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Abstract: Aluminum nanoparticles are suitable for wiring power grids, such as local power dis-
tribution and overhead power transmission lines, because they exhibit high conductivity. These
nanoparticles are also among the most utilized materials in electrical field applications. Thus, the
present study investigated the impact of magnetic field on 3D crossflow in the streamwise direction
with the impacts of Dufour and Soret. In addition, the effects of activation energy and chemical
reaction were incorporated. The viscosity and thermal conductivity of nanofluids were premeditated
by KKL correlation. Prominent PDEs (Partial Differential Equations) were converted into highly
nonlinear ODEs (Ordinary Differential Equations) using the proper similarity technique and then
analyzed numerically with the aid of the built-in bvp4c solver in MATLAB. The impact of diverse
important variables on temperature and velocity was graphically examined. Additionally, the influ-
ences of pertaining parameters on the drag force coefficient, Nusselt number, and Sherwood number
were investigated. Inspections revealed that the mass transfer rate decreases, while the heat transport
increases with increasing values of the Soret factor. However, the Nusselt and Sherwood numbers
validate the differing trend for rising quantities of the Dufour factor.

Keywords: double solutions; activation energy; crossflow; MHD (Magnetohydrodynamics); Soret
and Dufour numbers; binary chemical reaction (BCR); nanofluid; KKL correlation

1. Introduction

Cross-boundary-layer flow (CBLF) is one of the most important BLs (Boundary-layers)
in several engineering applications such as wind flow phenomena, aerospace, mechanical
engineering, etc. Other examples of cross-boundary-layer flow include the flow of airplane
swept-back wings, cones, spheres at an angle of attack, and spinning discs. It is critical to
understand flow dynamics to determine how to sidestep the hazard of turbulence. Jones [1]
revealed significant results for the problem of secondary flow by observing the key effect on
the BL. He also discovered that as the coefficient of lift decreases, the stable area of laminar
flow increases. Mager [2] inspected 3D flow through a flat surface, as well as a curved
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surface, in a study that was heavily influenced by the element of the biggest principal
case and moment velocity in the crosswise direction. Dwyer [3] investigated a crossflow
problem containing 3D equations through the zero velocity of free-stream secondary flow
and used the FDM (Finite Difference Method) to obtain a solution to 3D formulas. A
closed-form solution of crosswise flow over a flat surface was reported by Loos [4], who
deemed the parabolic shape of streamlines. Na and Hansen [5] addressed the steady
flow of power-law index liquid under the presumption of crossflow. Two-dimensional
(2D) flow and heat transmission with secondary flow over a cylinder were inspected by
Karabulut and Ataer [6]. Fang and Lee [7] reported 3D flow in the spanwise crossflow
direction with a moving boundary. The viscous dissipation effect on forced convective
flow in the secondary or crossflow direction was examined by Bhattacharyya and Pop [8],
who reported dual solutions for a moving constraint. Weidman [9] inspected crossflow
through an exponentially stretchable power-law plate created by the speed of transverse
wall shearing (WS). Weidman [10] observed the crossflow induced by the action of the
transverse plate. Secondary flow in the streamwise direction via a moving sheet with
convective constraints and viscous dissipation was presented by Haq et al. [11].

The study of the magnetic characteristics of electrically conducting fluids is known as
magnetohydrodynamics (MHD). Magnetic fluids include plasmas, saltwater, electrolytes,
and fluid metals. Research on magnetic fields is crucial in several engineering disciplines,
including reactor cooling, power generation, crystal growth, fluid metal, magnetic drug
targeting, etc. Alfven [12] began investigating magnetic fields. Ali et al. [13], Salem [14],
Zaib et al. [15], and Azam et al. [16] investigated magnetic fluid flow via various aspects.
Sheikholeslami [17] used Darcy’s law to examine the impact of MHD on natural convection
flow caused by a porous cavity. Additionally, the impact of heater-sink on magneto liquid
flow in a square hollow by exploiting an artificial neural network with entropy generation
was concluded by Rabbi et al. [18]. Recently, Ghadikolaei and Gholinia [19] investigated
the effect of MHD on radiative 3D flow including hybrid nanomaterials caused by H2
bonding of a vertical stretchable plate with suction and shape factors.

