Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,007)

Search Parameters:
Keywords = Si diffusion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3575 KB  
Article
Preparation of High-Strength and High-Rigidity Carbon Layer on Si/C Material Surface Using Solid–Liquid Coating Method
by Xiaoguang Zhang, Wei Wang and Juan Zhang
Nanomaterials 2025, 15(17), 1300; https://doi.org/10.3390/nano15171300 - 22 Aug 2025
Viewed by 187
Abstract
The application of silicon–carbon (Si/C) composite materials in lithium-ion batteries faces problems regarding volume expansion and surface defects. Although coating is a popular modification scheme in the market, the influence of carbon layer quality on the electrochemical performance of Si/C still needs to [...] Read more.
The application of silicon–carbon (Si/C) composite materials in lithium-ion batteries faces problems regarding volume expansion and surface defects. Although coating is a popular modification scheme in the market, the influence of carbon layer quality on the electrochemical performance of Si/C still needs to be studied. By comparing the carbon layers produced by solid-phase and liquid-phase coating methods, an innovative solid–liquid coating technology was proposed to prepare high-strength and high-stiffness carbon layers, and the effects of different coating processes on the physical, mechanical, and electrochemical properties of the materials were systematically studied. Through physical properties and electrochemical testing, it was found that the solid–liquid coating method (Si/C@Pitch+RGFQ) can form a carbon layer with the least defects and the highest density. Compared with solid-phase coating and liquid-phase coating, its specific surface area (SSA) and carbon increment are the lowest, and the surface carbon content and oxygen content are significantly reduced after solid–liquid coating. Mechanical performance tests show that the Young’s modulus of the carbon layer prepared by this method reaches 30.3 GPa, demonstrating excellent structural strength and elastic deformation ability. The first coulombic efficiency (ICE) of Si/C@Pitch+RGFQ reached 88.17%, the interface impedance (23.2 Ω) was the lowest, and the lithium-ion diffusion coefficient was significantly improved. At a rate of 0.1 C to 2 C, the capacity retention rate is excellent. After one hundred and a half-cell cycles, the remaining capacity is 1420.5 mAh/g, and the capacity retention rate reaches 92.4%. The full-cell test further proves that the material has a capacity retention rate of 82.3% and 81.3% after 1000 cycles at room temperature and high temperature (45 °C), respectively. At the same time, it has good rate performance and high-/low-temperature performance, demonstrating good commercial application potential. The research results provide a key basis for the optimized preparation of the surface carbon layer of Si/C composite materials and promote the practical application of high-performance silicon-based negative electrode materials. Full article
Show Figures

Figure 1

15 pages, 3913 KB  
Article
Diffusion of Alkaline Metals in Two-Dimensional β1-ScSi2N4 and β2-ScSi2N4 Materials: A First-Principles Investigation
by Ying Liu, Han Fu, Wanting Han, Rui Ma, Lihua Yang and Xin Qu
Nanomaterials 2025, 15(16), 1268; https://doi.org/10.3390/nano15161268 - 16 Aug 2025
Viewed by 357
Abstract
The MA2Z4 family represents a class of two-dimensional materials renowned for their outstanding mechanical properties and excellent environmental stability. By means of elemental substitution, we designed two novel phases of ScSi2N4, namely β1 and β [...] Read more.
The MA2Z4 family represents a class of two-dimensional materials renowned for their outstanding mechanical properties and excellent environmental stability. By means of elemental substitution, we designed two novel phases of ScSi2N4, namely β1 and β2. Their dynamical, thermal, and mechanical stabilities were thoroughly verified through phonon dispersion analysis, ab initio molecular dynamics (AIMD) simulations, and calculations of mechanical parameters such as Young’s modulus and Poisson’s ratio. Electronic structure analysis using both PBE and HSE06 methods further revealed that both the β1 and β2 phases exhibit metallic behavior, highlighting their potential for battery-related applications. Based on these outstanding properties, the climbing image nudged elastic band (CI-NEB) method was employed to investigate the diffusion behavior of Li, Na, and K ions on the material surfaces. Both structures demonstrate extremely low diffusion energy barriers (Li: 0.38 eV, Na: 0.22 eV, K: 0.12 eV), indicating rapid ion migration—especially for K—and excellent rate performance. The lowest barrier for K ions (0.12 eV) suggests the fastest diffusion kinetics, making it particularly suitable for high-power potassium-ion batteries. The significantly lower barrier for Na ions (0.22 eV) compared with Li (0.38 eV) implies that both β1 and β2 phases may be more favorable for fast-charging/discharging sodium-ion battery applications. First-principles calculations were applied to determine the open-circuit voltage (OCV) of the battery materials. The β2 phase exhibits a higher OCV in Li/Na systems, while the β1 phase shows more prominent voltage for K. The results demonstrate that both phases possess high theoretical capacities and suitable OCVs. Full article
Show Figures

