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Abstract: The demand for energy due to the population boom, together with the harmful conse-
quences of fossil fuels, makes it essential to explore renewable thermal energy. Solar Thermal Systems
(STS’s) are important alternatives to conventional fossil fuels, owing to their ability to convert solar
thermal energy into heat and electricity. However, improving the efficiency of solar thermal systems
is the biggest challenge for researchers. Nanomaterial is an effective technique for improving the
efficiency of STS’s by using nanomaterials as working fluids. Therefore, the present theoretical
study aims to explore the thermal energy characteristics of the flow of nanomaterials generated by
the surface gradient (Marangoni convection) on a disk surface subjected to two different thermal
energy modulations. Instead of the conventional Fourier heat flux law to examine heat transfer
characteristics, the Cattaneo–Christov heat flux (Fourier’s heat flux model) law is accounted for. The
inhomogeneous nanomaterial model is used in mathematical modeling. The exponential form of
thermal energy modulations is incorporated. The finite-difference technique along with Richardson
extrapolation is used to treat the governing problem. The effects of the key parameters on flow
distributions were analyzed in detail. Numerical calculations were performed to obtain correlations
giving the reduced Nusselt number and the reduced Sherwood number in terms of relevant key
parameters. The heat transfer rate of solar collectors increases due to the Marangoni convection. The
thermophoresis phenomenon and chaotic movement of nanoparticles in a working fluid of solar
collectors enhance the temperature distribution of the system. Furthermore, the thermal field is
enhanced due to the thermal energy modulations. The results find applications in solar thermal
exchanger manufacturing processes.

Keywords: solar thermal exchangers; modified Fourier heat flux law; nanofluid; Marangoni convec-
tion; disk; thermal energy modulations

1. Introduction

Solar thermal energy plays a significant role in meeting the growing energy demand
and in overcoming the consequences caused by the use of fossil fuels. Therefore, improving
the thermal energy (performance) of solar heat exchangers is one of the key challenges
in energy saving, energy use, and design. Researchers have established a new technique
(using nanomaterials as functional fluids) to improve the efficiency of solar thermal systems.
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Working fluids carrying nanoparticles composed of metal, metal oxides, and carbons result
in a suspension called a nanofluid. The factors influencing the thermal energy characteris-
tics of nanomaterials are their thermophysical characteristics, such as thermal conductivity,
electrical conductivity, viscosity, heat capacity, and density. Choi [1] conducted a com-
prehensive study on nanomaterials and concluded that nanomaterials possess superior
thermal characteristics. Khanafer et al. [2] proposed a homogeneous single-phase model to
explore the phenomenon of heat transport by convection. Subsequently, Buongiorno [3]
presented a heterogeneous model highlighting the importance of thermophoresis and the
mechanisms of Brownian motion. Nield and Kuznetsov [4] studied the flow of nanomateri-
als on a plate using the Buongiorno model. Recently, the thermodynamic characteristics of
nanomaterials on the surfaces of rotating discs have acquired great attention due to their
extensive use in heat exchangers and solar thermal systems. Further work on nanomaterials
can be seen in [5–10].

The study of non-Newtonian materials has been of extreme importance amongst in-
dustries and researchers owing to their applications in engineering areas such as fiber optic
manufacturing, chemical manufacturing, petroleum industries, and industrial polymer
industries. Non-Newtonian material flows are generally non-linear and do not conform to
Navier–Stokes relations. In the early twentieth century, many researchers, Skelland [11],
Denn [12], Rajagopal et al. [13], and Eldabe et al. [14], began theoretical research on non-
Newtonian materials, now receiving special attention from areas such as radial diffuser
design and thermal oil recovery, drag reduction, and others. The Casson fluid model fits
most rheological data for many materials. The flow of the time-dependent surface layer
dynamics of a Casson material on a movable plate was investigated by Mustafa et al. [15].
Nadem et al. [16] studied the consequence of the Lorentz force on the heat and flow of a
Casson material using the Adomian decomposition (ADM) method. Eldabe [17] simulated
the flow of non-Newtonian Casson material amongst two rotating cylinders with a radially
imposed magnetic field. Gireesha et al. [18] performed numerical computations of heat
transfer in the Casson material subjected to the Lorentz force. Mahanthesh et al. [19]
explored the consequence of exponential heat source and cross-diffusion in the Casson
material dynamics generated by the surface tension. Sohail et al. [20] discussed the mo-
mentum, concentration, and thermal diffusion in the surface layer magneto-flow of the
Casson material in an elongated plate. Other studies related to the Casson material can be
found in ([21–23]).