The concept of mass transfer occurs as a result of the well-known concentration
disparity of species depicted in a concoction. It conveys them from a higher area of
concentration to a lower area of concentration. There are many methods available in
this splendid era, for example, absorption, thermal insulation, moisture/temperature
dispersal from groove fields, distillation of alcohol, and processing of food via sufficient
mass transport applications. Aside from that, mass transfer is important in most living
matter procedures such as sweating, nutrition, and respiration. Abel et al. [20] explored the
features of heat transfer, as well as mass transfer, by including hydromagnetic liquid motion
from an extending plate induced by Walter’s-B liquid. They considered two different cases
of temperature at the boundary, namely prescribed wall heat flux (PHF) and prescribed
surface temperature (PST). Kumar and Roy [21] scrutinized the impacts of heat and mass
transfer on the mixed convective flow induced by unsteady rotating fluid past a vertical
cone. Two different conditions were considered, namely PHF and PST. Chen [22] inspected
the impact of viscous dissipation on MHD free convective flow via a vertical sheet with
heat and mass transport. Because of the significance of incorporating mass transportation,
Parmar et al. [23], Kandasamy et al. [24], Afify [25], and Rahman et al. [26] highlighted the
aspect of this problem with dissimilar phenomena.

In mass transfer, there is a single significant condition that is not normally encountered
in chemical species reactions via Arrhenius activation energy (AAE). Arrhenius coined
the term “activation energy” in 1889. AAE is the minimum amount of energy required
for a reagent to be converted into product form. The procedure of mass interaction in
conjunction with BCR via AAE is traditionally important in oil reservoirs or geothermal
engineering, a mechanism in liquid and oil dispersions, preparing food, and so on. Together
with experimental efforts, theoretical results must be developed to evaluate the impact
of AAE on fluid flow. Bestman [27] investigated the impact of activation energy on free
convection flow from a moving permeable boundary wall in a porous medium. He



Coatings 2021, 11, 1472 3 of 24

presented the results in the form of an asymptotic approximation for activation energy
and larger suction. Mebine and Gumes [28] investigated the exothermic reaction and AAE
on MHD flow through a special network. Khan et al. [29] studied the impacts of binary
reaction and AAE on MHD cross liquid with mixed convective and nonlinear radiation.
They inspected that species of concentration augments because of AAE and shrinks because
of the Schmidt number. The impacts of BCR and AAE on 3D nonlinear radiative flow
comprising non-Newtonian nanofluid over a slandering sheet with MHD and slip effects
were inspected by Reddy et al. [30]. They discovered that activation energy and binary
chemical parameters increase the mass transfer rate, while nanofluid temperature augments
due to an erratic radiative parameter. Khan et al. [31] recently achieved multiple solutions
of MHD crossflow concerning chemical reaction, activation energy, and nonlinear radiation
induced by titanium alloy particles.

The combined effects of Soret and Dufour are crucially substantial for fluids with better
concentration and temperature gradients, as well as in macroscopically essential physical
phenomena in fluid mechanics. These effects are easily noted in areas of combustion
flames, solar reactors, and collectors, along with the conservation of energy in some types
of buildings. Mansour et al. [32] considered the effect of BCR on MHD free convective flow
past a stretchable surface engrossed in a porous medium using the Soret and Dufour effects.
Prasad et al. [33] investigated the effects of Soret and Dufour on MHD flow over a vertical
sheet in a non-Darcian medium. Pal et al. [34] scrutinized the Soret and Dufour impacts
on mixed convective flow past a nonlinear stretchable sheet induced via radiation effects.
Zaib and Shafie [35] studied time-dependent flow past a stretchable sheet along with
the viscous dissipation, Soret, radiation, and Dufour effects. The influences of Soret and
Dufour on Lorentz forces flow conveying water-based Al2O3 and TiO2 particles through a
permeable stretchable sheet with absorption or generation of heat was examined by Reddy
and Chamkha [36]. Khan et al. [37] presented the Soret and Dufour influences on Lorentz
forces induced by non-Newtonian fluid past a stretchable cylinder with the Newtonian
mass flux condition. They showed that the temperature and concentration fields enhanced
because of thermal and solute factors. Recently, Idowu and Falodun [38] employed the
technique of spectral relaxation to create a model involving non-Newtonian fluid past a
semi-infinite plate with Dufour and Soret effects.