Figure 1

17 pages, 2534 KB  
Article
Modeling Recommender Systems Using Disease Spread Techniques
by Peixiong He, Libo Sun, Xian Gao, Yi Zhou and Xiao Qin
Information 2025, 16(8), 687; https://doi.org/10.3390/info16080687 - 13 Aug 2025
Viewed by 276
Abstract
Recommender systems on digital platforms profoundly influence user behavior through content dissemination, and their diffusion process is similar to the spreading mechanism of infectious diseases to some extent. In this paper, we use a network-based susceptibility-infection (SI) model to model the propagation dynamics [...] Read more.
Recommender systems on digital platforms profoundly influence user behavior through content dissemination, and their diffusion process is similar to the spreading mechanism of infectious diseases to some extent. In this paper, we use a network-based susceptibility-infection (SI) model to model the propagation dynamics of recommended content, and systematically compare the differences in propagation efficiency among three recommendation strategies based on popularity, collaborative filtering, and content. We constructed scale-free user networks based on real-world clickstream data and dynamically adapted the SI model to reflect the realistic scenario of user engagement decay over time. To enhance the understanding of the recommendation process, we further simulate the visualization changes of the propagation process to show how the content spreads among users. The experimental results show that collaborative filtering performs superior in the initial dissemination, but its dissemination effect decays rapidly over time and is weaker than the other two methods. This study provides new ideas for modeling and understanding recommender systems from an epidemiological perspective. Full article
Show Figures

Figure 1

38 pages, 6998 KB  
Review
Silicon Carbide (SiC) and Silicon/Carbon (Si/C) Composites for High-Performance Rechargeable Metal-Ion Batteries
by Sara Adnan Mahmood, Nadhratun Naiim Mobarak, Arofat Khudayberdieva, Malika Doghmane, Sabah Chettibi and Kamel Eid
Int. J. Mol. Sci. 2025, 26(16), 7757; https://doi.org/10.3390/ijms26167757 - 11 Aug 2025
Viewed by 605
Abstract
Silicon carbide (SiC) and silicon nanoparticle-decorated carbon (Si/C) materials are electrodes that can potentially be used in various rechargeable batteries, owing to their inimitable merits, including non-flammability, stability, eco-friendly nature, low cost, outstanding theoretical capacity, and earth abundance. However, SiC has inferior electrical [...] Read more.
Silicon carbide (SiC) and silicon nanoparticle-decorated carbon (Si/C) materials are electrodes that can potentially be used in various rechargeable batteries, owing to their inimitable merits, including non-flammability, stability, eco-friendly nature, low cost, outstanding theoretical capacity, and earth abundance. However, SiC has inferior electrical conductivity, volume expansion, a low Li+ diffusion rate during charge–discharge, and inevitable repeated formation of a solid–electrolyte interface layer, which hinders its commercial utilization. To address these issues, extensive research has focused on optimizing preparation methods, engineering morphology, doping, and creating composites with other additives (such as carbon materials, metal oxides, nitrides, chalcogenides, polymers, and alloys). Owing to the upsurge in this research arena, providing timely updates on the use of SiC and Si/C for batteries is of great importance. This review summarizes the controlled design of SiC-based and Si/C composites using various methods for rechargeable metal-ion batteries like lithium-ion (LIBs), sodium-ion (SIBs), zinc-air (ZnBs), and potassium-ion batteries (PIBs). The experimental and predicted theoretical performance of SiC composites that incorporate various carbon materials, nanocrystals, and non-metal dopants are summarized. In addition, a brief synopsis of the current challenges and prospects is provided to highlight potential research directions for SiC composites in batteries. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