In the mid-1860s, Marangoni discovered the phenomenon that in natural convection,
the gravity of the liquid predominated and gradually disappeared in conditions of mi-
crogravity. At the liquid interface, surface tension plays a significant role in the surface
tension gradient. The growth of molten crystals, the growth of vapor bubbles during
nucleation, semiconductor processing, and thin-film diffusion are some of the applications
of Marangoni convection. It is also shown experimentally and numerically that there is
a significant influence on heat transfer under microgravity conditions and it can also be
on Earth’s gravity [24]. Pearson [25] gave rise to the modeling of the Marangoni effect.
Lin et al. [26] examined heat transport in a non-Newtonian material with a Marangoni
convection-induced flow and an imposed thermal energy gradient. Ibrahim [27] deliber-
ates on the convective dynamics of Marangoni with thermal radiation and mass injection.
Mahanthesh et al. [28] analyzed the SWCNT and MWCNT nanoliquid flow caused by
a disc with an irregular heat source and Lorentz force. Mahanta et al. [29] discussed
the Marangoni convection in the Casson material flow created by an elongated plate.
Shafiq et al. [30] conducted the study on the chemical reaction in the Marangoni convective
flow over the Riga plate. Kármán [31] pioneered the work with rotating discs by adopting
new variables and obtaining theoretical results for both laminar and turbulent flows. The
Kármán [31] problem has been protracted by Turkyilmazoglu [32,33] to the case where
the dynamics are considered in a rotating disk that stretches and contracts radially under
magnetism. Makinde et al. [34] deliberated the stimulation of the exponential form of the
heat source (ESHS) in the dynamics of the magneto-nanofluids generated by the elongation
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of the rotating disk surface. Numerical computations of Maxwell material driven by a spin-
ning disc subjected to the thermophoresis and Cattaneo–Christov theory was carried out
by Shehzad et al. [35]. Many authors, such as Rasool et al. [36] and Rashid et al. [37], con-
tributed to the study of Marangoni’s convective flow. However, the Marangoni convection
in Casson material flow generated by disk surface is limited.

Although Fourier’s law of conduction has various practical applications, the main
limiting case of this model is that it provides an energy equation of parabolic nature, in
which the system will be instantaneously affected by the initial disturbance. Cattaneo [38]
overcomes this paradox. Cattaneo, in his model, modified the Fourier model considering
the relaxation time for the heat flux. Later, Christov [39] introduced an invariant material
form of the Cattaneo model, then Straughan [40] used the Cattaneo–Christov model (CCM)
in his work to study thermal convection in laminar flow. Khan et al. [41] considered
the heat transport in upper convected Maxwell fluid flow above the exponential form
of an elongated surface by accounting for the CCM. Khan and Alzahrani [42] used the
CCM in the magnetodynamics of non-Newtonian fluids and studied the characteristics of
heat transport. Gireesha et al. [43] examined the magnetodynamics of Casson particulate
fluid on the surface of a stretched plate taking into account the CCM for thermal energy
analysis. Kareem et al. [44] explored the axisymmetric dynamics of third-degree fluids
through porous media by implementing the CCM. However, the problems concerning the
significance of CCM on the Marangoni convection driven by disk surface are very limited.

