Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = Selenga river basin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 12518 KB  
Article
Aeolian Sands of the Temperate Boreal Zone (Northern Asia)
by Nikolay Akulov, Maria Rubtsova, Varvara Akulova, Yurii Ryzhov and Maksim Smirnov
Quaternary 2024, 7(4), 55; https://doi.org/10.3390/quat7040055 - 5 Dec 2024
Viewed by 1816
Abstract
This article is devoted to the study of the Quaternary aeolian sands of the boreal zone of north Asia. Using the example of the study reference sections of the Selenga Dauria (Western Transbaikalia), it was established that the activation of aeolian processes is [...] Read more.
This article is devoted to the study of the Quaternary aeolian sands of the boreal zone of north Asia. Using the example of the study reference sections of the Selenga Dauria (Western Transbaikalia), it was established that the activation of aeolian processes is determined by the complex interaction of natural and anthropogenic factors. Natural factors include neotectonic movements; wide distribution of alluvial and lacustrine-alluvial deposits; a sharply continental semi-arid climate; and forest-steppe and steppe vegetation. Among the anthropogenic factors, the leading ones are deforestation, plowing of land and construction of new settlements, roads and other line structures. The obtained radiocarbon dating of buried soils and coal from ancient fire pits indicates the activation of aeolian processes during the Holocene. The main sources for aeolian transport (winnowing) are sands located in the areas of river and lake beaches, floodplains and river terraces. Almost all aeolian sands of the boreal zone were formed as a result of short-range wind transport. They form mini-deserts unfixed by vegetation, with active aeolian processes, dunes, barkhans and deflationary basins. Aeolian swells and blowout basins characterize aeolian landscapes weakly fixed by vegetation. It is noted that aeolian deposits of the boreal zone of north Asia, in contrast to similar sands of the subtropical and tropic zones, consist of coarser-grained material. Medium- and fine-grained sands dominate their composition, which is polymineral and well-sorted. In subtropical and tropical deserts, they are predominantly monomineral, fine and fine-grained. At the same time, mainly minerals that are unstable to weathering (feldspars, plagioclases, pyroxenes and amphiboles) represent the mineralogical composition of the studied aeolian sands. Weathering-resistant minerals dominate the sands of classical deserts: quartz, leucoxene, ilmenite, epidote, zircon, garnets, tourmaline, rutile and others. Modern aeolian landscapes are a unique natural formation for the boreal zone of north Asia and can be successfully used for the development of ecotourism. Full article
Show Figures

Figure 1

20 pages, 6711 KB  
Technical Note
Landscape Ecological Risk Assessment and Analysis of Influencing Factors in Selenga River Basin
by Wangping Li, Qingrun Lin, Junming Hao, Xiaodong Wu, Zhaoye Zhou, Peiqing Lou and Yadong Liu
Remote Sens. 2023, 15(17), 4262; https://doi.org/10.3390/rs15174262 - 30 Aug 2023
Cited by 12 | Viewed by 2606
Abstract
Land degradation under the influence of global warming and ecological environmental destruction due to poor land management is the main challenge facing the Mongolian Plateau, and its future ecological risk change trends and drivers are also unclear. Therefore, to address the context relevant [...] Read more.
Land degradation under the influence of global warming and ecological environmental destruction due to poor land management is the main challenge facing the Mongolian Plateau, and its future ecological risk change trends and drivers are also unclear. Therefore, to address the context relevant to this challenge, planning based on measured information from land use patterns is required. Based on land use and land cover (LULC), this study evaluates the landscape ecological risk (LER) of the Selenga River Basin by calculating the landscape pattern index. The spatiotemporal pattern and influencing factors of landscape ecological risk in the Selenga River Basin from 1990 to 2040 were analyzed. According to the results of LULC analysis, forest and grassland were the primary land use types in the Selenga River Basin. The built area, forest, and cropland showed an increasing trend, while the grassland area showed a fluctuating decreasing trend. From 1990 to 2010, the comprehensive land use dynamic degree showed a trend of rising first and then falling, specifically from 0.13% in 1990 to 0.29% in 2010, and will drop to 0.06% by 2040, indicating that the range of land use change is becoming more and more stable. The landscape ecological risk assessment shows a distribution pattern of “low at the edge and high in the middle”. The landscape ecological risk index (LER) first increases and then decreases, with the peak value in 2010 (0.085). By calculating the spatial aggregation of LER and the partial correlation with climate, we found that the Moran’s I index showed an “anti-V”-shaped change trend from 1990 to 2040, and the average landscape ecological risk presents positive spatial correlation, primarily with high-value aggregation, and peaked in 2010. Precipitation had a negative correlation with landscape ecological risk controlling for temperature, while there was a positive relationship between temperature and landscape ecological risk under the influence of controlling precipitation. This study provides a scientific basis for LULC planning in the Selenga River Basin, and is of great significance for maintaining the ecological security of the Mongolian Plateau. Full article
Show Figures

Figure 1

17 pages, 7681 KB  
Article
Ecological Zoning of the Baikal Basin Based on the Results of Chemical Analysis of the Composition of Atmospheric Precipitation Accumulated in the Snow Cover
by Yelena V. Molozhnikova, Maxim Yu. Shikhovtsev, Olga G. Netsvetaeva and Tamara V. Khodzher
Appl. Sci. 2023, 13(14), 8171; https://doi.org/10.3390/app13148171 - 13 Jul 2023
Cited by 11 | Viewed by 2340
Abstract
This research used the geostatistical analysis of snow cover samples taken in 2017–2022 in the Baikal basin. Groups of snow cover pollution sources were identified by the method of empirical Bayesian kriging (ArcMap software) and mathematical data processing. The studied area was divided [...] Read more.
This research used the geostatistical analysis of snow cover samples taken in 2017–2022 in the Baikal basin. Groups of snow cover pollution sources were identified by the method of empirical Bayesian kriging (ArcMap software) and mathematical data processing. The studied area was divided into fourteen districts. Geovisualization of marker substances accumulated in the snow cover allowed for the zoning of the studied area according to the degree of anthropogenic load. It was revealed that the atmospheric pollution of the territory from local sources extended for tens of kilometers along the prevailing wind direction. The maximum concentrations of anthropogenic aerosols in the snow cover were determined in towns that were sources of pollution and near settlements located on the coast of Lake Baikal and at the Selenga River mouth. The industrial centers of the region and the southern basin of Baikal, being affected by the air emissions from the Irkutsk agglomeration, were determined to be the most susceptible to anthropogenic pollution. The middle and northern basins could be attributed to the background regions being affected only by local heating sources and the natural background. The main atmospheric pollutants and the areas of their distribution were established. The main sources of snow cover pollution in the region, in addition to the natural background, were emissions from thermal power plants and motor vehicles. Full article
(This article belongs to the Special Issue Advanced Observation for Geophysics, Climatology and Astronomy)
Show Figures

Figure 1

21 pages, 5513 KB  
Article
Trend Analysis of Precipitation, Runoff and Major Ions for the Russian Part of the Selenga River Basin
by Tcogto Zh. Bazarzhapov, Valentina G. Shiretorova, Larisa D. Radnaeva, Elena P. Nikitina, Bator V. Sodnomov, Bair Z. Tsydypov, Valentin S. Batomunkuev, Vasilii V. Taraskin, Suocheng Dong, Zehong Li and Ping Wang
Water 2023, 15(1), 197; https://doi.org/10.3390/w15010197 - 3 Jan 2023
Cited by 7 | Viewed by 2836
Abstract
At present, the problem of climate change is becoming increasingly acute. This is especially pressing for Lake Baikal, a World Natural Heritage site. The Russian part of the Selenga watershed is a suitable site for climate change research. The study of changes in [...] Read more.
At present, the problem of climate change is becoming increasingly acute. This is especially pressing for Lake Baikal, a World Natural Heritage site. The Russian part of the Selenga watershed is a suitable site for climate change research. The study of changes in precipitation, runoff, and chemical runoff is important for sustainable water resources management. This study presents a trend analysis of precipitation and runoff at hydrological stations and weather stations in the Russian part of the Selenga River basin. A comparative analysis of the concentrations of major ions in the surface water of the Selenga River depending on water levels was also carried out. Analysis of the data series on precipitation revealed a slight negative trend at the Novoselenginsk, Ulan-Ude, and Kabansk stations, and a weak positive trend—at the Kyakhta station. Runoff analysis revealed negative trends at the two used stations (Novoselenginsk and Mostovoi). The hydrochemical regime of the Selenga River is characterized by an increase in major ions and salinity during winter low-water periods, and a decrease during high-water periods. Mineralization and major ion content are lower in the high-water period (2019–2021) than in the low-water period (2015–2017). Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

22 pages, 14626 KB  
Article
Future Climate-Driven Runoff Change in the Large River Basins in Eastern Siberia and the Far East Using Process-Based Hydrological Models
by Andrey Kalugin
Water 2022, 14(4), 609; https://doi.org/10.3390/w14040609 - 17 Feb 2022
Cited by 16 | Viewed by 2597
Abstract
The main goal of this study was to obtain new results on the physically based future hydrological consequences of climate change in the Amur, Lena, and Selenga River basins by using data from an ensemble of global climate (general circulation) models (GCMs) as [...] Read more.
The main goal of this study was to obtain new results on the physically based future hydrological consequences of climate change in the Amur, Lena, and Selenga River basins by using data from an ensemble of global climate (general circulation) models (GCMs) as boundary conditions in spatially distributed, process-based runoff formation models. This approach provides a basis for a more detailed comparison of the sensitivity of hydrological systems of neighboring large river basins in Eastern Siberia and the Far East. The greatest increases in annual flow are predicted for the Lena River under Representative Concentration Pathway (RCP) 2.6 and RCP 6.0 by the middle and end of the 21st century and for the Selenga River under RCP 6.0 by the end of the 21st century, while the Amur flow anomalies are close to zero. During the 21st century, the greatest relative changes in river flow are predicted for the spring flood, especially for the Lena and Selenga, under both scenarios. The summer–autumn and winter runoff of the Amur River has a negative change of up to 8% for the two RCPs, and, on the contrary, the anomalies are positive for the Lena and Selenga. Evaluating runoff variations between RCPs, we noted high summer–autumn and winter runoff changes for the Amur River under RCP 6.0 for the future period, a significant increase in anomalies of the spring and winter runoff of the Lena under RCP 6.0 by the end of the 21st century, and a greater prevalence of summer–autumn and winter runoff increase for the Selenga River under RCP 2.6 during the 21st century, but it is especially pronounced by its end. Full article
(This article belongs to the Special Issue Climate Changes and Hydrological Processes)
Show Figures

Figure 1

23 pages, 7108 KB  
Article
Analysis of Land Use/Cover Change and Driving Forces in the Selenga River Basin
by Yang Ren, Zehong Li, Jingnan Li, Yan Ding and Xinran Miao
Sensors 2022, 22(3), 1041; https://doi.org/10.3390/s22031041 - 28 Jan 2022
Cited by 17 | Viewed by 3891
Abstract
The Selenga River basin is an important section of the Sino-Mongolian Economic Corridor. It is an important connecting piece of the Eurasian Continental Bridge and an important part of Northeast Asia. Against the background of the evolution of the geopolitical pattern since the [...] Read more.
The Selenga River basin is an important section of the Sino-Mongolian Economic Corridor. It is an important connecting piece of the Eurasian Continental Bridge and an important part of Northeast Asia. Against the background of the evolution of the geopolitical pattern since the disintegration of the Soviet Union and global warming, based on the land cover data in the Selenga River basin from 1992, 2000, 2009, and 2015, this paper describes the dynamic changes in land use in the basin. Through a logistic model, the driving factors of land cover change were revealed, and the CA-Markov model was used to predict the land cover pattern of 2027. The results showed that (1) from 1992 to 2015, the agricultural population in the Selenga River basin continued to decrease, which led to a reduction in agricultural sown area. The intensification of climate warming and drying had a significant impact on the spatial distribution of crops. Grassland expansion mostly occurred in areas with relatively abundant rainfall, low temperature, and low human activity. (2) The simulation results showed that, according to the current development trend, the construction land area of the Selenga River basin will be slightly expanded in 2027, the area of arable land and grassland will be slightly reduced, and the areas of forest, water/wetland, and bare land will remain stable. In the future, human activities in the basin will increase in the process of the construction of the China-Mongolia-Russia economic corridor. Coupled with global warming, the land/cover of the basin will be affected by both man-made and natural disturbances, and attention should be paid to the possible risk of vegetation degradation. Full article
Show Figures

Figure 1

18 pages, 14558 KB  
Article
Climate Change Attribution in the Lena and Selenga River Runoff: An Evaluation Based on the Earth System and Regional Hydrological Models
by Andrey Kalugin
Water 2022, 14(1), 118; https://doi.org/10.3390/w14010118 - 5 Jan 2022
Cited by 15 | Viewed by 3691
Abstract
The main goal of this study was to obtain the attribution results of a physical assessment of the modern hydrological consequences of separately natural and anthropogenic components of climate change, based on the synthesis of detailed process-based models of river runoff formation and [...] Read more.
The main goal of this study was to obtain the attribution results of a physical assessment of the modern hydrological consequences of separately natural and anthropogenic components of climate change, based on the synthesis of detailed process-based models of river runoff formation and an ensemble of Earth system models (ESMs) within the large river basins in Eastern Siberia. This approach allows calculating the river flow using ESM-based data over the observation period under two scenarios, considering: (1) the anthropogenic impact of increasing greenhouse gas emissions and (2) only internal fluctuations of the climate system and natural external forcing. According to the results of the numerical experiments, the attributions of anthropogenic components of climate change in the dynamics of the Lena runoff are weak, i.e., during the observation period, the Lena River flow statistically significantly increases, but it occurs mainly due to natural climate variability. The changes in the Selenga runoff are intensely influenced by the anthropogenic component of climate change. Since the 1970s, the Selenga runoff increased under natural climatic conditions, but since the mid-1980s, it decreased under anthropogenic greenhouse gas emissions, due to reduced summer precipitation. This was the main reason for the last low-water period of 1996–2017 in the Selenga basin. Full article
Show Figures

Figure 1

23 pages, 5829 KB  
Article
Ecological State of Lake Gusinoe—A Cooling Pond of the Gusinoozersk GRES
by Larisa D. Radnaeva, Tcogto Zh. Bazarzhapov, Valentina G. Shiretorova, Svetlana V. Zhigzhitzhapova, Elena P. Nikitina, Elena P. Dylenova, Galina S. Shirapova, Olga D. Budaeva, Andrey N. Beshentsev, Endon Zh. Garmaev, Ping Wang, Suocheng Dong, Zehong Li and Arnold K. Tulokhonov
Water 2022, 14(1), 4; https://doi.org/10.3390/w14010004 - 21 Dec 2021
Cited by 5 | Viewed by 3585
Abstract
The study of the transformation of substances in the basin of the Selenga River—the main tributary of Lake Baikal—under anthropogenic pressure and in the context of global climate change, is especially important for the lake, a globally important source of drinking water. The [...] Read more.
The study of the transformation of substances in the basin of the Selenga River—the main tributary of Lake Baikal—under anthropogenic pressure and in the context of global climate change, is especially important for the lake, a globally important source of drinking water. The ecosystem of Lake Gusinoe is one of the key objects in the Selenga River basin that is exposed to significant anthropogenic pressure. This study presents the results of an analysis of water level changes and physicochemical parameters of the water mass of Lake Gusinoe; literature data from 1951 to 2017 and own data from 2017 to 2021. The water level in the lake had depended on natural factors before the Gusinoozersk GRES was launched; however, since the plant has begun using the lake as a cooling pond, its level has actually been regulated by the economic entity. Over the years, there has been a significant increase in mineralization, sulfate, sodium, fluoride and organic matter fractions resistant to oxidation. Seasonal increases in iron and manganese concentrations in water were detected. Increased concentrations of nutrients and organic matter fractions resistant to oxidation were registered at the wastewater discharge sites. Heavy metals in the bottom sediments of Lake Gusinoe accumulate mainly in the silt of the deep zone of the lake. Plants growing in the zones of influence of the Gusinoozersk GRES and Gusinoozersk wastewater discharge accumulate the largest amount of metals. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

8 pages, 1788 KB  
Proceeding Paper
Impact of Rossby Waves Breaking on the Heavy Rainfall in the Selenga River Basin in July
by Olga Antokhina, Pavel Antokhin and Gochakov Alexander
Environ. Sci. Proc. 2021, 4(1), 29; https://doi.org/10.3390/ecas2020-08120 - 13 Nov 2020
Cited by 1 | Viewed by 1667
Abstract
The Selenga is one of the crucial transboundary rivers of the semi-arid Northern Eurasia belt. The Selenga basin is located in Mongolia and Russia, and it is 83.4% of the Lake Baikal basin. Atmospheric precipitation is the primary source of the river supply; [...] Read more.
The Selenga is one of the crucial transboundary rivers of the semi-arid Northern Eurasia belt. The Selenga basin is located in Mongolia and Russia, and it is 83.4% of the Lake Baikal basin. Atmospheric precipitation is the primary source of the river supply; most of its amount falls like rain from June to August (about 70% of the annual). In the present paper, the relationship between the heaviest rains (HR) around the Selenga River basin in July (above 90th percentile) and Rossby wave breaking (both cyclonic and anticyclonic type, AWB and CWB) was examined. The total number of HR events from 1982 to 2019 was 83. For each event, the synoptic analysis and automatic detection of breaking based on potential vorticity from 2 to 9 PVU on the 350 K were utilized. In most cases (85%) of HR, events were accompanied to the RWB. It was revealed that waves propagating along the subtropical jet were the most important. Precipitation was observed both for the period of amplitude growth and period of waves breaking (CWB or AWB). CWBs on the subtropical jet stream that occurred east to Lake Baikal were observed in most HR events. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Atmospheric Sciences)
Show Figures

Figure 1

15 pages, 3512 KB  
Article
Intensity Assessment of Erosion-Accumulative Processes in the Selenga Middle Mountains (Case Study of the Gully Network of the Nizhnyaya Bulanka Depression, Western Transbaikalia)
by Bair Z. Tsydypov, Bator V. Sodnomov, Vladimir N. Chernykh, Yury M. Ilyin, Bair O. Gurzhapov, Alexander A. Ayurzhanaev, Maria V. Semenova, Margarita A. Zharnikova, Zhargalma B. Alymbaeva, Eduard A. Batotsyrenov, Fujia Li, Hao Cheng, Tcogto Bazarzhapov, Tamir Boldanov, Suocheng Dong and Endon Zh. Garmaev
Geosciences 2020, 10(10), 387; https://doi.org/10.3390/geosciences10100387 - 28 Sep 2020
Cited by 4 | Viewed by 2663
Abstract
The advantages of a quantitative assessment of the spatial and temporal variability of the boundaries and volumes of ravines using modern means and methods of aerial photography from an unmanned aerial vehicle (UAV) are substantiated, in contrast to traditional survey methods (linear method [...] Read more.
The advantages of a quantitative assessment of the spatial and temporal variability of the boundaries and volumes of ravines using modern means and methods of aerial photography from an unmanned aerial vehicle (UAV) are substantiated, in contrast to traditional survey methods (linear method of benchmarks, tacheometric, aerial and space photography, laser scanning). The erosion zoning and mapping of linear and gully formations on the territory of the Kuitunka, Tarbagataika, and Kunaleika river basins (Selenga middle mountains) are carried out. The reanalysis data were used to assess extreme meteorological events leading to the acceleration of erosion processes. Paleontological material confirms the long duration of erosive-accumulative processes in the Nizhnyaya Bulanka depression. High-accuracy multi-temporal orthophotomaps and digital elevation models of Bulanka gully using unmanned aerial vehicles were produced. The method of quantitative estimation of gully formation rates is offered, which allows estimating with high accuracy the change of area and volume characteristics of erosive forms. Full article
(This article belongs to the Special Issue Geo-Hydrological Risks Management)
Show Figures