14 pages, 11988 KB  
Article
Kinetics Study on CO2 Adsorption of Li4SiO4 Sorbents Prepared from Spent Lithium-Ion Batteries
by Xinmei Wang, Junqiang Han, Jianing Ni and Changlei Qin
Energies 2025, 18(16), 4237; https://doi.org/10.3390/en18164237 - 9 Aug 2025
Viewed by 331
Abstract
With the advancement of global carbon reduction efforts and the rapid development of battery industries, the scale of spent lithium-ion batteries (LIBs) has increased dramatically. Extracting lithium from spent LIBs to synthesize Li4SiO4 sorbents not only addresses the challenge of [...] Read more.
With the advancement of global carbon reduction efforts and the rapid development of battery industries, the scale of spent lithium-ion batteries (LIBs) has increased dramatically. Extracting lithium from spent LIBs to synthesize Li4SiO4 sorbents not only addresses the challenge of battery recycling but also reduces the production cost of CO2 sorbents, making it a research hotspot. However, the CO2 adsorption behavior of these sorbents under the effect of impurities may differ from the traditional Li4SiO4, and there is a lack of systematic research on the adsorption kinetics. To address this issue, two Li4SiO4 sorbents are prepared from spent ternary LIBs, and their adsorption kinetics are comprehensively investigated using classical kinetic models. Results show that the reaction order of LSO and Na-LSO is 0.41 and 1.63, respectively, with activation energies of 72.93 kJ/mol and 99.23 kJ/mol in the initial kinetic-controlled stage, and 323.15 kJ/mol and 176.79 kJ/mol in the following diffusion-controlled stage. In the cyclic processes, loss-in-capacity is observed on LSO due to the simultaneous decrease in rate constants in both the kinetic and diffusion-controlled stages, while Na-LSO could almost maintain its capacity by having a much bigger rate constant during the kinetic-controlled stage. This study reveals the adsorption kinetics of Li4SiO4 prepared from spent LIBs and could provide theoretical support for the targeted design of efficient and low-cost CO2 sorbents. Full article
Show Figures

Figure 1

12 pages, 556 KB  
Article
Characterization of the Left Ventricular Myocardium in Systemic Sclerosis
by Briella K. Egberts, Rajiv Ananthakrishna, Ranjit Shah, Antony Chun Fai So, Jennifer Walker, Sivabaskari Pasupathy, Susanna Proudman and Joseph B. Selvanayagam
J. Clin. Med. 2025, 14(16), 5627; https://doi.org/10.3390/jcm14165627 - 8 Aug 2025
Viewed by 217
Abstract
Background/Objectives: Cardiac involvement in systemic sclerosis (SSc) ranges from subclinical to severe. While pulmonary artery hypertension (PAH) is well-documented, the mechanism of left ventricular (LV) ischemia remains unclear. Oxygen-sensitive cardiovascular magnetic resonance (OS-CMR) imaging offers a novel approach to assessing myocardial oxygenation and [...] Read more.
Background/Objectives: Cardiac involvement in systemic sclerosis (SSc) ranges from subclinical to severe. While pulmonary artery hypertension (PAH) is well-documented, the mechanism of left ventricular (LV) ischemia remains unclear. Oxygen-sensitive cardiovascular magnetic resonance (OS-CMR) imaging offers a novel approach to assessing myocardial oxygenation and ischemia. This study evaluated the changes in myocardial deoxygenation in response to stress using LV OS-CMR in SSc patients without known cardiac disease. Methods: We prospectively recruited SSc patients without prior cardiac disease or risk factors, and age- and sex-matched healthy volunteers (HVs). All participants underwent transthoracic echocardiography (TTE) and 3T CMR, including native T1 mapping, rest/stress OS-CMR, stress perfusion, and late gadolinium enhancement (LGE). The primary outcome was a change in the LV OS-CMR signal intensity (SI) after adenosine stress. Results: Thirty-three participants (23 SSc, 10 HV) were enrolled. SSc patients had significantly lower global LV OS-CMR SI compared to HV (13.4 ± 6.5 vs. 19.5 ± 3.6, p = 0.011). OS-CMR SI change ≤ 10% was observed in at least one segment in 20 (87%) SSc patients and globally in 12 (52%). LGE was present in 5 (22%) patients, and 18 (78%) had ≥1 abnormal T1 mapping segment. LV global longitudinal strain (GLS) was reduced in SSc patients compared to the HVs (−19.04 ± 3.86 vs. −21.92 ± 3.72, p = 0.045). All HVs had normal CMR and TTE findings. Conclusions: SSc patients without known cardiovascular disease or PAH demonstrated subclinical LV ischemia with an impaired myocardial oxygenation response to stress. They further demonstrated LV myocardial deformation abnormalities and LV diffuse fibrosis when compared to an age-matched control group. Our findings support the presence of early coronary microvascular dysfunction and LV myocardial fibrosis in this population, which may explain the adverse cardiovascular risk seen in this population, independent of the presence of PAH. Full article
Show Figures