Given the literature survey, the main purpose is to investigate the thermal energy
features of the flow of nanomaterials with Marangoni convection around an infinite disk
with the exponential form of the thermal energy modulations. The disk surface temperature
is assumed to be a quadratic function of the radial coordinate and heat sources are also
taken into account. The CCM is used to govern the energy equation of the flow problem.
The main novelty of the study is the application of the modified Fourier heat flow model in
the Marangoni convection of nanomaterials. Numerical solutions are discussed graphically
using 2D curves, surface graphs, and columns. Different types of mathematical models
are proposed for the local heat and mass transfer rates. The statistical components of the
fictitious model are discussed.

2. Mathematical Formulation
2.1. Conceptual Model

It is considered a flow of magneto-Casson-nanoliquid over an infinite disk with
surface tension. The physical model comprising of a cylindrical coordinate system (r, ϕ, z)
is shown in Figure 1. The flow is symmetric to the z = 0 plane and axisymmetric about
the z-axis with ∂/∂ϕ = 0 for all variables which is motivated by a surface tension due to
the surface temperature/nanoparticle volume fraction gradient, which is known as the
Marangoni layer. The flow is assumed to be steady, laminar, and irrotational, while the
fluid is incompressible, and electrically conducting. The magnetic field is applied along
z-direction. The disk surface is maintained with variable surface temperature Tw and
variable surface nanoparticles volume fraction Cw, while both nanoparticle volume fraction
and temperature are constant at the free surface. The physical properties of the fluid are
assumed to be constant. The Prandtl’s boundary layer and Boussinesq approximations
are accounted. The two-phase Buongiorno model comprising of haphazard movement
and thermophoresis mechanism of nanoparticles is implemented. The CCM is accounted
to describe heat and mass transfer. Two different modulations of thermal energy are
deliberated, such as the exponential special heat source (ESHS) and the thermal heat
source (THS).
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2.2. Governing Equations

The governing surface layer equations are (see [8–10]):
Conservation of mass

∂u
∂r

+
u
r
+

∂w
∂z

= 0, (1)

Conservation of momentum

u
∂u
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+ w
∂u
∂z

=
µ

ρ

(
1 +

1
βc

)
∂2u
∂z2 −

δB2
0

ρ
u, (2)

Conservation of thermal energy

u ∂T
∂r + w ∂T

∂z + λT

[
u2 ∂2T

∂r2 + w2 ∂2T
∂z2 + 2uw ∂2T

∂r∂z +
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(
u ∂u

∂r + w ∂u
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+ ∂T

∂z

(
u ∂w
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∂z

)]
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ρcp
∂2T
∂z2 + τ
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∂T
∂z
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(
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)2
}
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exp
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Ω/ν z
}
+ Qt

ρcp
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(3)

Conservation of nanoparticles volume fraction

u ∂C
∂r + w ∂C

∂z = DB
∂2C
∂z2 + DT

T∞
∂2T
∂z2

−λc

[
u2 ∂2C

∂r2 + w2 ∂2C
∂z2 + 2uw ∂2C

∂r∂z +
∂C
∂r

(
u ∂u

∂r + w ∂u
∂z

)
+ ∂C

∂z

(
u ∂w

∂r + w ∂w
∂z

)]
,

(4)

Boundary conditions

µ
(

1 + 1
βc

)
∂u
∂z = ∂σ

∂r = ∂σ
∂T

∂T
∂r + ∂σ

∂C
∂C
∂r , w = 0,

T = Tw = T∞ + A
( r
<
)2 and C = Cw = C∞ + B

( r
<
)2 at z = 0

u→ 0, T → T∞, C → C∞ at z→ ∞

(5)

The second term on the right side of Equation (2) represents the transverse magnetic
field, and the second and third terms on the right-hand side of Equation (3) represent
the Brownian motion and Thermophoresis phenomenon. The thermophoresis parameter
is quantified by nanoparticles particle’s thermos-diffusion coefficient DT and it signifies
the capability of nanoparticles to move as a result of the temperature gradient. DT > 0
signifies the movement of nanoparticles toward cooler regions while DT < 0 designates
the movement of nanoparticles toward warmer regions. The last two terms of Equation (3)
represent the heat source effects.
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Marangoni convection, induced by a surface tension gradient at the interface, is an im-
portant physical phenomenon in conditions of microgravity. In the mid-1860s, Marangoni
discovered the phenomenon whereby the gravity-dominated natural convection of the liq-
uid gradually disappeared in an environment of microgravity, while at the interface of the
liquid, surface tension plays an important role and causes a gradient. In general, the surface
tension is assumed to vary with concentration and temperature in a linear relationship:

σ = σ0(1− γT(T − T∞)− γC(C− C∞)), γT = − 1
σ0

∂σ

∂T

∣∣∣∣
T

, γC = − 1
σ0

∂σ

∂C

∣∣∣∣
C

where u and w are the velocities along z and r directions; < is the characteristic radius of the
disk, T is the temperature; C is the nanoparticle volume fraction (NVF); A and B are char-
acteristic temperature and nanoparticles volume fraction at the disk surface, respectively;
T∞ and C∞ are, respectively, the ambient temperature and nanoparticle volume fraction;
DB is the coefficient of Brownian diffusion; DT is the coefficient of thermophoretic diffusion;
Qe and Qt are, respectively, the coefficients of ESHS and THS, λT and λC are the thermal
and solutal relaxation time, respectively; τ is the specific heat ratio; k, ν, µ, ρ, δ, and
cp are the kinematic viscosity, thermal conductivity, dynamic viscosity, density, electri-
cal conductivity, and specific heat, respectively; B0 is the magnetic induction; βc and n
are the dimensionless Casson material parameter and dimensionless exponential index,
respectively; σ is the surface tension; and σ0 > 0 is constant.

3. Solution Procedure

The governing partial differential system (PDE) is solved numerically using the simi-
larity method. The similarity approach identifies equations for which solutions depend
on a certain group of independent variables rather than each one. This technique helps
to transform the PDE’s (partial differential equations) into ODE’s (ordinary differential
equations). Transformed ODE’s are then solved using the Finite difference method together
with the Richardson extrapolation-based dsolve routine. Now consider the following Von
Karman transformations [45]:

u = rΩF(ξ), w =
√

ΩνH(ξ), T = T∞ + A
( r
<
)2

θ(ξ),
C = C∞ + B

( r
<
)2

φ(ξ), ξ = z
r

√
Re

(6)

The reduced ODE system is,
2F + H′ = 0 (7)(

1 +
1
βc

)
F′′ − F(Ha + F)− F′H = 0 (8)

1
Pr θ′′ + Nbθ′φ′ + Nt(θ′)2 + QEexp{−nξ}+ QTθ − 2Fθ − Hθ′

−α
[
4F2θ + Hθ′(4F + H′) + H(Hθ′′ + 2θF′)

]
= 0

(9)

φ′′ + Nt
Nb θ′′ − LePr(2Fφ + Hφ′)

−βLePr
[
4F2φ + Hφ′(4F + H′) + H(Hφ′′ + 2φF′)

]
= 0

(10)

(
1 + 1

βc

)
F′(0) = −2Ma(1 + R), H(0) = 0, θ(0) = 1, φ(0) = 1,

F(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0
(11)

The following are the non-dimensional parameters:

Pr =
ν(ρcp)

k denotes Prandtl number, Nt = τDT(Tw−T∞)
νT∞

denotes thermophoresis

number, Ha =
δB2

0
ρΩ denotes Hartmann number, Nb = τDB(Cw−C∞)

ν denotes Brownian

motion number, QE = Qe
ρcpΩ denotes exponential space-dependent heat source number

(ESHS), QT = Qt
ρcpΩ denotes thermal-dependent heat source number (THS), Le = k

DB(ρcp)

denotes Lewis number, R = γC B
γT A denotes Marangoni ratio number, Ma = σ0γT A

<2µΩ

√
ν
Ω
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denotes Marangoni number, α = λTΩ denotes the thermal relaxation parameter, and
β = λCΩ denotes the solutal relaxation parameter.

