Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = Sherwood correlation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3492 KiB  
Article
Experimental and Modeling Analysis of the Tensile Properties of Heavy-Duty Coatings for Steel Structures
by Pengzhen Lin and Xing Chen
Coatings 2024, 14(10), 1289; https://doi.org/10.3390/coatings14101289 - 9 Oct 2024
Viewed by 1470
Abstract
Coatings are essential for protecting steel structures from corrosion and mechanical stresses, especially under challenging environmental conditions. To this end, this study systematically examines the effects of temperature (−20 °C to 50 °C), strain rate (6.67 × 10−4 s−1 to 1.67 [...] Read more.
Coatings are essential for protecting steel structures from corrosion and mechanical stresses, especially under challenging environmental conditions. To this end, this study systematically examines the effects of temperature (−20 °C to 50 °C), strain rate (6.67 × 10−4 s−1 to 1.67 × 10−2 s−1), and intermediate coat thickness (140 μm to 700 μm, the layer between the primer and topcoat) on the uniaxial tensile properties of heavy-duty coatings for steel structures. Experimental and theoretical analyses were conducted to quantitatively assess the influence of these factors on the mechanical properties of the coatings. A multifactor constitutive model was developed based on the Sherwood–Frost model by integrating material characteristics and fitting experimental data, incorporating response functions for temperature, strain rate, and intermediate coat thickness. The results reveal that increased temperature causes temperature-induced softening, while higher strain rates lead to strain rate-dependent strengthening of the coatings. In contrast, the effect of layer thickness on mechanical properties follows a non-monotonic trend, influenced by the structural and material characteristics of the coatings, with the most significant mechanical response occurring at 560 μm thickness. These findings suggest that optimal coating design must consider multiple factors to enhance mechanical performance. Additionally, the correlation coefficients (r) between the model predictions and experimental results are 0.97 or higher, indicating the model’s effectiveness in predicting and optimizing the mechanical performance of heavy-duty coatings under complex conditions. Full article
Show Figures

Figure 1

21 pages, 6680 KiB  
Article
Simulations of CO2 Dissolution in Porous Media Using the Volume-of-Fluid Method
by Mohammad Hossein Golestan and Carl Fredrik Berg
Energies 2024, 17(3), 629; https://doi.org/10.3390/en17030629 - 28 Jan 2024
Cited by 1 | Viewed by 2474
Abstract
Traditional investigations of fluid flow in porous media often rely on a continuum approach, but this method has limitations as it does not account for microscale details. However, recent progress in imaging technology allows us to visualize structures within the porous medium directly. [...] Read more.
Traditional investigations of fluid flow in porous media often rely on a continuum approach, but this method has limitations as it does not account for microscale details. However, recent progress in imaging technology allows us to visualize structures within the porous medium directly. This capability provides a means to confirm and validate continuum relationships. In this study, we present a detailed analysis of the dissolution trapping dynamics that take place when supercritical CO2 (scCO2) is injected into a heterogeneous porous medium saturated with brine. We present simulations based on the volume-of-fluid (VOF) method to model the combined behavior of two-phase fluid flow and mass transfer at the pore scale. These simulations are designed to capture the dynamic dissolution of scCO2 in a brine solution. Based on our simulation results, we have revised the Sherwood correlations: We expanded the correlation between Sherwood and Peclet numbers, revealing how the mobility ratio affects the equation. The expanded correlation gave improved correlations built on the underlying displacement patterns at different mobility ratios. Further, we analyzed the relationship between the Sherwood number, which is based on the Reynolds number, and the Schmidt number. Our regression on free parameters yielded constants similar to those previously reported. Our mass transfer model was compared to experimental models in the literature, showing good agreement for interfacial mass transfer of CO2 into water. The results of this study provide new perspectives on the application of non-dimensional numbers in large-scale (field-scale) applications, with implications for continuum scale modeling, e.g., in the field of geological storage of CO2 in saline aquifers. Full article
Show Figures