Graphical abstract

16 pages, 9914 KB  
Article
Phase Equilibria of Si-C-Cu System at 700 °C and 810 °C and Implications for Composite Processing
by Kun Liu, Zhenxiang Wu, Dong Luo, Xiaozhong Huang, Wei Yang and Peisheng Wang
Materials 2025, 18(15), 3689; https://doi.org/10.3390/ma18153689 - 6 Aug 2025
Viewed by 301
Abstract
The phase equilibria of the Si-C-Cu ternary system at 700 °C and 810 °C were experimentally investigated for the first time. Fifteen key alloys were prepared via powder metallurgy and analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe microanalysis [...] Read more.
The phase equilibria of the Si-C-Cu ternary system at 700 °C and 810 °C were experimentally investigated for the first time. Fifteen key alloys were prepared via powder metallurgy and analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). Isothermal sections were constructed based on the identified equilibrium phases. At 700 °C, eight single-phase regions and six three-phase regions—(C)+(Cu)+hcp, (C)+hcp+γ-Cu33Si7, (C)+γ-Cu33Si7+SiC, γ-Cu33Si7+SiC+ε-Cu15Si4, SiC+ε-Cu15Si4+η-Cu3Si(ht), and SiC+(Si)+η-Cu3Si(ht)—were determined. At 810 °C, nine single-phase regions and seven three-phase regions were identified. The solubility of C and Si/Cu in the various phases was quantified and found to be significantly higher at 810 °C compared to 700 °C. Key differences include the presence of the bcc (β) and liquid phases at 810 °C. The results demonstrate that higher temperatures promote increased mutual solubility and reaction tendencies among Cu, C, and Si. Motivated by these findings, the influence of vacuum hot pressing parameters on SiC-fiber-reinforced Cu composites (SiCf/Cu) was investigated. The optimal processing condition (1050 °C, 60 MPa, 90 min) yielded a high bending strength of 998.61 MPa, attributed to enhanced diffusion and interfacial bonding facilitated by the high-temperature phase equilibria. This work provides essential fundamental data for understanding interactions and guiding processing in SiC-reinforced Cu composites. Full article
Show Figures