The local Sherwood and Nusselt numbers are given below:

Sh =
−r
(

∂C
∂z

)
z=0

Cw − C∞
, (12)

Nu =
−r
(

∂T
∂z

)
z=0

Tw − T∞
. (13)

The non-dimensional form of (12)–(13) are:

Shr =
Sh√
Re

= −φ′(0), (14)

Nur =
Nu√

Re
= −θ′(0). (15)

where Re = r2Ω
ν is the local Reynolds number.

The Equations (7)–(11) are nonlinear and coupled in nature. The analytical solution
of these equations can’t be guaranteed and, hence, they are solved by FDM along with
Richardson extrapolation using dsolve command in MAPLE. Further, obtained FDM results
are compared with those estimated by bvp5c method. The comparison values of F′(1) are
tabulated in Table 1 and an excellent agreement is established.

Table 1. Comparison of F′(1) values obtained by FDM and bvp5c method when βc = 0.5 and
ξmax = 8.

Ha Ma R Finite Difference
Method (FDM)

MATLAB
bvp5c Method

Absolute
Difference

0.5 0.5 0.4 −0.216620 −0.216620 0.000000

0.7 −0.206954 −0.206954 0.000000

0.9 −0.198161 −0.198162 0.000001

1.1 −0.190115 −0.190116 0.000001

1.3 −0.182713 −0.182714 0.000001

0.1 −0.050179 −0.050180 0.000001

0.2 −0.095904 −0.095904 0.000000

0.3 −0.138483 −0.138484 0.000001

0.4 −0.178583 −0.178583 0.000000

0.5 −0.216620 −0.216620 0.000000

0.2 −0.216620 −0.216620 0.000000

0.4 −0.246955 −0.246955 0.000000

0.6 −0.276190 −0.276190 0.000000

0.8 −0.304428 −0.304429 0.000001

1.0 −0.331755 −0.331756 0.000001

4. Results and Discussion

A comprehensive parametric analysis is implemented to examine the stimulus of
key parameters on axial velocity (F), radial velocity (H), temperature (θ), and NVF (φ).
Figure 2a–d illustrates the impact of the magnetic parameter (0 ≤ HA ≤ 0.9) on axial
velocity (F), radial velocity (H), temperature (θ), and NVF (φ). The magnetic field tempts
the retarding body force (so-called the Lorentz force) which reduces the flow and causes
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an upsurge in the thickness of the thermal and solute boundary layers. The electrically
conductive fluid, under the Lorentz force perpendicular to the disk, creates the maximum
resistance to flow, which implies a decrease in the axial velocity while observing the
opposite behavior for the radial velocity. Dhanai et al. [8] reported similar results for the
applied magnetic field. Furthermore, the results of Nadeem et al. [16], Eldabe et al. [17],
and Lin et al. [26] are in agreement with our results. Lin et al. [26] concluded that the
applied magnetic field could be used to control the rheology of working fluids in various
industrial applications.
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Figure 3a–d depicts the stimulus of the Marangoni number (Ma) on the F(ξ), H(ξ), θ(ξ)
and φ(ξ). It illustrated that an increase in MA leads to an abundance of radial flow, thereby
increasing the radial velocity and decreasing the azimuth velocity. The thermal surface
layer thickness shrinks as Ma upsurges, this is due to the reduction in thermal diffusion
that occurs as Ma escalates. Similar to the thermal layer, the solute layer also falls as Ma
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increase. The effect of Marangoni ratio parameter on F(ξ), H(ξ), θ(ξ), and φ(ξ) is depicted
in Figure 4a–d. The outcomes of the Marangoni ratio parameter (R) and Marangoni number
are qualitatively similar. As can be seen, the Marangoni ratio parameter (R) appears in
the velocity boundary condition

(
1 + 1

βc

)
F′(0) = −2M(1 + R), as a factor of Marangoni

number Ma. Thereby, the consequences of the Marangoni ratio parameter on the flow
system are similar to those of the Marangoni number (Ma). The results of the Marangoni
parameter are in collaboration with those reported by Ibrahim [27], Mahanta et al. [29], and
Wahid et al. [46].
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Brownian motion is the random and uncontrolled movement of particles in a fluid
when they constantly collide with other molecules [3]. Buongiorno [3] also described that
random Brownian motion results in the net movement of solute or suspended particles
from regions of higher concentration to regions of lower concentration, a process called
diffusion. Therefore, diffusion acts in opposition to centrifugal sedimentation, which tends
to concentrate the particles. Brownian motion causes the arbitrary motion of nanoparticles
within the working fluid. Therefore, the increase in the Nb causes a chaotic movement
of the particles which affects the heat transfer positively. This mechanism is shown in
Figure 5a, while this random movement of the nanoparticles reduces the solute field (see
Figure 5b). Nield and Kuznetsov [4] also reported that the Brownian motion factor is
favorable to the growth of the thermal boundary layer, while Brownian motion has a
very limited effect on the Nusselt number. Our Brownian motion results are similar to
those reported by Rana and Bhargava [6]. Another technique for improving thermal
energy transfer is the thermophoresis mechanism, in which an increase in thermal energy
is achieved by providing additional energy to the system through the thermal gradient.
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Therefore, the increase in Nt significantly increases the thermal and solute layer, as can be
seen in Figure 6a,b. The effect of the thermophoresis number on the thermal field (Nusselt
number) is also more evident than that of the Brownian motion parameter. Kuznetsov
and Nield [7] report a similar observation, that is, the thermophoresis factor influences the
Nusselt number with a rate of 0.1052 while the Brownian motion parameter influences the
Nusselt number with a rate of 0.0001.
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The Le relates to both thermal and mass diffusivity. The physical mechanism of the
Lewis number on heat and mass flow can be seen in Figure 7a,b. Figure 7a portrays the
downturn in the thermal boundary layer and Figure 7b shows a significant reduction in
the NVF layer thickness as Le increases i.e., the attenuation of mass diffusivity. Our Lewis
number results are similar to those reported by Rana and Bhargava [6], and Kuznetsov and
Nield [7].



Appl. Sci. 2021, 11, 11609 11 of 19Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 18 
 

  
(a) (b) 

Figure 7. (a) θ(ξ) and (b) ϕ(ξ) for different values of Le. 

The significance of two distinct thermal energy modulations (ESHS and THS) on θ(ξ) 
and ϕ(ξ) is explained pictorially in Figures 8 and 9. An increase in QE and QT yields an 
extra heat in the system, which leads to an increase in the thermal field, whereas 
increasing values of the QE and QT leads to a dual behavior in the ϕ(ξ). Amongst two 
different thermal energy modulations, namely ESHS and THS, ESHS is more significant 
for solar thermal applications which encompass the heating process. The current results 
of ESHS and THS parameters are in agreement with our previous findings [19]. 

  
(a) (b) 

Figure 8. (a) θ(ξ) and (b) ϕ(ξ) for different values of QE. 
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The significance of two distinct thermal energy modulations (ESHS and THS) on θ(ξ)
and φ(ξ) is explained pictorially in Figures 8 and 9. An increase in QE and QT yields an
extra heat in the system, which leads to an increase in the thermal field, whereas increasing
values of the QE and QT leads to a dual behavior in the φ(ξ). Amongst two different thermal
energy modulations, namely ESHS and THS, ESHS is more significant for solar thermal
applications which encompass the heating process. The current results of ESHS and THS
parameters are in agreement with our previous findings [19].
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Figure 9. (a) θ(ξ) and (b) φ(ξ) for different values of QT.