Graphical abstract

20 pages, 3970 KB  
Article
River Water Quality of the Selenga-Baikal Basin: Part II—Metal Partitioning under Different Hydroclimatic Conditions
by Nikolay Kasimov, Galina Shinkareva, Mikhail Lychagin, Sergey Chalov, Margarita Pashkina, Josefin Thorslund and Jerker Jarsjö
Water 2020, 12(9), 2392; https://doi.org/10.3390/w12092392 - 26 Aug 2020
Cited by 15 | Viewed by 4674
Abstract
The partitioning of metals and metalloids between their dissolved and suspended forms in river systems largely governs their mobility and bioavailability. However, most of the existing knowledge about catchment-scale metal partitioning in river systems is based on a limited number of observation points, [...] Read more.
The partitioning of metals and metalloids between their dissolved and suspended forms in river systems largely governs their mobility and bioavailability. However, most of the existing knowledge about catchment-scale metal partitioning in river systems is based on a limited number of observation points, which is not sufficient to characterize the complexity of large river systems. Here we present an extensive field-based dataset, composed of multi-year data from over 100 monitoring locations distributed over the large, transboundary Selenga River basin (of Russia and Mongolia), sampled during different hydrological seasons. The aim is to investigate on the basin scale, the influence of different hydroclimatic conditions on metal partitioning and transport. Our results showed that the investigated metals exhibited a wide range of different behaviors. Some metals were mostly found in the dissolved form (84–96% of Mo, U, B, and Sb on an average), whereas many others predominantly existed in suspension (66–87% of Al, Fe, Mn, Pb, Co, and Bi). Nevertheless, our results also showed a consistently increasing share of metals in dissolved form as the metals were transported to the downstream parts of the basin, closer to the Lake Baikal. Under high discharge conditions (including floods), metal transport by suspended particulate matter was significantly greater (about 2–6 times). However, since high and low water conditions could prevail simultaneously at a given point of time within the large river basin, e.g., as a result of on-going flood propagation, snap-shot observations of metal partitioning demonstrated contrasting patterns with domination of both particulate and dissolved phases in different parts of the basin. Such heterogeneity of metal partitioning is likely to be found in many large river systems. These results point out the importance of looking into different hydroclimatic conditions across space and time, both for management purposes and contaminant modeling efforts at the basin scale. Full article
Show Figures

Figure 1

25 pages, 4896 KB  
Article
River Water Quality of the Selenga-Baikal Basin: Part I—Spatio-Temporal Patterns of Dissolved and Suspended Metals
by Nikolay Kasimov, Galina Shinkareva, Mikhail Lychagin, Natalia Kosheleva, Sergey Chalov, Margarita Pashkina, Josefin Thorslund and Jerker Jarsjö
Water 2020, 12(8), 2137; https://doi.org/10.3390/w12082137 - 28 Jul 2020
Cited by 23 | Viewed by 6477
Abstract
Lake Baikal is the largest freshwater body on Earth, once famous for its pristine conditions. However, the lake and its drainage basin with their unique ecosystems have in recent decades been subject to both climate warming above the world average and severe anthropogenic [...] Read more.
Lake Baikal is the largest freshwater body on Earth, once famous for its pristine conditions. However, the lake and its drainage basin with their unique ecosystems have in recent decades been subject to both climate warming above the world average and severe anthropogenic pressures from mining and agriculture. Although previous studies have targeted various hydroclimatic, geochemical, and biological conditions of the Lake Baikal basin, the heterogeneous nature and large size of the basin leave considerable knowledge gaps regarding ongoing metal contamination of the basin’s suspended sediments and waters. To address these knowledge gaps, the main objectives of this study are to (i) determine regional background values for water and suspended sediment quality with respect to multiple metals (representing undisturbed conditions) and (ii) further evaluate spatio-temporal concentration patterns of these metals, including regions with heavy anthropogenic impacts. We synthesize data from extensive field measurements within the Selenga River basin performed between 2011 and 2016, covering over 100 sampling locations. Results show that although the background metal concentrations (of both dissolved and suspended metal forms) in the alkaline Selenga River waters were close to the world averages, metal concentrations of up to two orders of magnitude above the background values were seen for Zn, As, Cd, Cu, Mo, and Pb in regions subject to anthropogenic impacts (cities and the mining industry). Specifically, dissolved As levels within the Selenga River basin were 2–5 times higher than the world average and well above the global guideline value in several regions. Notable hotspots for anthropogenic impacts of Cd were particularly found in Zakamensk and Ulaanbaatar. Our results highlight clear anthropogenic impacts and large-scale spreading of several pollutants of concern, with risks even to downstream parts including the Selenga delta and Lake Baikal. We expect that these results will aid in increasing the understanding of large-scale metal transport processes, as well as for designing relevant measures to mitigate further spreading of metals to Lake Baikal. Full article
Show Figures

Figure 1

29 pages, 12283 KB  
Article
The Functioning of Erosion-channel Systems of the River Basins of the South of Eastern Siberia
by Olga I. Bazhenova, Aleksandr V. Bardash, Stanislav A. Makarov, Marina Yu. Opekunova, Sergei A. Tukhta and Elizaveta M. Tyumentseva
Geosciences 2020, 10(5), 176; https://doi.org/10.3390/geosciences10050176 - 11 May 2020
Cited by 4 | Viewed by 4075
Abstract
We revealed the regional features of the functioning of the erosion-channel systems of the Angara, Upper Lena, Selenga, and Upper Amur basins in the south of Eastern Siberia and examined the action of sloping non-channel, temporary, and permanent channel water flows, and presented [...] Read more.
We revealed the regional features of the functioning of the erosion-channel systems of the Angara, Upper Lena, Selenga, and Upper Amur basins in the south of Eastern Siberia and examined the action of sloping non-channel, temporary, and permanent channel water flows, and presented the patterns of the spatial distribution of soil and gully erosion belts. The development conditions and factors of fluvial processes are considered and the role of cryogenic processes in the increasing activity of water flows is emphasized. The interdecadal dynamic cycles of the erosion-accumulative processes are revealed. A quantitative assessment of soil loss from erosion on agricultural land in the forest-steppe basins was carried out. We made an assessment of the plane deformation of the upper course of the Lena river (Siberian platform) and Irkut (Baikal rift zone and the Irkutsk-Cheremkhovo plain) using cartographic sources of different times, aerial photographs, and satellite imagery. The contribution of extreme fluvial events to sediment redistribution in river basins is shown. Particular attention is paid to the mudflow impact, floods, and channel deformations on the ecological state of the basin systems. Full article
(This article belongs to the Special Issue Geography and Geoecology of Rivers and River Basins)
Show Figures

Figure 1

20 pages, 4996 KB  
Article
The Linkage of the Precipitation in the Selenga River Basin to Midsummer Atmospheric Blocking
by Olga Yu. Antokhina, Pavel N. Antokhin, Yuliya V. Martynova and Vladimir I. Mordvinov
Atmosphere 2019, 10(6), 343; https://doi.org/10.3390/atmos10060343 - 24 Jun 2019
Cited by 8 | Viewed by 4155
Abstract
The linkage between atmospheric blocking (blocking frequency, BF) and total monthly July precipitation in the Selenga River Basin, the main tributary of Lake Baikal, for the period 1979–2016 was investigated. Based on empirical orthogonal functions (EOF) analysis, two dominant modes of precipitation over [...] Read more.
The linkage between atmospheric blocking (blocking frequency, BF) and total monthly July precipitation in the Selenga River Basin, the main tributary of Lake Baikal, for the period 1979–2016 was investigated. Based on empirical orthogonal functions (EOF) analysis, two dominant modes of precipitation over the Selenga River Basin were extracted. The first EOF mode (EOF 1) is related to precipitation fluctuations mainly in the Mongolian part of Selenga; the second EOF mode (EOF 2)—in the Russian part of Selenga. Based on two different modes obtained, the total amount of precipitation individually for the Russian and Mongolian part of Selenga was calculated. Correlation analysis has demonstrated that precipitation over the Mongolian part of the Selenga Basin is positively correlated to blocking over Eastern Siberia/Mongolia (80–120° E, ESM-BF). Precipitation over the Russian part of the Selenga Basin is positively correlated to blocking over the Urals-Western Siberia (50–80° E, UWS-BF) and European blocking (0–50° E, E-BF). However, the linkage is not stable, and after the mid-1990s, the obtained positive correlation became insignificant. The analysis has shown that the dominance of E or ESM-blocking in July was the primary driver of the existence of two precipitation modes over the Selenga River Basin. During 1996–2016, the negative trend of time coefficients of EOF 1 and 2 for precipitation in Selenga had been observed, which was characterized by displacement of positive precipitation anomalies outside the basin. At the same time, there was a weakening of the linkage between precipitation in the Selenga Basin and blocking frequency. We have revealed two wave-like modes over Northern Eurasia and the subtropical part of Eurasia corresponding to E, ESM-blocks in 1979–1995 and 1996–2016. The change of the Northern and subtropical wave modes is one of the causes for the weakening of the linkage between atmospheric blocking and precipitation in the Selenga Basin and as a consequence decreased precipitation in the Russian and Mongolian part of Selenga during 1979–2016. Full article
(This article belongs to the Special Issue Atmospheric and Ocean Optics: Atmospheric Physics)
Show Figures

Figure 1

17 pages, 2520 KB  
Article
Contrasting Changes in Vegetation Growth due to Different Climate Forcings over the Last Three Decades in the Selenga-Baikal Basin
by Guan Wang, Ping Wang, Tian-Ye Wang, Yi-Chi Zhang, Jing-Jie Yu, Ning Ma, Natalia L. Frolova and Chang-Ming Liu
Remote Sens. 2019, 11(4), 426; https://doi.org/10.3390/rs11040426 - 19 Feb 2019
Cited by 15 | Viewed by 4184
Abstract
The Selenga-Baikal Basin, a transboundary river basin between Mongolia and Russia, warmed at nearly twice the global rate and experienced enhanced human activities in recent decades. To understand the vegetation response to climate change, the dynamic spatial-temporal characteristics of the vegetation and the [...] Read more.
The Selenga-Baikal Basin, a transboundary river basin between Mongolia and Russia, warmed at nearly twice the global rate and experienced enhanced human activities in recent decades. To understand the vegetation response to climate change, the dynamic spatial-temporal characteristics of the vegetation and the relationships between the vegetation dynamics and climate variability in the Selenga-Baikal Basin were investigated using the Normalized Difference Vegetation Index (NDVI) and gridded temperature and precipitation data for the period of 1982 to 2015. Our results indicated that precipitation played a key role in vegetation growth across regions that presented multiyear mean annual precipitation lower than 350 mm, although its importance became less apparent over regions with precipitation exceeding 350 mm. Because of the overall temperature-limited conditions, temperature had a more substantial impact on vegetation growth than precipitation. Generally, an increasing trend was observed in the growth of forest vegetation, which is heavily dependent on temperature, whereas a decreasing trend was detected for grassland, for which the predominant growth-limiting factor is precipitation. Additionally, human activities, such as urbanization, mining, increased wildfires, illegal logging, and livestock overgrazing are important factors driving vegetation change. Full article
Show Figures

Graphical abstract

Back to TopTop