Figure 1

23 pages, 20495 KiB  
Article
Investigation of CO2 Absorption Rate in Gas/Liquid Membrane Contactors with Inserting 3D Printing Mini-Channel Turbulence Promoters
by Chii-Dong Ho, Luke Chen, Jr-Wei Tu, Yu-Chen Lin, Jun-Wei Lim and Zheng-Zhong Chen
Membranes 2023, 13(12), 899; https://doi.org/10.3390/membranes13120899 - 4 Dec 2023
Cited by 2 | Viewed by 2834
Abstract
The CO2 absorption by Monoethanolamine (MEA) solutions as chemical absorption was conducted in the membrane gas absorption module with inserting 3D mini-channel turbulence promoters of the present work. A mathematical modeling of CO2 absorption flux was analyzed by using the chemical [...] Read more.
The CO2 absorption by Monoethanolamine (MEA) solutions as chemical absorption was conducted in the membrane gas absorption module with inserting 3D mini-channel turbulence promoters of the present work. A mathematical modeling of CO2 absorption flux was analyzed by using the chemical absorption theory based on mass-transfer resistances in series. The membrane absorption module with embedding 3D mini-channel turbulence promoters in the current study indicated that the CO2 absorption rate improvement is achieved due to the diminishing concentration polarization effect nearby the membrane surfaces. A simplified regression equation of the average Sherwood number was correlated to express the enhanced mass-transfer coefficient of the CO2 absorption. The experimental results and theoretical predictions showed that the absorption flux improvement was significantly improved with implementing 3D mini-channel turbulence promoters. The experimental results of CO2 absorption fluxes were performed in good agreement with the theoretical predictions in aqueous MEA solutions. A further absorption flux enhancement up to 30.56% was accomplished as compared to the results in the previous work, which the module was inserted the promoter without mini channels. The influences of the MEA absorbent flow rates and inlet CO2 concentrations on the absorption flux and absorption flux improvement are also illustrated under both concurrent- and countercurrent-flow operations. Full article
Show Figures

Figure 1

38 pages, 3886 KiB  
Article
Multiple-Relaxation-Time Lattice Boltzmann Simulation of Soret and Dufour Effects on the Thermosolutal Natural Convection of a Nanofluid in a U-Shaped Porous Enclosure
by Md. Mahadul Islam, Md Farhad Hasan and Md. Mamun Molla
Energies 2023, 16(21), 7229; https://doi.org/10.3390/en16217229 - 24 Oct 2023
Cited by 14 | Viewed by 1558
Abstract
This article reports an investigation of the Soret and Dufour effects on the double-diffusive natural convection of Al2O3-H2O nanofluids in a U-shaped porous enclosure. Numerical problems were resolved using the multiple-relaxation-time (MRT) lattice Boltzmann method [...] Read more.
This article reports an investigation of the Soret and Dufour effects on the double-diffusive natural convection of Al2O3-H2O nanofluids in a U-shaped porous enclosure. Numerical problems were resolved using the multiple-relaxation-time (MRT) lattice Boltzmann method (LBM). The indented part of the U-shape was cold, and the right and left walls were heated, while the bottom and upper walls were adiabatic. The experimental data-based temperature and nanoparticle size-dependent correlations for the Al2O3-water nanofluids are used here. The benchmark results thoroughly validate the graphics process unit (GPU) based in-house compute unified device architecture (CUDA) C/C++ code. Numeral simulations were performed for a variety of dimensionless variables, including the Rayleigh number, (Ra = 104,105,106), the Darcy number, (Da = 102,103,104), the Soret number, (Sr = 0.0,0.1,0.2), the Dufour number, (Df = 0.0,0.1,0.2), the buoyancy ratio, (2Br2), the Lewis number, (Le = 1,3,5), the volume fraction, (0ϕ0.04), and the porosity, ϵ = (0.20.8), and the Prandtl number, Pr = 6.2 (water) is fixed to represent the base fluid. The numerical results are presented in terms of streamlines, isotherms, isoconcentrations, temperature, velocity, mean Nusselt number, mean Sherwood number, entropy generation, and statistical analysis using a response surface methodology (RSM). The investigation found that fluid mobility was enhanced as the Ra number and buoyancy force increased. The isoconcentrations and isotherm density close to the heated wall increased when the buoyancy force shifted from a negative magnitude to a positive one. The local Nu increased as the Rayleigh number increased but reduced as the volume fraction augmented. Furthermore, the mean Nu (Nu¯) decreased by 3.12% and 6.81% and the Sh¯ increased by 83.17% and 117.91% with rising Lewis number for (Ra=105 and Da=103) and (Ra=106 and Da=104), respectively. Finally, the Br and Sr demonstrated positive sensitivity, and the Ra and ϕ showed negative sensitivity only for higher values of ϕ based on the RSM. Full article
(This article belongs to the Special Issue Research on Fluid Mechanics and Heat Transfer)
Show Figures

Figure 1

28 pages, 5178 KiB  
Article
New Mass Transport Correlation for Vanadium Redox-Flow Batteries Based on a Model-Assisted Parameter Estimation
by Maik Becker and Thomas Turek
Batteries 2023, 9(5), 253; https://doi.org/10.3390/batteries9050253 - 28 Apr 2023
Cited by 8 | Viewed by 3581
Abstract
In this work, a two-dimensional mathematical model is applied to develop a new mass transport correlation for an SGL GFD4.6A carbon felt applied in a 100 cm2 single cell vanadium redox-flow battery under realistic flow conditions. Already published mass transport equations for [...] Read more.
In this work, a two-dimensional mathematical model is applied to develop a new mass transport correlation for an SGL GFD4.6A carbon felt applied in a 100 cm2 single cell vanadium redox-flow battery under realistic flow conditions. Already published mass transport equations for carbon felt electrodes show a large variation for the resulting Sherwood numbers and are summarized in this work to narrow the probable range of mass transport parameters. A detailed investigation of electrolyte properties, impedance spectroscopic characterization for evaluation of kinetic properties, and the use of potential probe signals to identify the overpotential of positive and negative electrodes are carried out before mass transport parameter estimation by a comparison of model and experimental data. The model validation yields a good agreement between predicted and experimental data with the following new and reliable mass transport equation: Sh = 0.07 Re0.66Sc0.45 (0.0018 < Re < 0.11). The characteristic length applied for the Sherwood and Reynolds number is the diameter of the carbon felt fibers. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

15 pages, 5029 KiB  
Article
Heat and Mass Transfer to Particles in One-Dimensional Oscillating Flows
by Stefan Heidinger, Simon Unz and Michael Beckmann
Processes 2023, 11(1), 173; https://doi.org/10.3390/pr11010173 - 5 Jan 2023
Cited by 6 | Viewed by 2210
Abstract
The heat and mass transfer to solid particles in one-dimensional oscillating flows are investigated in this work. A meta-correlation for the calculation of the Nusselt number (Sherwood number) is derived by comparing 33 correlations and data point sets from experiments and simulations. These [...] Read more.
The heat and mass transfer to solid particles in one-dimensional oscillating flows are investigated in this work. A meta-correlation for the calculation of the Nusselt number (Sherwood number) is derived by comparing 33 correlations and data point sets from experiments and simulations. These models are all unified by their dependencies on the amplitude parameter 103ϵ103 and the Reynolds number 101Re106, while the ϵ-Re plane is applied as a framework in order to graphically display the various models. This is the first study to consider this problem in the entire ϵ-Re plane quantitatively while taking preexisting asymptotic models for various areas of the ϵ-Re plane into account. Full article
(This article belongs to the Special Issue Multiphase Flows and Particle Technology)
Show Figures