Three-Dimensional surface and columns plots are utilized to analyze the influence of
key parameters on the Nusselt number (Nur) and Sherwood number (Shr) (see Figure 10a–e).
It is observed that the higher the Nb and Nt, the lower the heat transfer rate Nur. This is
because the thermal layer thickness is wider for larger values of both Nb and Nt. Similarly,
Nur inversely responses to QE and QT. As ESHS and THS modulations improve the
thickness of the thermal layer structure, the heat transfer rate is reduced for larger QE
and QT. Therefore, to achieve the maximum heat transfer rate, both QE and QT must be
kept as low as possible. Higher values of Hartman number (HA) and Lewis number (Le)
lead to significant heat transfer. The maximum heat transfer rate Nur is found when both
Marangoni number and Marangoni ratio parameters are kept at higher values. Therefore,
the Marangoni convection process is vital in thermal energy systems. The higher the α and
the lower the β, the higher the heat transfer rate.
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Figure 10. (a–e): The surface plots of reduced Nusselt number Nur.

The impact of the key parameters on the Sherwood number (Shr) is represented by 3D
column plots (see Figure 11a–d). The maximum Sherwood number (Shr) is found for higher
Le and lower Ha. Figure 11b depicts that Shr will increase for increasing values of Nb and
decreasing values of Nt. For the large values of Ma and R, the Sherwood number (Shr) is
increased (see Figure 11c). This is because both Ma and R improve the solute layer structure.
Similar behavior is observed for the ESHS and THS mechanisms (see Figure 11d).
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5. Correlations

Regression correlations can be used to assess the strength of the relationship between
variables and to predict the future relationship between them. Regression computation
includes several types, such as linear, multiple linear, logarithmic, and non-linear. Linear
and multiple linear models are most common. Nonlinear regression analysis is commonly
used for more complex datasets where the dependent and independent variables show
a nonlinear relationship. The different correlation models are computed for the Nusselt
number for two different sets of physical parameters to analyze the results. Firstly, Nuest
is estimated for 169 sets of values of Nb and Nt in the range 0.1 ≤ Nb, Nt ≤ 0.4. Lin-
ear, quadratic, and logarithmic regressions were performed on the results, and they are
given below:
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Linear model:

Nuest = −2.893664 Nb− 1.168271 Nt + 2.078968, with R2 = 95.87% and residual standard error 0.0607883 (16)

Quadratic model:

Nuest = −6.607731Nb− 3.241193Nt + 4.933011Nb2 + 1.650721Nt2 + 4.990246NbNt + 2.7447342,
with R2 = 99.89% and residual standard error 0.009936

(17)

Logarithmic model:

Nuest = −0.649939 ln Nb− 0.261244 ln Nt− 0.273526, with R2 = 97.41%
and residual standard error 0.0481435

(18)

Equation (16) implies that an increase in both Nb and Nt leads to a decrease in Nuest.
These results are consistent with our graphical results (see Figure 10a). However, the
interactive and quadratic effects of Nb and Nt are favorable for Nuest (see Equation (17)).
Further, the quadratic model has a more precise fit for the Nusselt number than the linear
and logarithmic models.

This exercise was reiterated to present the models for Nur and Shr as a function of
Nb, Nt, Ma, and QE. Now Nur and Shr are estimated for 1296 sets of values of Nb, Nt, Ma,
and QE in the range 0.1 ≤ Nb, Nt ≤ 0.4, 0.1 ≤Ma ≤ 0.5, and 0 ≤ QE ≤ 0.4. The linear and
quadratic regressions were performed on the outcome and recorded in Table 2.

Table 2. Correlations for Nuest and Shest.

