Landscape Ecological Risk Assessment and Analysis of Influencing Factors in Selenga River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Methods
2.2.1. Land Use Data
2.2.2. PLUS Model
2.2.3. Accuracy Verification
2.2.4. Construction of the Landscape Ecological Risk Model
2.2.5. Land Use Dynamics Degree
2.2.6. Spatial Correlation Analysis
2.2.7. Partial Correlation Analysis
3. Results
3.1. Analysis of Land Use Change in the Selenga River Basin
3.1.1. Spatial Change of Land Use
3.1.2. Temporal Change Characteristics of Land Use
3.2. Landscape Ecological Risk Assessment
3.2.1. Characteristics of Temporal Evolution of Landscape Ecological Risk
3.2.2. Analysis of Landscape Ecological Risk Spatial Evolution Characteristics
3.3. Analysis of the Evolution Trend of Landscape Ecological Risk
3.4. Analysis of Influencing Factors
4. Discussion
4.1. Spatio-Temporal Changes in Land Use
4.2. Landscape Ecological Risk Simulation and Analysis of Influencing Factors
4.2.1. Spatio-Temporal Distribution Characteristics of Ecological Risk
4.2.2. Evaluation and Driving Factors of Ecological Risk Regionalization
4.3. Suggestions to Improve the Ecological Conditions of Selenga River Basin
4.4. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radnaeva, L.D.; Bazarzhapov, T.Z.; Shiretorova, V.G.; Zhigzhitzhapova, S.V.; Nikitina, E.P.; Dylenova, E.P.; Shirapova, G.S.; Budaeva, O.D.; Beshentsev, A.N.; Garmaev, E.Z.; et al. Ecological state of lake Gusinoe—A cooling pond of the Gusinoozersk GRES. Water 2022, 14, 4. [Google Scholar] [CrossRef]
- Gao, L.; Tao, F.; Liu, R.; Wang, Z.; Leng, H.; Zhou, T. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: A case study of Nanjing. Sustain. Cities Soc. 2022, 85, 104055. [Google Scholar] [CrossRef]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chang, W.J.; Zhu, Z.C.; Hui, Z. Landscape ecological risk assessment of Chinese coastal cities based on land use change. Appl. Geogr. 2020, 117, 102174. [Google Scholar] [CrossRef]
- Nasiakou, S.; Vrahnakis, M.; Chouvardas, D.; Mamanis, G.; Kleftoyanni, V. Land use changes for investments in Silvoarable agriculture projected by the CLUE-S Spatio-temporal model. Land 2022, 11, 598. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Gao, Y. Multi-Scenario Simulation of Green Space Landscape Pattern in Harbin City Based on FLUS Model. Int. J. Environ. Res. Public Health 2023, 20, 4286. [Google Scholar] [CrossRef]
- Ku, C.-A. Incorporating spatial regression model into cellular automata for simulating land use change. Appl. Geogr. 2016, 69, 1–9. [Google Scholar] [CrossRef]
- Pinto, N.; Antunes, A.P.; Roca, J. Applicability and calibration of an irregular cellular automata model for land use change. Comput. Environ. Urban Syst. 2017, 65, 93–102. [Google Scholar] [CrossRef]
- Zhai, Y.; Yao, Y.; Guan, Q.; Liang, X.; Li, X.; Pan, Y.; Yue, H.; Yuan, Z.; Zhou, J. Simulating urban land use change by integrating a convolutional neural network with vector-based cellular automata. