strengthening effect, indicating enhanced mechanical potential. This study also reports the thermal and electrical conductivities of Bi60Sn40, Bi60Sn35Ag5, and Bi60Sn35Sb5 alloys over the 25–140 °C range. Bi60Sn40 showed an increase in thermal conductivity across the full temperature range from 16.93 to 26.93 W/m·K, while Bi60Sn35Ag5 reached 18.28 W/m·K at 25 °C, and Bi60Sn35Sb5 exhibited 13.90 W/m·K. These findings underline the critical influence of alloying elements on microstructure, phase stability, and thermophysical behavior, supporting their application in low-temperature soldering technologies. Full article
Show Figures

Graphical abstract

16 pages, 3570 KB  
Article
Wettability Study of Soldered Joints in SiC Ceramics and Combined Ni-SiC Using SnSbTi-Based Solder and Electron Beam Heating
by Tomas Melus, Roman Kolenak, Jaromir Drapala, Peter Gogola, Matej Pasak, Daniel Drimal and Mikulas Sloboda
Materials 2025, 18(12), 2814; https://doi.org/10.3390/ma18122814 - 16 Jun 2025
Viewed by 577
Abstract
The reactive soldering of silicon-carbide (SiC) ceramics to a Ni-SiC composite was investigated using an Sn-5Sb-3Ti active solder and electron-beam heating at 750 °C, 850 °C and 950 °C. Wettability: The average contact angle decreased from 94 ± 4° (750 °C) to 60 [...] Read more.
The reactive soldering of silicon-carbide (SiC) ceramics to a Ni-SiC composite was investigated using an Sn-5Sb-3Ti active solder and electron-beam heating at 750 °C, 850 °C and 950 °C. Wettability: The average contact angle decreased from 94 ± 4° (750 °C) to 60 ± 3° (850 °C) and further to 24 ± 2° (950 °C), demonstrating progressively improved spreading of the filler with increasing temperature. Interfacial reactions: Continuous layers of Ni3(Sn,Sb)4 and Ti6(Sn,Sb)5 formed along the Ni-SiC/filler interface, the latter confirming Ti diffusion that activates the wetting of the composite surface. Mechanical performance: Shear-lap tests on three joints per condition yielded 39 ± 6 MPa (750 °C), 27 ± 2 MPa (850 °C) and 36 ± 15 MPa (950 °C). The highest and lowest individual values at 950 °C were 51 MPa and 21 MPa, respectively. These results show that a higher soldering temperature lowers the contact angle and promotes interfacial reaction, but only a moderate improvement in average joint strength is obtained. These findings demonstrate a flux-free route to bond SiC ceramics with Ni-SiC composites, which is highly relevant for next-generation power-electronics modules and other high-temperature applications. Full article
Show Figures

Figure 1

12 pages, 7004 KB  
Article
Bonding Characteristics in Air of a Decomposable Composite Sheet Containing Sn-3.0Ag-0.5Cu Particles for Formation of a Robust Metallic Solder Joint in Die Attachment
by Hye-Min Lee and Jong-Hyun Lee
J. Manuf. Mater. Process. 2025, 9(5), 161; https://doi.org/10.3390/jmmp9050161 - 15 May 2025
Viewed by 727
Abstract
To address solder paste drawbacks, such as die contamination and flux residue, a polymer-based sheet containing Sn-3.0 (wt%) Ag-0.5Cu solder particles as fillers was fabricated, and its bonding characteristics were analyzed. The reductant in the manufactured sheet evaporated while removing the oxide layers [...] Read more.
To address solder paste drawbacks, such as die contamination and flux residue, a polymer-based sheet containing Sn-3.0 (wt%) Ag-0.5Cu solder particles as fillers was fabricated, and its bonding characteristics were analyzed. The reductant in the manufactured sheet evaporated while removing the oxide layers on the solder and copper finish surfaces during heating. Subsequently, the resin component (polymethyl methacrylate) began to decompose thermally and gradually dissipated. Ultimately, the resulting joint formed a solder interconnection with a small amount of residual resin. This joint is expected to exhibit superior thermal conductivity compared with composite joints with a polymer matrix structure. Die-attach tests were conducted in air using the fabricated sheet between Cu finishes. Results showed that joints formed at 300 °C for 30 s and 350 °C for 10 s provided excellent shear strength values of 48.0 and 44.3 MPa, respectively, along with appropriately developed intermetallic compound (IMC) layers at the bonding interface. In contrast, bonding at 350 °C for 60 s resulted in excessive growth of IMC layers at the interface. When comparing size effects of solder particles, type 6 particles exhibited superior shear strength along with a relatively thinner total IMC layer thickness compared to when type 7 particles were used. Full article
(This article belongs to the Special Issue Innovative Approaches in Metal Forming and Joining Technologies)
Show Figures

Figure 1

19 pages, 6105 KB  
Article
Polylactic Acid and Polyhydroxybutyrate as Printed Circuit Board Substrates: A Novel Approach
by Zahra Fazlali, David Schaubroeck, Maarten Cauwe, Ludwig Cardon, Pieter Bauwens and Jan Vanfleteren
Processes 2025, 13(5), 1360; https://doi.org/10.3390/pr13051360 - 29 Apr 2025
Cited by 1 | Viewed by 1531
Abstract
This study presents a novel approach to manufacture a rigid printed circuit board (PCB) using sustainable polymers. Current PCBs use a fossil-fuel-based substrate, like FR4. This presents recycling challenges due to its composite nature. Replacing the substrate with an environmentally friendly alternative leads [...] Read more.
This study presents a novel approach to manufacture a rigid printed circuit board (PCB) using sustainable polymers. Current PCBs use a fossil-fuel-based substrate, like FR4. This presents recycling challenges due to its composite nature. Replacing the substrate with an environmentally friendly alternative leads to a reduction in negative impacts. Polylactic acid (PLA) and Polyhydroxybutyrate (PHB) biopolymers are used in this study. These two biopolymers have low melting points (130–180 °C, and 170–180 °C, respectively) and cannot withstand the high temperature soldering process (up to 260 °C for standard SAC (SnAgCu, tin/silver/copper) lead free solder processes). Our approach for replacing the PCB substrate is applying the PLA/PHB carrier substrate at the end of the PCB manufacturing process using injection molding technology. This approach involves all the standard PCB processes, including wet etching of the Cu conductors, and component assembly with SAC solder on a thin flexible polyimide (PI) foil with patterned Cu conductors and then overmolding the biopolymer onto the foil to create a rigid base. This study demonstrates the functionality of two test circuits fabricated using this method. In addition, we evaluated the adhesion between the biopolymer and PI to achieve a durable PCB. Moreover, we performed two different end-of-life approaches (debonding and composting) as a part of the end-of-life consideration. By incorporating biodegradable materials into PCB standard manufacturing, the CO2 emissions and energy consumption are significantly reduced, and installation costs are lowered. Full article
Show Figures

Figure 1

14 pages, 10029 KB  
Article
Microstructural and Mechanical Characterization of Cu/SnAg Pillar Bumps with Ni-Less Surface Finish Utilizing Laser-Assisted Bonding (LAB)
by Sang-Eun Han, Dong-Gyu Choi, Seonghui Han, Tae-Young Lee, Deok-Gon Han, Hoo-Jeong Lee and Sehoon Yoo
Materials 2025, 18(8), 1834; https://doi.org/10.3390/ma18081834 - 16 Apr 2025
Viewed by 760
Abstract
In this study, an interconnection was formed between a Cu/SnAg pillar bump and an Ni-less surface-treated Cu pad through laser-assisted bonding (LAB), and its bonding characteristics were evaluated. The LAB process influences the bond quality and mechanical strength based on the laser irradiation [...] Read more.
In this study, an interconnection was formed between a Cu/SnAg pillar bump and an Ni-less surface-treated Cu pad through laser-assisted bonding (LAB), and its bonding characteristics were evaluated. The LAB process influences the bond quality and mechanical strength based on the laser irradiation time and laser power density. The growth of the intermetallic compound (IMC) in the joint cross-section was observed via FE-SEM analysis. Under optimized LAB conditions, minimal IMC growth and high bonding strength were achieved compared to conventional thermo-compression bonding (TCB) and mass reflow (MR) processes. As the laser irradiation time and laser power density increased, solder splashing was observed at bump temperatures above 300 °C. This is hypothesized to be due to the rapid temperature rise causing the flux to vaporize explosively, resulting in simultaneous solder splashing. With increasing laser power density, the failure mode transitioned from the solder to the IMC. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

13 pages, 10030 KB  
Article
Advanced Fabrication of 56 Gbaud Electro-Absorption Modulated Laser (EML) Chips Integrated with High-Speed Silicon Photonic Substrates
by Liang Li, Yifan Xiao, Weiqi Wang, Chenggang Guan, Wengang Yao, Yuming Zhang, Xuan Chen, Qiang Wan, Chaoqiang Dong and Xinyuan Xu
Photonics 2025, 12(4), 329; https://doi.org/10.3390/photonics12040329 - 1 Apr 2025
Viewed by 1454
Abstract
With the rapid growth of data center demand driven by AI, high-speed optical modules (such as 800G and 1.6T) have become critical components. Traditional 800G modules face issues such as complex processes and large sizes due to the separate packaging of EML chips, [...] Read more.
With the rapid growth of data center demand driven by AI, high-speed optical modules (such as 800G and 1.6T) have become critical components. Traditional 800G modules face issues such as complex processes and large sizes due to the separate packaging of EML chips, AlN substrates, and capacitors. This study proposes a high-speed EML module based on silicon integration, where resistors, capacitors, and AuSn soldering areas are integrated onto the silicon substrate, enabling the bonding of the EML chip, reducing packaging costs, and enhancing scalability. Key achievements include: the development of a 100G EML chip; the fabrication of a high-speed silicon integrated carrier; successful Chip-on-Carrier (COC) packaging and testing, with a laser output power of 10 mW, extinction ratio of 10 dB, and bandwidth greater than 40 GHz; and reliability verified through 500 h of aging tests. This study provides an expandable solution for next-generation high-speed optical interconnects. Full article
Show Figures

Figure 1

13 pages, 4654 KB  
Review
An Introductory Overview of Various Typical Lead-Free Solders for TSV Technology
by Sooyong Choi, Sooman Lim, Muhamad Mukhzani Muhamad Hanifah, Paolo Matteini, Wan Yusmawati Wan Yusoff and Byungil Hwang
Inorganics 2025, 13(3), 86; https://doi.org/10.3390/inorganics13030086 - 15 Mar 2025
Cited by 2 | Viewed by 2775
Abstract
As semiconductor packaging technologies face limitations, through-silicon via (TSV) technology has emerged as a key solution to extending Moore’s law by achieving high-density, high-performance microelectronics. TSV technology enables enhanced wiring density, signal speed, and power efficiency, and offers significant advantages over traditional wire-bonding [...] Read more.
As semiconductor packaging technologies face limitations, through-silicon via (TSV) technology has emerged as a key solution to extending Moore’s law by achieving high-density, high-performance microelectronics. TSV technology enables enhanced wiring density, signal speed, and power efficiency, and offers significant advantages over traditional wire-bonding techniques. However, achieving fine-pitch and high-density interconnects remains a challenge. Solder flip-chip microbumps have demonstrated their potential to improve interconnect reliability and performance. However, the environmental impact of lead-based solders necessitates a shift to lead-free alternatives. This review highlights the transition from Sn-Pb solders to lead-free options, such as Sn-Ag, Sn-Cu, Sn-Ag-Cu, Sn-Zn, and Bi- or In-based alloys, driven by regulatory and environmental considerations. Although lead-free solders address environmental concerns, their higher melting points pose challenges such as thermal stress and chip warping, which affect device reliability. To overcome these challenges, the development of low-melting-point solder alloys has gained momentum. This study examines advancements in low-temperature solder technologies and evaluates their potential for enhancing device reliability by mitigating thermal stress and ensuring long-term stability. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

17 pages, 12683 KB  
Article
Use of Sn91Zn9 Lead-Free Solder in Resistance Element Soldering Technology
by Pavol Sejč, Branislav Vanko, Zuzana Gábrišová and Alexander Schrek
Metals 2025, 15(3), 306; https://doi.org/10.3390/met15030306 - 11 Mar 2025
Viewed by 842
Abstract
Resistance Element Soldering (RES) is one of the new methods of joining dissimilar materials by resistance heating using an element. Sn60Pb40 solder, which has been used for decades in tin smithing and the electrical industry, has already been tested for joining galvanized steel [...] Read more.
Resistance Element Soldering (RES) is one of the new methods of joining dissimilar materials by resistance heating using an element. Sn60Pb40 solder, which has been used for decades in tin smithing and the electrical industry, has already been tested for joining galvanized steel sheet with thermoplastic using RES. However, legal restrictions are currently moving towards prohibiting the use of lead in mass production. For this reason, the possibility of replacing Sn60Pb40 solder with Sn91Zn9 lead-free solder was verified. The results showed that with an appropriate choice of flux and resistance heating conditions, it is possible to replace Sn60Pb40 solder with Sn91Zn9 solder when joining galvanized steel sheet with thermoplastic using RES. With a suitable heat input during soldering, good conditions were achieved for wetting the base material with molten solder with a sufficient volume of remelted solder in the core of the Cu/Sn91Zn9 bimetallic element. The strength of the soldered joint made at a heat input of 901 J was measured at the level of 94% of the strength of Sn91Zn9 solder. Full article
Show Figures

Graphical abstract

15 pages, 5693 KB  
Article
Thermomigration Microstructure and Properties of Ni Nanoparticle-Reinforced Sn58Bi Composite Solder/Cu Solder Joint
by Yuchun Fan, Keke Zhang, Weiming Chen, Jinna Wu and Yonglei Wang
Metals 2024, 14(12), 1420; https://doi.org/10.3390/met14121420 - 11 Dec 2024
Cited by 1 | Viewed by 1508
Abstract
A Sn58Bi composite solder reinforced by Ni nanoparticles was prepared using a mechanical mixing technique, and the thermomigration microstructure and properties of the solder joints were studied. The findings indicate that incorporating an appropriate quantity of Ni nanoparticles can enhance the microstructure of [...] Read more.
A Sn58Bi composite solder reinforced by Ni nanoparticles was prepared using a mechanical mixing technique, and the thermomigration microstructure and properties of the solder joints were studied. The findings indicate that incorporating an appropriate quantity of Ni nanoparticles can enhance the microstructure of the composite solder and mitigate the coarsening of Bi-phase segregation. At 0.75 weight percent Ni nanoparticle content, the composite solder’s tensile strength is 59.7 MPa and its elongation is 54.6%, both of which are noticeably greater than those of the base solder. When the thermal loading time is 576 h, the shear strength of the composite solder joint is 25.5 MPa, which is 30.1% higher than that of the base solder joint. This study reveals that the shear fracture path shifts from the boundary region between the solder seam and the IMC layer to the IMC layer itself. Concurrently, the fracture mode evolves from a mix of brittle–ductile fracture, characterized by quasi-cleavage, to a predominantly brittle fracture, marked by numerous “rock candy-like” cross-sectional features and secondary cracking. Adding Ni nanoparticles to the Sn58Bi composite solder/Cu solder junction can significantly extend its service life. Full article
Show Figures