Examining the literature reveals that the model contains activation energy and binary
reaction induced via aluminum nanofluid by utilizing KKL correlation through a crossflow
not yet scrutinized. In addition, the base fluid in nanofluid may be considered Newtonian or
non-Newtonian fluid. Devi and Devi [39], Soid et al. [40], and Aly and Pop [41] investigated
nanofluid with Newtonian fluid as a base fluid. Islami et al. [42], Elgazery [43], and Hakeem
et al. [44] considered non-Newtonian fluid as a base fluid to investigate nanofluid flow. In
this paper, we investigate the effect of a binary chemical reaction and activation energy on
a magnetic field induced by nanofluid with Newtonian fluid as a base fluid by employing
KKL correlation via crossflow in the streamwise direction. In addition, the Dufour and
Soret effects are incorporated. This evaluation provides a new method for scientists and
researchers to learn about the properties of mass and heat transfer in the streamwise
direction through crossflow. Experimental, as well as theoretical, efforts on improving
heat transfer by the scattering of nanosolid particles in fluids have inspired researchers
to develop numerous correlations for effective heat transfer (thermal properties, viscosity,
thermal conductivity, etc.). The most recent model was presented by Koo, Kleinstreuer,
and Liu (KKL). In recent years, scholars have investigated this model to demonstrate and
explore numerous applications in technology and science. For example, Kandelousi [45]
and Haq et al. [46] provided different applications by utilizing the KKL model in various
geometries, whereas Alsagri and Moradi [47] introduced several applications to the KKL
nanoliquid model. They addressed several other applications in nanofluid in problems
of heat transfer between rotary tubes. Sheikholeslami and Mahian [48] investigated the
improvement of PCM solidification, employing inorganic nanomaterials to display an
application in energy storage using the KKL theory. The bvp4c solver is utilized to solve
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the resultant model numerically. The effects of significant parameters are satisfied with the
help of tables and graphs.

2. Mathematical Scenario of the Problem

The considered problem is formulated basically in the crossflow, secondary-flow, or
streamwise direction comprising Al2O3-water nanofluid using Koo–Kleinstreuer and Li
(KKL) correlation within the boundary-layer technique. Following the phenomenon of
secondary or cross flow, we investigated the impact of MHD 3D flow with binary chemical
reaction and activation energy. The Soret and Dufour impacts are also discussed in the
current research work. The geometrical framework of the flow and heat transfer problem
in the presence of Al2O3 nanoparticles is confined with the help of a rectangular Cartesian
coordinate system (xh, yh, zh), as shown in Figure 1, where the xh (chordwise) coordinate
is measured parallel to the surface of the flat plate, while the yh coordinate is executed
in the spanwise direction. Therefore, the assumed velocity (which is unchangeable) at
the horizontal surface of the flat plate is mathematically denoted by −Udεd, where εd is
the dimensionless constant (the moving factor), and the exterior flow is signified by Ud

(uniform velocity). The changeable magnetic field Bh = B0/(2xh)
1/2 is exercised normal to

the surface of the flat plate. The nanofluid is a mixture of two dissimilar components such
as Al2O3 nanoparticles and H2O (water) base fluids, while the properties of the considered
nanofluid in the model are taken to be constant. The thermophysical properties of the
nanofluid are given in Table 1. Additionally, the secondary flow has a broad range of levels
and is supposed to be fully established in the spanwise direction. Hence, the succeeding
basic steady governing equations can be read in the absence of the zh coordinate. So, the
equation of continuity for incompressible liquid is:

∂uh
∂xh

+
∂vh
∂yh

= 0, (1)

and the Navier–Stokes equations with a constant property are (see [8,11,49]):

uh
∂uh
∂xh

+ vh
∂uh
∂yh

= − 1
ρn f

∂ph
∂xh

+ νn f

(
∂2uh
∂yh

2

)
−

σn f Bh
2

ρn f
uh, (2)

uh
∂vh
∂xh

+ vh
∂vh
∂yh

= − 1
ρn f

∂ph
∂yh

+ νn f

(
∂2vh
∂yh

2

)
, (3)

uh
∂wh
∂xh

+ vh
∂wh
∂yh

= − 1
ρn f

∂ph
∂zh

+ νn f

(
∂2wh
∂yh

2

)
−

σn f Bh
2

ρn f
wh, (4)

Now, exercising the boundary-layer approximation or scaling transformation, Equa-
tion (3) of the y-momentum completely disappears, while by the Bernoulli equation,
Equations (2) and (4) reduce to the following simplified form as follows:

− 1
ρn f

∂ph
∂xh

=
σn f Bh

2

ρn f
Ud, (5)

− 1
ρn f

∂ph
∂zh

=
σn f Bh

2

ρn f
Wd, (6)
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Eliminating the pressure term from Equations (2) and (4), one obtains:

uh
∂uh
∂xh

+ vh
∂uh
∂yh

= νn f

(
∂2uh
∂yh

2

)
+

σn f Bh
2

ρn f
(Ud − uh), (7)

uh
∂wh
∂xh

+ vh
∂wh
∂yh

= νn f

(
∂2wh
∂yh

2

)
+

σn f Bh
2

ρn f
(Wd − wh), (8)

In addition, the temperature Th and concentration Ch are presumed to be constants at
the surface, whereas the free-stream temperature and free-stream concentration are T∞, C∞,
respectively. Therefore, the temperature and concentration equations are:

uh
∂Th
∂xh

+ vh
∂Th
∂yh

=
kn f(

ρcp
)

n f

∂2Th
∂yh

2 +
DmkT
cscp

∂2Ch
∂yh

2 , (9)

uh
∂Ch
∂xh

+ vh
∂Ch
∂yh

= DB
∂2Ch
∂yh

2 − k2
rd

(
Th
T∞

)m
e−

Ed
κdTh (Ch − C∞) +

DmkT
Tm

∂2Th
∂yh

2 , (10)

and the boundary conditions (BCs) are:

uh = −Udεd, wh = 0, vh = vd, Th = Tw, Ch = Cw at yh = 0,
uh → Ud, wh →Wd, Th → T∞, C → C∞ as yh → ∞.

(11)

Now, in the above governing equations, the velocity components are (uh, vh, wh) in the
requisite rectangular Cartesian coordinates (xh, yh, zh), respectively, and ph is the pressure
of the fluid. In Equation (10), the second term on the right-hand side of the equation is the
Arrhenius function k2

rd(Th/T∞)m exp(−Ed/κdTh), with a particular value of the Boltzmann
constant κd = 8.61× 10−5 eV/K; m is the rate of fitted constant, which is bounded in the
range of (−1, 1); and k2

rd is the chemical reaction rate. Additionally, the other constraints
used in the governing equations are Dm, cs, kT , cp, and Tm: the coefficient of mass diffusivity,
concentration of susceptibility, thermal diffusion ratio, specific heat at constant pressure,
and mean fluid temperature, respectively.
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Moreover, the other coefficients or symbols contained in the governing equations
for the nanofluid are the specific heat capacitance at constant pressure

(
ρcp
)

n f , density
ρn f , and electrical conductivity σn f . The expression for these physical properties of the
nanofluid is given by ([50,51]):

ρn f = φρs + (1− φ)ρ f ,
(
ρcp
)

n f = φ
(
ρcp
)

s + (1− φ)
(
ρcp
)

f ,

σn f =

[
1 +

3(σs/σf−1)φ

(σs/σf +2)−(σs/σf−1)φ

]
σf .

(12)

Therefore, ρ f , σf , and
(
ρcp
)

f are the specific heat capacity, density, and electrical
conductivity of the base fluid, respectively, while the same quantities are used for the
nanoparticles whose subscript includes the letter s. Additionally, φ is the nanoparticles’
volume fraction.

The Brownian motion fundamentally affects the current kn f thermal conductivity
(TCN). Koo and Kleinstreuer [52] recommended that kn f be made from the particle’s
conservative stationary part and a posited Brownian motion (BMN) quantity. This mutual
TCN model considers the impacts of particle volume fraction, particle size, and dependency
just as kinds of particle and base liquefied balances

kn f = kBrownian + kstatic, (13)

kstatic

k f
= 1 +

3
(

ks
k f
− 1
)

φ(
ks
k f

+ 2
)
−
(

ks
k f
− 1
)

φ
, (14)

where kstatic represents static TCN dependent on Maxwell’s usual correlation. The up-
graded TCN part produced by the small convective heat transfer rate of a particle’s BMN
and influenced by a free-stream fluidic motion is acquired by reproducing Stokes’ flow
near a sphere of influence (nanoparticle). By presenting two experimental constraints (γ
and h), Koo [53] consolidated the collaboration between nanomaterials in correlation with
the temperature impact in the given model, regarded as:

kBrownian = 5× 104γφρ f cs, f

√
κsTh
ρsds

h(Th, φ). (15)

Lately, there has been an expanding pattern to stress the significance of the interfacial
heat obstruction among nanomaterials and based liquids (see Jang and Choi [54] and
Prasher et al. [55]). The heat interfacial opposition (Kapitza obstruction) is accepted to exist
in the nearby layers of the two distinct constituents. The thin barrier layer assumes an
important part in debilitating the viable TCN of the nanoparticle.

Li [56] returned to the model introduced by Koo and Kleinstreuer [52] and joined γ
and h functions to introduce another H function that catches the impacts of particle width,
volume fraction rate, and temperature. The experimental H-function relies on the kind
of nanoliquid [56]. Additionally, by making known a thermal interfacial resistance (TIR)
R f = 4× 10−8 km3/W, the unique ks in Equation (15) above is substituted by a novel ks,e f f
in the system:

R f +
ds

ks
=

ds

ks,e f f
. (16)
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For liquids of different bases and diverse nanomaterials, the function ought to appear
as something else. Just water-based nanofluid is deliberated in the present study. For
Al2O3-water nanofluid, this function adopts the pattern:

H(Th, φ, ds) =
(

c1 + c2 ln(ds) + c5 ln(ds)
2 + c3 ln(φ) + c4 ln(ds) ln(φ)

)
ln(Th)+(

c6 + c7 ln(ds) + c10 ln(ds)
2 + c8 ln(φ) + c9 ln(ds) ln(φ)

)
φ ≤ 0.04, 300K ≤ Tb ≤ 325K

(17)

Using the coefficients, cj (j = 1 . . . 10) is built on the nature of nanomaterials, and also,
with the occurrences of these arbitrary constant coefficients, Al2O3-water nanoliquid has
an R2 of 96% and 98%, correspondingly [50] (Table 2). To conclude, the KKL correlation is
pointed out as:

kBrownian = 5× 104φρ f cs, f

√
κsTh
ρsds

H(Th, φ, ds). (18)

Koo and Kleinstreuer [52] additionally took into consideration the laminar type of
induced nanofluid flow in a micro heat-sink through the powerful nanofluid TCNM
that they recognized (KKL [52]). For the powerful viscosity owing to micromixing in
suspensions, they deliberate:

µn f = µBrownian + µstatic = µstatic +
µ f kBrownian

Prk f
, (19)

where µstatic =
µ f

(1−φ)2.5 , shows the nanofluid’s viscosity, which is specified as formerly by

Brinkman. The following self-similarity variables are given by [52]:

ξ = yh

√
Ud

2xhυ f
, ψd =

√
2xhUdυ f F(ξ), wh = WdG(ξ),

θ(ξ) = T∞−Th
T∞−Tw

, S(ξ) = C∞−Ch
C∞−Cw

,
(20)

Here, in Equation (20), the posited stream function designated by ψd and υ f is the kine-
matic viscosity. The above transformations substituted in the governing Equations (7)–(10),
along with the BCs (11), result in the reduced form of the ODEs:

µn f

µ f
F′′′ +

ρn f

ρ f
FF′′ + M

σn f

σf
(1− F′) = 0, (21)

µn f

µ f
G′′ +

ρn f

ρ f
FG′ + M

σn f

σf
(1− G) = 0, (22)

kn f

k f
θ′′ + Pr

(
ρcp
)

n f(
ρcp
)

f

(
Fθ′ + DudS′′

)
= 0 (23)

S′′ + LedFS′ − βdLed(1 + δdθ)m exp
[
−ed

1 + δdθ

]
S + SrdLedθ′′ = 0 (24)

The subjected major boundary restrictions are:

F′(0) = εd, F(0) = fw, G(0) = 0, θ(0) = 1, S(0) = 1,
F′(∞)→ 1, G(∞)→ 1, θ(∞)→ 0, S(∞)→ 0.

}
(25)
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The following distinguished constraints occurred in the above similarity equations,
which are mathematically expressed as:

Md =
σf B0

2

ρ f Ud
, Rexh = xhUd

υ f
, Pr =

υ f
α f

, ed = Ed
k f T∞

, Srd = DmkT(Tw−T∞)
ν f Tm(Cw−C∞)

,

βd = 2
Rexh υ f krd

2

Ud
2 , δd = Tw−T∞

T∞
, Dud = DmkT(Cw−C∞)

ν f cscp(Tw−T∞)
.

These factors are namely demarcated as magnetic parameter Md, Prandtl number Pr,
activation parameter ed, Reynolds number Rexh , reaction rate βd, temperature difference
parameter δd, Soret number Srd, and Dufour number Dud.

Table 1. Thermophysical properties of the nanofluid [36].

Physical Properties Water Al2O3

k (W/mK) 0.613 25
cp (J/kg K) 4179 765
ρ (kg/m3) 997.1 3970
σ (Ωm)−1 0.05 1× 10−10

ds (nm) - 47
Pr 6.2 -

Table 2. Constants of Al2O3-water.

Coefficient Values Al2O3-Water

c1 52.813
c2 6.115
c3 0.695
c4 4.1 × 10−2

c5 0.176
c6 −298.198
c7 −34.532
c8 −3.922
c9 −0.235
c10 −0.999

2.1. Skin Friction

The skin friction coefficients or friction factors in the streamwise and crossflow direc-
tions are defined as follows [49]:

CFxh =
µn f

(
∂uh
∂yh

)
yh=0

ρ f Ud
=

µn f

µ f

F′′ (0)√
2Rexh

(26)

CGzh =
µn f

(
∂wh
∂yh

)
yh=0

ρ f W2
d

=
µn f

µ f

G′(0)√
2Rexh(Wd/Ud)

(27)

2.2. Nusselt Number

The heat transfer rate is defined as:

Nuxh =
xh

(
−kn f

∂Th
∂yh

)
yh=0

k f (Tw − T∞)
= −

kn f

k f

θ′(0)√
2Rexh

(28)
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2.3. Sherwood Number

The mass transfer rate is defined as:

Shxh =
xh

(
−DB

∂Ch
∂yh

)
yh=0

DB(Cw − C∞)
= − S′(0)√

2Rexh

(29)

where Rexh = xhUd/υ f is the Reynolds number.

3. Methodology of the Considered Approach

The system of the nonlinear ODEs is calculated using the built-in MATLAB function
bvp4c, i.e., boundary value problem of the fourth-order. This method is based on finite-
difference code that utilizes the three-stage Lobatto IIIA formula. This formula, commonly
known as the collocation formula, yields a C1 continuous solution with fourth-order
precision in the closed bounded interval from a to b. The best selection choice of the mesh
point, along with the error control, is achieved by exercising the residual of the continuous
outcome. In the MATLAB code, we utilized the syntax, which is followed as

Sol = (bvp4c (@odefun, @bcfun, solinit, options)

The set of nonlinear ODEs (21)–(24), along with BCs (25), are transmuted to the
subsequent system of first-order ODEs to use this approach. To continue our working
procedure, here, we allow new variables such as F by C1, G by C4, θ by C6, and S by C8 for
changing the boundary-values problem (BVP) into the initial-value problem (IVP):

C1
′ = C2, C2

′ = C3, (30)

C3
′ =

1
µn f
µ f

(
−

ρn f

ρ f
C1C3 −Md

σn f

σf
(1− C2)

)
, (31)

C4
′ = C5, (32)

C5
′ =

1
µn f
µ f

(
−

ρn f

ρ f
C1C5 −Md

σn f

σf
(1− C4)

)
, (33)

C6
′ = C7, (34)

C7
′ = −Pr

(ρcp)n f

(ρcp) f

kn f
k f

(
C1C7 + DudC9

′), (35)

C8
′ = C9, (36)

C9
′ = −LedC1C9 + βdLed(1 + δdC6)

m exp
[
− ed

1 + δdC6

]
C8 − SrdLedC7

′, (37)

and the subject ICs are:

C2(0) = εd, C1(0) = fw, C4(0) = 0, C7(0) = 1, C9(0) = 1,
C2(∞)→ 1, C4(∞)→ 1, C7(∞)→ 0, C9(∞)→ 0.

}
(38)

To meet the convergence conditions, a tolerance of 10−6 is considered during the
calculations. It is worth noting that the two distinct solution branches are obtained by
using different estimate values for the actual numbers. The procedure can be seen through
the flow chart in Figure 2.
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4. Results and Discussion

The similarity equations of the momentum, energy, and concentration are physically
scrutinized in the current section of the research work using Koo–Kleinstreuer and Li
(KKL) correlation to investigate the impacts of activation energy, Dufour numbers, binary
chemical reaction, MHD, and Soret numbers over the streamwise and secondary-flow di-
rections for the upper and lower solution branches comprising nanofluid (Al2O3-water). In
addition, the distinguished parameters, which are available in the model, are the following:
Md, φ, fw, m, εd, Dud, Led,ed, δd, Srd, βd, and Pr. Furthermore, the simulations of the entire
paper were completed with the corresponding fixed values of these parameters, which
can be read as 0.1, 0.025, 1, 0.4, 0.3, 0.5, 0.5, . . . , and 6.2, respectively. The comparison and
outcomes of the considered model in terms of the upper and lower solution branches are
graphically shown in Figures 3–22. These graphs depict the two distinct branch solutions
for the various involved controlling parameters, which are bound in the form of velocity
profile (xh- and zh-directions), temperature, concentration, friction factor, heat, and mass
transfer fluxes. The solutions of the upper and lower branches are indicated by black
solid and dashed lines, respectively. So, the point where these solutions meet is called
the bifurcation or critical point, and it is represented by a small solid ball, as shown in
each window of the engineering quantities of interest. Moreover, the given scheme and
the simulations of the code were authenticated graphically for the dual-nature outcomes
of Bhattacharyya and Pop [8], as shown in Figure 3, for secondary flow across a moving
surface with limited situations. The evaluations demonstrate a high level of settlement
between the published and current accessible findings.