Figure 1

16 pages, 4328 KB  
Article
High-Throughput Study on Nanoindentation Deformation of Al-Mg-Si Alloys
by Tong Shen, Guanglong Xu, Fuwen Chen, Shuaishuai Zhu and Yuwen Cui
Materials 2025, 18(15), 3663; https://doi.org/10.3390/ma18153663 - 4 Aug 2025
Viewed by 381
Abstract
Al-Mg-Si (6XXX) series aluminum alloys are widely applied in aerospace and transportation industries. However, exploring how varying compositions affect alloy properties and deformation mechanisms is often time-consuming and labor-intensive due to the complexity of the multicomponent composition space and the diversity of processing [...] Read more.
Al-Mg-Si (6XXX) series aluminum alloys are widely applied in aerospace and transportation industries. However, exploring how varying compositions affect alloy properties and deformation mechanisms is often time-consuming and labor-intensive due to the complexity of the multicomponent composition space and the diversity of processing and heat treatments. This study, inspired by the Materials Genome Initiative, employs high-throughput experimentation—specifically the kinetic diffusion multiple (KDM) method—to systematically investigate how the pop-in effect, indentation size effect (ISE), and creep behavior vary with the composition of Al-Mg-Si alloys at room temperature. To this end, a 6016/Al-3Si/Al-1.2Mg/Al KDM material was designed and fabricated. After diffusion annealing at 530 °C for 72 h, two junction areas were formed with compositional and microstructural gradients extending over more than one thousand micrometers. Subsequent solution treatment (530 °C for 30 min) and artificial aging (185 °C for 20 min) were applied to simulate industrial processing conditions. Comprehensive characterization using electron probe microanalysis (EPMA), nanoindentation with continuous stiffness measurement (CSM), and nanoindentation creep tests across these gradient regions revealed key insights. The results show that increasing Mg and Si content progressively suppresses the pop-in effect. When the alloy composition exceeds 1.0 wt.%, the pop-in events are nearly eliminated due to strong interactions between solute atoms and mobile dislocations. In addition, adjustments in the ISE enabled rapid evaluation of the strengthening contributions from Mg and Si in the microscale compositional array, demonstrating that the optimum strengthening occurs when the Mg-to-Si atomic ratio is approximately 1 under a fixed total alloy content. Furthermore, analysis of the creep stress exponent and activation volume indicated that dislocation motion is the dominant creep mechanism. Overall, this enhanced KDM method proves to be an effective conceptual tool for accelerating the study of composition–deformation relationships in Al-Mg-Si alloys. Full article
Show Figures

Graphical abstract

25 pages, 5020 KB  
Review
Research Progress on Tribological Properties of High-Entropy Alloys
by Shuai Zhang, Zhaofeng Wang, Wenqing Lin and Haoyu Guo
Lubricants 2025, 13(8), 342; https://doi.org/10.3390/lubricants13080342 - 1 Aug 2025
Viewed by 483
Abstract
As a new type of alloy system composed of five or more principal components, high-entropy alloys demonstrate outstanding comprehensive performance in the field of friction and wear through the synergistic effects of the high-entropy effect, lattice distortion effect, hysteresis diffusion effect and cocktail [...] Read more.
As a new type of alloy system composed of five or more principal components, high-entropy alloys demonstrate outstanding comprehensive performance in the field of friction and wear through the synergistic effects of the high-entropy effect, lattice distortion effect, hysteresis diffusion effect and cocktail effect. This paper systematically reviews the research progress on the friction and wear properties of high-entropy alloys. The mechanisms of metal elements such as Al, Ti, Cu and Nb through solid solution strengthening, second-phase precipitation and oxide film formation were analyzed emphatically. And non-metallic elements such as C, Si, and B form and strengthen the regulation laws of their tribological properties. The influence of working conditions, such as high temperature, ocean, and hydrogen peroxide on the friction and wear behavior of high-entropy alloys by altering the wear mechanism, was discussed. The influence of test conditions such as load, sliding velocity and friction pair matching on its friction coefficient and wear rate was expounded. It is pointed out that high-entropy alloys have significant application potential in key friction components, providing reference and guidance for the further development and application of high-entropy alloys. Full article
(This article belongs to the Special Issue Tribological Performance of High-Entropy Alloys)
Show Figures