Figure 1

18 pages, 8351 KiB  
Article
Role of Nanoparticles and Heat Source/Sink on MHD Flow of Cu-H2O Nanofluid Flow Past a Vertical Plate with Soret and Dufour Effects
by Ramesh Kune, Hari Singh Naik, Borra Shashidar Reddy and Christophe Chesneau
Math. Comput. Appl. 2022, 27(6), 102; https://doi.org/10.3390/mca27060102 - 28 Nov 2022
Cited by 10 | Viewed by 2320
Abstract
The study is devoted to investigating the effect of an unsteady non-Newtonian Casson fluid over a vertical plate. A mathematical analysis is presented for a Casson fluid by taking into consideration Soret and Dufour effects, heat generation, heat radiation, and chemical reaction. The [...] Read more.
The study is devoted to investigating the effect of an unsteady non-Newtonian Casson fluid over a vertical plate. A mathematical analysis is presented for a Casson fluid by taking into consideration Soret and Dufour effects, heat generation, heat radiation, and chemical reaction. The novelty of the problem is the physical interpretation of Casson fluid before and after adding copper water-based nanoparticles to the governing flow. It is found that velocity was decreased and the temperature profile was enhanced. A similarity transformation is used to convert the linked partial differential equations that control flow into non-linear coupled ordinary differential equations. The momentum, energy, and concentration formulations are cracked by means of the finite element method. The thermal and solute layer thickness growth is due to the nanoparticles’ thermo-diffusion. The effects of relevant parameters such as the Casson fluid parameter, radiation, Soret and Dufour effects, chemical reaction, and Prandtl number are discussed. A correlation of the average Nusselt number and Sherwood number corresponding to active parameters is presented. It can be noticed that increasing the Dufour number leads to an uplift in heat transfer. Fluid velocity increases with Grashof number and decreases with magnetic effect. The impact of heat sources and radiation is to increase the thermal conductivity. Concentration decreases with the Schmidt number. Full article
Show Figures

Figure 1

24 pages, 6274 KiB  
Article
Theoretical and Experimental Studies of CO2 Absorption in Double-Unit Flat-Plate Membrane Contactors
by Chii-Dong Ho, Hsuan Chang, Jr-Wei Tu, Jun-Wei Lim, Chung-Pao Chiou and Yu-Jie Chen
Membranes 2022, 12(4), 370; https://doi.org/10.3390/membranes12040370 - 29 Mar 2022
Cited by 7 | Viewed by 2584
Abstract
Theoretical predictions of carbon dioxide absorption flux were analyzed by developing one-dimensional mathematical modeling using the chemical absorption theory based on mass-transfer resistances in series. The CO2 absorption into monoethanolamine (MEA) solutions was treated as chemical absorption, accompanied by a large equilibrium [...] Read more.
Theoretical predictions of carbon dioxide absorption flux were analyzed by developing one-dimensional mathematical modeling using the chemical absorption theory based on mass-transfer resistances in series. The CO2 absorption into monoethanolamine (MEA) solutions was treated as chemical absorption, accompanied by a large equilibrium constant. The experimental work of the CO2 absorption flux using MEA solution was conducted in double-unit flat-plate membrane contactors with embedded 3D turbulence promoters under various absorbent flow rates, CO2 feed flow rates, and inlet CO2 concentrations in the gas feed stream for both concurrent and countercurrent flow operations. A more compact double-unit module with embedded 3D turbulence promoters could increase the membrane stability to prevent flow-induced vibration and enhance the CO2 absorption rate by overwhelming the concentration polarization on the membrane surfaces. The measured absorption fluxes with a near pseudo-first-order reaction were in good agreement with the theoretical predictions for the CO2 absorption efficiency in aqueous MEA solutions, which was shown to be substantially larger than the physical absorption in water. By embedding 3D turbulence promoters in the MEA feed channel, the new design accomplishes a considerable CO2 absorption flux compared with an empty channel as well as the single unit module. This demonstrates the value and originality of the present study regarding the technical feasibility. The absorption flux enhancement for the double-unit module with embedded 3D turbulence promoters could provide a maximum relative increase of up to 40% due to the diminution in the concentration polarization effect. The correlated equation of the average Sherwood number was obtained numerically using the fourth Runge–Kutta method in a generalized and simplified expression to calculate the mass transfer coefficient of the CO2 absorption in the double-unit flat-plate membrane contactor with turbulence promoter channels. Full article
Show Figures