Correlations for Nuest

Type Model

Linear

1.945542Ma− 1.020937QE − 1.960794Nb− 0.775818Nt + 0.975552

Adjusted R2 90.9% Residual
Standard Error 0.117025

Quadratic

3.517448Nb2 + 1.076601Nt2 − 0.191755Q2
E

−3.442968Ma2 + 3.372623NbNt− 1.801812MaNt
+2.075881NbQE + 1.817708MaQE + 4.098234Ma
−2.008518QE − 4.977851Nb− 1.616731Nt + 1.2532640

Adjusted R2 96.22% Residual
Standard Error 0.075439

Correlations for Shest

Type Model

Linear

4.741571Ma + 0.509317QE + 1.206153Nb + 0.465005Nt + 1.509320

Adjusted R2 93.50% Residual
Standard Error 0.175312

Quadratic

0.624259Nt2 − 8.412765Nb2 − 5.381747Ma2

+0.172606Q2
E + 0.838207NbNt− 0.797004MaNt

−3.985166NbQE − 1.503554MaQE + 8.470582Ma
+1.887632QE + 6.000017Nb + 0.182425Nt + 0.427243

Adjusted R2 97.14% Residual
Standard Error 0.116279

Table 2 shows that an increase in Nb, Nt, QE, and Ma leads to an increase in Shest.
However, the interactive effects of Nb and Nt are favorable for Shest. The Marangoni
number is positively correlated to Nuest and Shest. Furthermore, the quadratic model has a
more accurate fit to both Nuest and Shest than the linear model.
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6. Concluding Remarks

The significance of two distinct thermal energy modulations in the Marangoni con-
vective flow of nanomaterial across an infinite disk is examined numerically. The CCF is
utilized in the thermal energy analysis. Several mathematical models for reduced Nusselt
number and Sherwood number are proposed. Here are some key findings from this work:

• The strength of the Lorentzian body increases the thermal and solutal layer thickness
but decreases the velocity. This is due to the retardation force exerted by the applied
magnetic field.

• The Brownian motion and thermophoresis phenomena improve the heat transfer, but
when it comes to the solute, the thermophoresis number increases the mass transfer
and the opposite nature is observed for the Brownian number. This is due to the
Brownian motion and thermophoresis mechanisms of nanoparticles.

• Thermal energy modulations (ESHS and THS) significantly improve the temperature
field, as both modulations supply additional heat into the nanoliquid system.

• A decrease in the thickness of both the thermal and the solute layer is observed as the
Lewis number increases.

• Marangoni convection progresses the velocity of the nanomaterial. This is due to the
surface tension at the disk surface.

• The Nusselt number is higher in the presence of the Marangoni convection.
• The Nusselt number is found as a maximum for the effect of nanoparticles.
• Sherwood’s number improved by increasing the Lewis number and heat source parameter.
• Quadratic regression is more important than the linear model for both the reduced

Nusselt number and the Sherwood number
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Nomenclature

A characteristic temperature (K)
B characteristic nanoparticles volume fraction
B0 magnetic field intensity (telsa)
C Nanoparticles volume fraction
cp specific heat
C∞ ambient nanoparticle volume fraction
Cw nanoparticle volume fraction at the surface of the disk
DB coefficient of Brownian diffusion
DT coefficient of thermophoretic diffusion
F, H dimensionless velocities along z and r direction
Ha Hartmann number
k Thermal conductivity
Le Lewis number
Ma Marangoni number
Nt Thermophoresis number
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Nb Brownian motion number
Nur reduced Nusselt number
Nuest estimated Nusselt number
n dimensionless exponential index
Pr Prandtl number
Qe coefficient of ESHS
Qt coefficient of THS
QE dimensionless ESHS number
QT dimensionless THS number
Re Reynolds number
R Marangoni ratio number
Shr reduced Sherwood number
Shest estimated Sherwood number
T temperature
T∞ ambient temperature
Tw temperature at the surface of the disk
< characteristic radius of the disk
u, w velocities along z and r directions
Greek symbols
α, β nondimensional thermal and solutal relaxation parameter
βc dimensionless Casson material parameter
γC, γT Constants
δ electrical conductivity
θ dimensionless temperature
λT thermal relaxation time
λC solutal relaxation time
µ dynamic viscosity
ν kinematic viscosity
ξ Similarity variable
ρ density
σ surface tension
σ0 constant
τ specific heat ratio
φ scaled nanoparticle volume fraction
Ω constant (s−1)
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