Figure 1

16 pages, 4530 KB  
Article
A Novel Selective Oxygen Pressure Leaching for Zinc Extraction from Hemimorphite in Acid-Free Solutions
by Tong Wang, Yubo Zeng, Shuang Zhang, Chen Chen, Yang Li, Wenhui Ma and Hongwei Ni
Metals 2025, 15(8), 858; https://doi.org/10.3390/met15080858 - 31 Jul 2025
Viewed by 233
Abstract
A novel acid-free oxygen pressure leaching for the extraction of zinc from hemimorphite was proposed in this study. Green vitriol (FeSO4·7H2O), as one of the important industrial by-products, was used as the leaching reagent to separate zinc from silicon [...] Read more.
A novel acid-free oxygen pressure leaching for the extraction of zinc from hemimorphite was proposed in this study. Green vitriol (FeSO4·7H2O), as one of the important industrial by-products, was used as the leaching reagent to separate zinc from silicon and iron. The effect of leaching conditions, including Fe/Zn molar ratio, leaching temperature, pressure, and reaction time, on the leaching efficiency of zinc, Fe, and Si was investigated systematically. The results showed that the molar ratio of Fe/Zn and leaching temperature play a pivotal role in determining the leaching efficiency rate of Zn. Under the optimized leaching conditions (Fe/Zn molar ratio = 6:1, 150 °C, 1.8 × 106 Pa, and leaching time of 2 h), the leaching efficiency of Zn reached 98.80% and the leaching efficiencies of Fe and Si were 0.76% and 16.80%, respectively. In addition, the shrinking core model was established to represent the relationship between the rate control step and the leaching conditions. The leaching process was controlled by chemical reaction and diffusion, and the activation energy of the leaching process is 97.14 kJ/mol. Full article
(This article belongs to the Special Issue Separation, Reduction, and Metal Recovery in Slag Metallurgy)
Show Figures

Figure 1

15 pages, 6090 KB  
Article
Vacuum Brazing of 6061 Aluminum Using Al-Si-Ge Filler Metals with Different Si Contents
by Sen Huang, Jiguo Shan, Jian Qin, Yuanxun Shen, Chao Jiang and Peiyao Jing
Metals 2025, 15(8), 857; https://doi.org/10.3390/met15080857 - 31 Jul 2025
Viewed by 328
Abstract
Al-xSi-35Ge (x = 4, 6, 8, 10, 12, wt.%) filler metals were prepared to vacuum braze 6061 aluminum alloy. The wettability of filler metals was studied. A thermodynamics model of the Al-Si-Ge ternary alloy was established to analyze the mechanism and impact of [...] Read more.
Al-xSi-35Ge (x = 4, 6, 8, 10, 12, wt.%) filler metals were prepared to vacuum braze 6061 aluminum alloy. The wettability of filler metals was studied. A thermodynamics model of the Al-Si-Ge ternary alloy was established to analyze the mechanism and impact of Si in the microstructure of the brazed joint. The findings indicated that Si addition had a slight effect on the melting point of Al-xSi-35Ge filler metals. Great molten temperature region of fillers was responsible for the loss of Ge during the wetting process, making residual filler metal difficult to melt. The microstructure of the joint was characterized by a multilayer structure that was primarily composed of three zones: two transition regions (Zone I) and a filler residual region (Zone II). There was liquidation of filler metal for Al-Si-35Ge filler metals during brazing, resulting in holes and cracks in joints. Increasing the Si content in fillers could alleviate the liquidation of filler metal, owing to diminishing difference of chemical potential of Ge (μGe) in fillers and 6061 substrates, hindering the diffusion of Ge from filler metal to substrates. Full article
Show Figures