Figure 1

23 pages, 4508 KiB  
Article
Enhancing Absorption Performance of CO2 by Amine Solution through the Spiral Wired Channel in Concentric Circular Membrane Contactors
by Chii-Dong Ho, Hsuan Chang, Guan-Hong Lin and Thiam Leng Chew
Membranes 2022, 12(1), 4; https://doi.org/10.3390/membranes12010004 - 21 Dec 2021
Cited by 5 | Viewed by 3327
Abstract
The CO2 absorption rate by using a Monoethanolamide (MEA) solution through the spiral wired channel in concentric circular membrane contactors under both concurrent-flow and countercurrent-flow operations was investigated experimentally and theoretically. The one-dimensional mathematical modeling equation developed for predicting the absorption rate [...] Read more.
The CO2 absorption rate by using a Monoethanolamide (MEA) solution through the spiral wired channel in concentric circular membrane contactors under both concurrent-flow and countercurrent-flow operations was investigated experimentally and theoretically. The one-dimensional mathematical modeling equation developed for predicting the absorption rate and concentration distributions was solved numerically using the fourth Runge–Kutta method under various absorbent flow rate, CO2 feed flow rate and inlet CO2 concentration in the gas feed. An economical viewpoint of the spiral wired module was examined by assessing both absorption flux improvement and power consumption increment. Meanwhile, the correlated average Sherwood number to predict the mass-transfer coefficient of the CO2 absorption mechanisms in a concentric circular membrane contactor with the spiral wired annulus channel is also obtained in a generalized and simplified expression. The theoretical predictions of absorption flux improvement were validated by experimental results in good agreements. The amine solution flowing through the annulus of a concentric circular tube, which was inserted in a tight-fitting spiral wire in a small annular spacing, could enhance the CO2 absorption flux improvement due to reduction of the concentration polarization effect. A larger concentration polarization coefficient (CPC) was achieved in the countercurrent-flow operations than that in concurrent-flow operations for various operations conditions and spiral-wire pitches. The absorption flux improvement for inserting spiral wire in the concentric circular module could provide the maximum relative increment up to 46.45%. Full article
Show Figures