Figures 4–7 exemplify the impacts of fw on friction factors in the xh- and zh-axes direc-
tions, heat transfer, and mass transfer of the Al2O3-water nanofluid versus εd for the solution
of the upper and lower branch, respectively. From these figures, it is observed that the critical
or bifurcation values εd = εdCritical upsurge due to the larger values of fw. Meanwhile, the
bifurcation values are mathematically signified as (εdCritical = 0.5917, 1.0908, 1.6240). As a
result, fw postpones the separation of the boundary layer. The friction factors in the xh- and
zh-axes directions increase in the upper branch solution due to the continuous increment in
the values of the fw, while they are reduced in the branch of lower solutions. From a physical
point of view or scenario, a lot of liquid is pulled into the surface, and the liquid becomes more
difficult to move, due to which the shear stress grows on the surface. In addition, the negative
values of the shear stress in Figures 4 and 5 display that the surface exerts a drag force on
the liquid, whereas the positive values show the opposite tendency. On the other hand, the
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rate of heat transfer is significantly weakened in both solution branches (upper and lower)
due to the escalation in the values of fw as shown in Figure 6, while the mass transfer rate
shows rising patterns in the branch of the upper and lower solutions, as shown in Figure 7.
So, if the suction parameter influences the upsurge, the domain of the solution shrinks for
the heat transfers and rises for the mass transfer. It appears that the solutions in the case of
shrinking flow do not survive because the vorticity may not be confined within a boundary
layer. However, the outcomes may occur if there is an accumulation of the impact of the mass
suction parameter at the edge of the boundary layer to hold the vorticity. Additionally, in the
case of shrinking velocity, the local mass transfer rate, as well as the local heat transfer rate, is
higher than in the case of stretching velocity.
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The impacts of ed and δd on the mass transfer rate for the two distinct solution branches
against the moving parameter εd of the Al2O3-water nanofluid are explicitly shown in
Figures 8 and 9, respectively. The outcomes certify that the values of the mass transfer
rate grow higher and higher in the branch of the upper solution, as well as in the lower
solution, due to the larger values of the parameters ed and δd. Moreover, the thickness of
the concentration boundary layer is higher with larger values of εd and δd. The gap in the
lower solution branch is slightly higher compared to the upper solution branch.
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Figures 10 and 11 describe the variations in the heat and mass transfer fluxes for the
two distinct branch solutions of the Al2O3-water nanofluid against εd due to the influence
of the parameter Dud, respectively. The values of the heat transfer rate shrink in both
solution branches (upper and lower) due to the augmentation in the values of Dud, while
the behavior of the solutions completely reverses for the mass transfer rate in both solution
branches. In addition, the thermal boundary-layer thickness is reduced with higher Dud,
while on the other hand, the concentration boundary-layer thickness is improved.
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The influences of the Soret number Srd on the heat and mass transfer fluxes for the
solution of the upper branch, as well as the lower branch, of the Al2O3-water nanofluid
versus the moving parameter εd are illustrated in Figures 12 and 13, respectively. These
outcomes are in line with the solutions of Dzulkifli et al. [57]. From these figures, we see
that the heat transfer rate continuously upsurges in both solution branches, while the mass
transfer rate reduces in the upper and lower branches if we increase Srd. In addition, the
thickness of the concentration boundary layer is higher with larger values of Srd.
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The velocity profile in both directions (xh- and zh-axes) for the upper and lower
solution branches of the Al2O3-water nanofluid against the pseudosimilarity variable ξ due
to the larger values of fw is represented in Figures 14 and 15, respectively. From the results,
it is seen that the velocities in both directions (xh- and zh-axes) for the upper branch solution
increase due to the larger factor values of fw, lowering the corresponding boundary-layer
thicknesses, but the lower branch solution velocities decline. This is because when fw
increases, the velocity dispersion into the liquid becomes shorter.
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The impact of fw on the temperature distribution and concentration profile of the
Al2O3-water nanofluid for the upper and lower solution branches is graphically highlighted
in Figures 16 and 17, respectively. The temperature distributions and concentration profiles
of the Al2O3-water nanofluid in both solution branches are significantly declined due to the
augmentation in the values of fw. Moreover, the thermal and concentration boundary-layer
thickness decline when increasing the values of fw. In general, the explanation for this
phenomenon is that the liquid is brought closer to the surface, causing the thickness of the
thermal boundary layer to decrease. As a result, additional temperature is formed, which
raises the fluid temperature.
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Figures 18 and 19 display the impact of φ on the velocity profile in both the xh- and
zh-axes directions for the upper and lower solution branches, respectively. From both
pictures, it is noted that the profile of velocity in both the xh- and zh-axes directions are
decreased in the upper branch solution and increased in the lower branch solution due to
the larger value of φ. The momentum boundary-layer thickness is diminished due to the
augmentation in the value of φ. Moreover, the temperature and concentration profiles with
the reassurance of φ for the two distinct branch solutions are captured in Figures 20 and 21,
respectively. For growing values of φ, the temperature profile is enhanced in both branches
of the outcomes, while the behavior of the solution is opposite for the concentration profile.
Generally, the nanoparticle influences increase the thermal conductivity of the fluid. As a
consequence, the temperature and the thermal boundary-layer thickness are boosted.
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Figure 21. Impact of φ on S(ξ).