Figure 1

20 pages, 11621 KB  
Article
Research Progress of Zero-Busbar Technology Based on Heterojunction Photovoltaic Modules
by Shu Zhang, Xue Chen, Haiyuan Chu, Xian Guo, Yan Xie, Xiyan Fan, Runtao Li, Jian Zhu, Jiabin Tan, Jiyuan Yang, Yifeng Chen and Jifan Gao
Appl. Sci. 2024, 14(23), 10845; https://doi.org/10.3390/app142310845 - 23 Nov 2024
Cited by 2 | Viewed by 1932
Abstract
In order to reduce manufacturing costs, the design of silicon-based solar modules is changing from a super-multi-busbar design to a zero-busbar (0BB) design. In this study, two different 0BB technologies based on heterojunction with intrinsic thin-layer solar cells—conventional soldering, and Integrated Film Covering [...] Read more.
In order to reduce manufacturing costs, the design of silicon-based solar modules is changing from a super-multi-busbar design to a zero-busbar (0BB) design. In this study, two different 0BB technologies based on heterojunction with intrinsic thin-layer solar cells—conventional soldering, and Integrated Film Covering (IFC)—were investigated. IFC-based 0BB technology was found to have a lower contact resistance, which well matches the theoretical calculations and module power testing results. To further measure module reliability, a series of tests on solders and silver pastes were carried out. The results show that Sn43Pb43Bi14 solder is more suitable for soldering-based 0BB technology, whereas Sn32Pb42Bi26 solder is more suitable for IFC-based technology. Additionally, silver paste, which is used for solder ribbon contact areas (SRCAs), is suitable for soldering-based 0BB technology. When Ag@Cu paste is used in SRCAs with IFC-based 0BB technology, a reliable connection can also be achieved. After optimization, modules using both techniques were subjected to and passed lifetime tests, including the thermal cycling, humidity freeze, and hot-spot tests required in IEC standards, as well as more rigorous tests such as thermal–dynamic and thermal–static mechanical loading. The results show that the two technologies have great potential for future mass production. Full article
(This article belongs to the Special Issue Solar Cells: Recent Advances, Perspectives and Applications)
Show Figures

Figure 1

11 pages, 5870 KB  
Article
The Effect of Bi Addition on the Electromigration Properties of Sn-3.0Ag-0.5Cu Lead-Free Solder
by Huihui Zhang, Zhefeng Xu, Yan Wang, Caili Tian, Changzeng Fan, Satoshi Motozuka and Jinku Yu
Metals 2024, 14(10), 1149; https://doi.org/10.3390/met14101149 - 8 Oct 2024
Cited by 2 | Viewed by 1906
Abstract
As electronic packaging technology advances towards miniaturization and integration, the issue of electromigration (EM) in lead-free solder joints has become a significant factor affecting solder joint reliability. In this study, a Sn-3.0Ag-0.5Cu (SAC305) alloy was used as the base, and different Bi content [...] Read more.
As electronic packaging technology advances towards miniaturization and integration, the issue of electromigration (EM) in lead-free solder joints has become a significant factor affecting solder joint reliability. In this study, a Sn-3.0Ag-0.5Cu (SAC305) alloy was used as the base, and different Bi content alloys, SAC305-xBi (x = 0, 0.5, 0.75, 1.0 wt.%), were prepared for tensile strength, hardness, and wetting tests. Copper wire was used to prepare EM test samples, which were subjected to EM tests at a current density of approximately 0.6 × 104 A/cm2 for varying durations. The interface microstructure of the SAC305-xBi alloys after the EM test was observed using an optical microscope. The results showed that the 0.5 wt.% Bi alloy exhibited the highest ultimate tensile strength and microhardness, improving by 33.3% and 11.8% compared to SAC305, respectively, with similar fracture strain. This alloy also displayed enhanced wettability. EM tests revealed the formation of Cu6Sn5 and Cu3Sn intermetallic compounds (IMCs) at both the cathode and anode interfaces of the solder alloy. The addition of Bi inhibited the diffusion rate of Sn in Cu6Sn5, resulting in similar total IMC thickness at the anode interface across different Bi contents under the same test conditions. However, the total IMC thickness at the cathode interface decreased and stabilized with increasing EM time, with the SAC305-0.75Bi alloy demonstrating the best resistance to EM. Full article
Show Figures

Figure 1

Back to TopTop