Figure 1

19 pages, 5483 KiB  
Article
Heat Transfer of Nanomaterial over an Infinite Disk with Marangoni Convection: A Modified Fourier’s Heat Flux Model for Solar Thermal System Applications
by Mahanthesh Basavarajappa, Giulio Lorenzini, Srikantha Narasimhamurthy, Ashwag Albakri and Taseer Muhammad
Appl. Sci. 2021, 11(24), 11609; https://doi.org/10.3390/app112411609 - 7 Dec 2021
Cited by 5 | Viewed by 2465
Abstract
The demand for energy due to the population boom, together with the harmful consequences of fossil fuels, makes it essential to explore renewable thermal energy. Solar Thermal Systems (STS’s) are important alternatives to conventional fossil fuels, owing to their ability to convert solar [...] Read more.
The demand for energy due to the population boom, together with the harmful consequences of fossil fuels, makes it essential to explore renewable thermal energy. Solar Thermal Systems (STS’s) are important alternatives to conventional fossil fuels, owing to their ability to convert solar thermal energy into heat and electricity. However, improving the efficiency of solar thermal systems is the biggest challenge for researchers. Nanomaterial is an effective technique for improving the efficiency of STS’s by using nanomaterials as working fluids. Therefore, the present theoretical study aims to explore the thermal energy characteristics of the flow of nanomaterials generated by the surface gradient (Marangoni convection) on a disk surface subjected to two different thermal energy modulations. Instead of the conventional Fourier heat flux law to examine heat transfer characteristics, the Cattaneo–Christov heat flux (Fourier’s heat flux model) law is accounted for. The inhomogeneous nanomaterial model is used in mathematical modeling. The exponential form of thermal energy modulations is incorporated. The finite-difference technique along with Richardson extrapolation is used to treat the governing problem. The effects of the key parameters on flow distributions were analyzed in detail. Numerical calculations were performed to obtain correlations giving the reduced Nusselt number and the reduced Sherwood number in terms of relevant key parameters. The heat transfer rate of solar collectors increases due to the Marangoni convection. The thermophoresis phenomenon and chaotic movement of nanoparticles in a working fluid of solar collectors enhance the temperature distribution of the system. Furthermore, the thermal field is enhanced due to the thermal energy modulations. The results find applications in solar thermal exchanger manufacturing processes. Full article
Show Figures

Figure 1

14 pages, 1569 KiB  
Article
Probing Differences in Mass-Transfer Coefficients in Beaker and Stirrer Digestion Systems and the USP Dissolution Apparatus 2 Using Benzoic Acid Tablets
by Timothy A. G. Langrish, Chao Zhong and Lizhe Sun
Processes 2021, 9(12), 2168; https://doi.org/10.3390/pr9122168 - 2 Dec 2021
Cited by 8 | Viewed by 3291
Abstract
Measurements of external mass-transfer coefficients for dissolution have been made with benzoic acid tablets with a diameter of 13 mm and approximately 3 mm thick, using two different dissolution systems. One system has been a beaker with a platform for the tablet and [...] Read more.
Measurements of external mass-transfer coefficients for dissolution have been made with benzoic acid tablets with a diameter of 13 mm and approximately 3 mm thick, using two different dissolution systems. One system has been a beaker with a platform for the tablet and either 80 mL or 120 mL of water, with three different types of stirrers, and the other has been a USP dissolution apparatus 2 (paddle) with either 200 mL or 900 mL water. Various stirring speeds have also been used in the different pieces of equipment. The same mass-transfer coefficient may potentially be obtained from the same tablet by adjusting the operating conditions in the two different devices. The ranges of the external mass-transfer coefficients measured in both devices overlapped significantly, with the range being 0.193–4.48 × 10−5 m s−1 in the beaker and stirrer system and 0.222–3.45 × 10−5 m s−1 in the USP dissolution apparatus 2. Dimensional analysis of the results, using Sherwood and Reynolds numbers, shows that the Ranz–Marshall correlation provides a lower bound for estimates of the Sherwood numbers measured experimentally. Calculations of time constants for mass transfer suggest that mass transfer may be a rate-limiting step for dissolution and food digestion under some circumstances. The range of mass-transfer coefficients measured here is representative of other measurements from the literature, and the use of the Ranz–Marshall correlation supports the suggestion that this range of values should be generally expected in most situations. Full article
(This article belongs to the Special Issue Study on Bio-Thermofluid Dynamics)
Show Figures

Figure 1

24 pages, 8804 KiB  
Article
MHD 3D Crossflow in the Streamwise Direction Induced by Nanofluid Using Koo–Kleinstreuer and Li (KLL) Correlation
by Umair Khan, Jamel Bouslimi, Aurang Zaib, Fahad S. Al-Mubaddel, Najma Imtiaz, Abdulaziz N. Alharbi and Mohamed R. Eid
Coatings 2021, 11(12), 1472; https://doi.org/10.3390/coatings11121472 - 30 Nov 2021
Cited by 9 | Viewed by 2355
Abstract
Aluminum nanoparticles are suitable for wiring power grids, such as local power distribution and overhead power transmission lines, because they exhibit high conductivity. These nanoparticles are also among the most utilized materials in electrical field applications. Thus, the present study investigated the impact [...] Read more.
Aluminum nanoparticles are suitable for wiring power grids, such as local power distribution and overhead power transmission lines, because they exhibit high conductivity. These nanoparticles are also among the most utilized materials in electrical field applications. Thus, the present study investigated the impact of magnetic field on 3D crossflow in the streamwise direction with the impacts of Dufour and Soret. In addition, the effects of activation energy and chemical reaction were incorporated. The viscosity and thermal conductivity of nanofluids were premeditated by KKL correlation. Prominent PDEs (Partial Differential Equations) were converted into highly nonlinear ODEs (Ordinary Differential Equations) using the proper similarity technique and then analyzed numerically with the aid of the built-in bvp4c solver in MATLAB. The impact of diverse important variables on temperature and velocity was graphically examined. Additionally, the influences of pertaining parameters on the drag force coefficient, Nusselt number, and Sherwood number were investigated. Inspections revealed that the mass transfer rate decreases, while the heat transport increases with increasing values of the Soret factor. However, the Nusselt and Sherwood numbers validate the differing trend for rising quantities of the Dufour factor. Full article
(This article belongs to the Special Issue Nanofluidics: Interfacial Transport Phenomena)
Show Figures

Figure 1

15 pages, 17814 KiB  
Article
Numerical Simulation of the Water Vapor Separation of a Moisture-Selective Hollow-Fiber Membrane for the Application in Wood Drying Processes
by Nasim Alikhani, Douglas W. Bousfield, Jinwu Wang, Ling Li and Mehdi Tajvidi
Membranes 2021, 11(8), 593; https://doi.org/10.3390/membranes11080593 - 31 Jul 2021
Cited by 4 | Viewed by 3812
Abstract
In this study, a simplified two-dimensional axisymmetric finite element analysis (FEA) model was developed, using COMSOL Multiphysics® software, to simulate the water vapor separation in a moisture-selective hollow-fiber membrane for the application of air dehumidification in wood drying processes. The membrane material [...] Read more.
In this study, a simplified two-dimensional axisymmetric finite element analysis (FEA) model was developed, using COMSOL Multiphysics® software, to simulate the water vapor separation in a moisture-selective hollow-fiber membrane for the application of air dehumidification in wood drying processes. The membrane material was dense polydimethylsiloxane (PDMS). A single hollow fiber membrane was modelled. The mass and momentum transfer equations were simultaneously solved to compute the water vapor concentration profile in the single hollow fiber membrane. A water vapor removal experiment was conducted by using a lab-scale PDMS hollow fiber membrane module operated at constant temperature of 35 °C. Three operation parameters of air flow rate, vacuum pressure, and initial relative humidity (RH) were set at different levels. The final RH of dehydrated air was collected and converted to water vapor concentration to validate simulated results. The simulated results were fairly consistent with the experimental data. Both experimental and simulated results revealed that the water vapor removal efficiency of the membrane system was affected by air velocity and vacuum pressure. A high water vapor removal performance was achieved at a slow air velocity and high vacuum pressure. Subsequently, the correlation of Sherwood (Sh)–Reynolds (Re)–Schmidt (Sc) numbers of the PDMS membrane was established using the validated model, which is applicable at a constant temperature of 35 °C and vacuum pressure of 77.9 kPa. This study delivers an insight into the mass transport in the moisture-selective dense PDMS hollow fiber membrane-based air dehumidification process, with the aims of providing a useful reference to the scale-up design, process optimization and module development using hollow fiber membrane materials. Full article
(This article belongs to the Special Issue Modeling and Simulation in Membranes and Membrane Processes)
Show Figures