Figure 1

20 pages, 7725 KB  
Article
Harmonic Distortion Peculiarities of High-Frequency SiGe HBT Power Cells for Radar Front End and Wireless Communication
by Paulius Sakalas and Anindya Mukherjee
Electronics 2025, 14(15), 2984; https://doi.org/10.3390/electronics14152984 - 26 Jul 2025
Viewed by 346
Abstract
High-frequency (h. f.) harmonic distortion (HD) of advanced SiGe heterojunction bipolar transistor (HBT)-based power cells (PwCs), featuring optimized metallization interconnections between individual HBTs, was investigated. Single tone input power (Pin) excitations at 1, 2, 5, and 10 GHz frequencies were [...] Read more.
High-frequency (h. f.) harmonic distortion (HD) of advanced SiGe heterojunction bipolar transistor (HBT)-based power cells (PwCs), featuring optimized metallization interconnections between individual HBTs, was investigated. Single tone input power (Pin) excitations at 1, 2, 5, and 10 GHz frequencies were employed. The output power (Pout) of the fundamental tone and its harmonics were analyzed in both the frequency and time domains. A rapid increase in the third harmonic of Pout was observed at input powers exceeding −8 dBm for a fundamental frequency of 10 GHz in two different PwC technologies. This increase in the third harmonic was analyzed in terms of nonlinear current waveforms, the nonlinearity of the HBT p-n junction diffusion capacitances, substrate current behavior versus Pin, and avalanche multiplication current. To assess the RF power performance of the PwCs, scalar and vectorial load-pull (LP) measurements were conducted and analyzed. Under matched conditions, the SiGe PwCs demonstrated good linearity, particularly at high frequencies. The key power performance of the PwCs was measured and simulated as follows: input power 1 dB compression point (Pin_1dB) of −3 dBm, transducer power gain (GT) of 15 dB, and power added efficiency (PAE) of 50% at 30 GHz. All measured data were corroborated with simulations using the compact model HiCuM L2. Full article
Show Figures

Figure 1

25 pages, 14199 KB  
Article
A Nonlinear Cross-Diffusion Model for Disease Spread: Turing Instability and Pattern Formation
by Ravi P. Gupta, Arun Kumar and Shristi Tiwari
Mathematics 2025, 13(15), 2404; https://doi.org/10.3390/math13152404 - 25 Jul 2025
Viewed by 398
Abstract
In this article, we propose a novel nonlinear cross-diffusion framework to model the distribution of susceptible and infected individuals within their habitat using a reduced SIR model that incorporates saturated incidence and treatment rates. The study investigates solution boundedness through the theory of [...] Read more.
In this article, we propose a novel nonlinear cross-diffusion framework to model the distribution of susceptible and infected individuals within their habitat using a reduced SIR model that incorporates saturated incidence and treatment rates. The study investigates solution boundedness through the theory of parabolic partial differential equations, thereby validating the proposed spatio-temporal model. Through the implementation of the suggested cross-diffusion mechanism, the model reveals at least one non-constant positive equilibrium state within the susceptible–infected (SI) system. This work demonstrates the potential coexistence of susceptible and infected populations through cross-diffusion and unveils Turing instability within the system. By analyzing codimension-2 Turing–Hopf bifurcation, the study identifies the Turing space within the spatial context. In addition, we explore the results for Turing–Bogdanov–Takens bifurcation. To account for seasonal disease variations, novel perturbations are introduced. Comprehensive numerical simulations illustrate diverse emerging patterns in the Turing space, including holes, strips, and their mixtures. Additionally, the study identifies non-Turing and Turing–Bogdanov–Takens patterns for specific parameter selections. Spatial series and surfaces are graphed to enhance the clarity of the pattern results. This research provides theoretical insights into the implications of cross-diffusion in epidemic modeling, particularly in contexts characterized by localized mobility, clinically evident infections, and community-driven isolation behaviors. Full article
(This article belongs to the Special Issue Models in Population Dynamics, Ecology and Evolution)
Show Figures

Figure 1

20 pages, 2411 KB  
Article
Influencing Factors of Hexavalent Chromium Speciation Transformation in Soil from a Northern China Chromium Slag Site
by Shuai Zhu, Junru Chen, Yun Zhu, Baoke Zhang, Jing Jia, Meng Pan, Zhipeng Yang, Jianhua Cao and Yating Shen
Molecules 2025, 30(15), 3076; https://doi.org/10.3390/molecules30153076 - 23 Jul 2025
Viewed by 400
Abstract
Chromium slag sites pose severe environmental risks due to hexavalent chromium (Cr(VI)) contamination, characterized by high mobility and toxicity. This study focused on chromium-contaminated soil from a historical chromium slag site in North China, where long-term accumulation of chromate production residues has led [...] Read more.
Chromium slag sites pose severe environmental risks due to hexavalent chromium (Cr(VI)) contamination, characterized by high mobility and toxicity. This study focused on chromium-contaminated soil from a historical chromium slag site in North China, where long-term accumulation of chromate production residues has led to serious Cr(VI) pollution, with Cr(VI) accounting for 13–22% of total chromium and far exceeding national soil risk control standards. To elucidate Cr(VI) transformation mechanisms and elemental linkages, a combined approach of macro-scale condition experiments and micro-scale analysis was employed. Results showed that acidic conditions (pH < 7) significantly enhanced Cr(VI) reduction efficiency by promoting the conversion of CrO42− to HCrO4/Cr2O72−. Among reducing agents, FeSO4 exhibited the strongest effect (reduction efficiency >30%), followed by citric acid and fulvic acid. Temperature variations (−20 °C to 30 °C) had minimal impact on Cr(VI) transformation in the 45-day experiment, while soil moisture (20–25%) indirectly facilitated Cr(VI) reduction by enhancing the reduction of agent diffusion and microbial activity, though its effect was weaker than chemical interventions. Soil grain-size composition influenced Cr(VI) distribution unevenly: larger particles (>0.2 mm) in BC-35 and BC-36-4 acted as main Cr(VI) reservoirs due to accumulated Fe-Mn oxides, whereas BC-36-3 showed increased Cr(VI) in smaller particles (<0.074 mm). μ-XRF and correlation analysis revealed strong positive correlations between Cr and Ca, Fe, Mn, Ni (Pearson coefficient > 0.7, p < 0.01), attributed to adsorption–reduction coupling on iron-manganese oxide surfaces. In contrast, Cr showed weak correlations with Mg, Al, Si, and K. This study clarifies the complex factors governing Cr(VI) behavior in chromium slag soils, providing a scientific basis for remediation strategies such as pH adjustment (4–6) combined with FeSO4 addition to enhance Cr(VI) reduction efficiency. Full article
Show Figures

Graphical abstract

18 pages, 3346 KB  
Article
Influence of Membrane Salt Rejection Properties on Cake-Enhanced Concentration Polarization Effects During Colloidal Fouling of Nanofiltration Membranes
by Oranso Themba Mahlangu and Bhekie Brilliance Mamba
Membranes 2025, 15(7), 215; https://doi.org/10.3390/membranes15070215 - 19 Jul 2025
Viewed by 607
Abstract
The build-up of a fouling layer on the membrane surface is believed to deteriorate flux and salt rejection by hindering back-diffusion of rejected salts, a phenomenon called cake-enhanced concentration polarization (CECP). Nevertheless, CECP effects have not been linked to the salt rejection properties [...] Read more.
The build-up of a fouling layer on the membrane surface is believed to deteriorate flux and salt rejection by hindering back-diffusion of rejected salts, a phenomenon called cake-enhanced concentration polarization (CECP). Nevertheless, CECP effects have not been linked to the salt rejection properties of the membrane. Furthermore, the decline in salt rejection during fouling has not been related to the decreasing flux, to elucidate the effects of flux on solution rejection as described by the solution-diffusion (SD) model. Therefore, this work examined whether CECP is substantial in membranes with poor salt-rejection properties. Fouling was performed using sodium alginate, Al2O3, latex, and SiO2. The effects of fouling on salt rejection were studied using two nanofiltration (NF) membranes, namely NF270 membrane (46% NaCl rejection) and NF90 membrane (>97% NaCl rejection). The measured flux and salt rejection profiles were compared to those predicted by the CECP and SD models. Overall, the flux declined more (30–60%) for the NF90 membrane (contact angle: 50 ± 3°) compared to the NF270 membrane (10–55%, contact angle: 39 ± 2°) under similar hydrodynamic conditions. Moreover, fouling had more effects on NaCl rejection for the NF90 membrane (2–45% decline) compared to the NF270 membrane (10–30% decline). The decrease in NaCl rejection for the NF90 membrane was ascribed to CECP effects and declining flux. Contrary, CECP effects were less important for the NF270 membrane, and rejection declined due to reduction in flux as predicted by the SD model, indicating that CECP may not be predominant in membranes that poorly reject salts. Full article
Show Figures

Figure 1

Back to TopTop