Finally, Figure 22 illustrates the impacts of βd on S(ξ) for the upper and lower solution
branches of the Al2O3-water nanofluid. For increasing values of βd, as a result, S(ξ) shrinks
in both dissimilar solution branches. More precisely, the concentration profiles and the
thickness of the boundary layer are decelerated by improving the consequences of βd. Phys-
ically, an enhancement in βd leads to augments in the term (1 + δdθ)mβd exp[−ed/1 + δdθ].
As a result, the harmful chemical reaction that lowers the concentration profile is aided.
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5. Conclusions

In this study, we used the Koo–Kleinstreuer and Li (KKL) model to study MHD
three-dimensional nanofluid flow, as well as heat and mass transfer in the secondary-flow
and streamwise directions. The inspirations of the binary chemical reaction and activation
energy along with the effects of Soret and Dufour are also discussed. The similarity
technique is employed to change our model from PDEs to ODEs, and then a numerical
scheme bvp4c is used to solve the transmuted equations. The dual-nature outcomes are
physically interpreted and discussed with the help of various graphs. The applicable
scheme is also validated graphically with the available published work. The substantial
points of the problem are summarized as:
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• The concentration field shrinks in the stable and unstable solution branches due to the
superior values of fw, βd, and φ. On the other hand, the temperature fields upsurge in
both solution branches with increasing φ, while they are reduced due to fw.

• The velocity fields in the xh- and zh-axes directions increase in the branch of the upper
result and decrease in the branch of the lower result owing to the higher values of
fw, while the behavior of the velocity fields in xh- and zh-axes for both branches are
reversed due to the larger values of φ.

• The heat transfer declines, but the mass transfer escalates in the upper branch, as well
as in the lower branch, due to the increasing values of the Dufour number, while the
trend or pattern of the outcomes appears completely reversed for the effects of the
Soret number.

• The mass transfer rate increased in the upper branch solution due to the successive
increment in the value of ed and δd, while the behavior of the outcomes is altered in
the lower branch solution.

• The friction factor upsurges in xh- and zh-axes for the upper branch solution due to
the larger value of fw, while it is reduced for the lower branch solution.
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Nomenclature
xh, yh, zh Cartesian coordinates (m)
Ud Uniform velocity (m/s)
Bh Variable magnetic field (T)
B0 Magnetic field Strength
uh, vh, wh Velocity components (m/s)
ph Pressure (Pa)
Wd Constant ambient velocity (m/s)
Th Temperature (K)
Ch Concentration
T∞ Constant ambient temperature (K)
C∞ Constant ambient concentration
vd Mass flux velocity (m/s)
Dm Coefficient of mass diffusivity (m2/s)
cs Concentration of susceptibility
kT Thermal diffusion ratio (m2/s)
cp Specific heat at constant pressure (J/KgK)
Tm Main fluid temperature (K)
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DB Brownian diffusion coefficient
m Rate of fitted constant
κd Boltzmann constant
k2

rd Constant of chemical reaction rate
Ed Activation energy
R f Thermal interfacial resistance (Km3/W)
F, G Dimensionless stream function
S Concentration of nanoparticle
Cw Constant wall surface concentration
Tw Constant wall surface temperature (K)
M Magnetic parameter
Dud Dufour number
Pr Prandtl number
Led Lewis number
Srd Soret number
ed Activation parameter
fw Mass suction parameter
CFxh , CGzh Coefficient of skin friction in x- and y-directions
k Thermal conductivity
Nuxh Local Nusselt number
Rexh Local Reynolds number
Shxh Local Sherwood number
Greek symbols
εd Moving parameter (stretching/shrinking parameter)
ρ Density
σ Electrical conductivity
µ Absolute viscosity
υ Kinematic viscosity
ξ similarity variable
ψd Stream function
θ Dimensionless temperature
δd Temperature difference parameter
βd Reaction rate parameter
Acronyms
KKL Koo–Kleinstreuer and Li
3D Three-dimensional
PDEs Partial differential equations
ODEs Ordinary differential equations
bvp4c Boundary value problem of fourth-
orderBCR Binary Chemical reaction
CBLF Cross-boundary-layer flow
BL Boundary layer
MHD Magnetohydrodynamics
AAE Arrhenius activation energy
TCN Thermal conductivity
BMN Brownian motion
Subscripts
Al2O3 Aluminum dioxide nanoparticles
w Condition at surface
n f Nanofluid
∞ Ambient condition
f Base fluid
f Base fluid
Superscript
′ Differentiation with respect to ξ
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