Figure 1

16 pages, 3035 KiB  
Article
A Dissolution Kinetic Study of Disperse Dye in Supercritical Carbon Dioxide to Design an Efficient Supercritical Dyeing Process
by Geonhwan Park, Dong Eui Kwon, Wonbae Kong, Jimin Park and Youn-Woo Lee
Processes 2021, 9(6), 977; https://doi.org/10.3390/pr9060977 - 31 May 2021
Cited by 12 | Viewed by 3652
Abstract
The dissolution behavior of dye in supercritical carbon dioxide influences the overall mass transfer that controls a supercritical dyeing process. Increasing the dissolution rate of the dye leads to shortening of the dyeing process time and can improve the efficiency of the process. [...] Read more.
The dissolution behavior of dye in supercritical carbon dioxide influences the overall mass transfer that controls a supercritical dyeing process. Increasing the dissolution rate of the dye leads to shortening of the dyeing process time and can improve the efficiency of the process. Controlling the properties of the carbon dioxide flow is a good method to improve the dissolution rate of dyes. In this study, a dissolution kinetic model was designed by quantitatively analyzing and formulating the dissolution phenomenon of dyes using an in situ UV/Vis spectrometer. Through this model, the dissolution rate was compared by varying the geometric shape of the column containing the dye and the flow rate of carbon dioxide. Moreover, the correlation equation between the Reynolds number and Sherwood number was obtained through mass transfer coefficients derived under various conditions. In order to verify the utility of this equation, it was applied to a scaled-up device and the precise result could be predicted. This study can be useful in the design of dyeing processes and make-up equipment. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

19 pages, 3113 KiB  
Article
Correlations for Concentration Polarization and Pressure Drop in Spacer-Filled RO Membrane Modules Based on CFD Simulations
by Boram Gu, Claire S. Adjiman and Xiao Yun Xu
Membranes 2021, 11(5), 338; https://doi.org/10.3390/membranes11050338 - 1 May 2021
Cited by 26 | Viewed by 5805
Abstract
Empirical correlations for mass transfer coefficient and friction factor are often used in process models for reverse osmosis (RO) membrane systems. These usually involve four dimensionless groups, namely Reynolds number (Re), Sherwood number (Sh), friction factor (f), and Schmidt number (Sc), [...] Read more.
Empirical correlations for mass transfer coefficient and friction factor are often used in process models for reverse osmosis (RO) membrane systems. These usually involve four dimensionless groups, namely Reynolds number (Re), Sherwood number (Sh), friction factor (f), and Schmidt number (Sc), with the associated coefficients and exponents being obtained by fitting to experimental data. However, the range of geometric and operating conditions covered by the experiments is often limited. In this study, new dimensionless correlations for concentration polarization (CP) modulus and friction factor are presented, which are obtained by dimensional analysis and using simulation data from computational fluid dynamics (CFD). Two-dimensional CFD simulations are performed on three configurations of spacer-filled channels with 76 combinations of operating and geometric conditions for each configuration, covering a broad range of conditions encountered in RO membrane systems. Results obtained with the new correlations are compared with those from existing correlations in the literature. There is good consistency in the predicted CP with mean discrepancies less than 6%, but larger discrepancies for pressure gradient are found among the various friction factor correlations. Furthermore, the new correlations are implemented in a process model with six spiral wound modules in series and the predicted recovery, pressure drop, and specific energy consumption are compared with a reference case obtained by ROSA (Reverse Osmosis System Analysis, The Dow Chemical Company). Differences in predicted recovery and pressure drop are up to 5% and 83%, respectively, highlighting the need for careful selection of correlations when using predictive models in process design. Compared to existing mass transfer correlations, a distinct advantage of our correlations for CP modulus is that they can be directly used to estimate the impact of permeate flux on CP at a membrane surface without having to resort to the film theory. Full article
(This article belongs to the Special Issue Numerical Modelling in Membrane Processes)
Show Figures

Figure 1

Back to TopTop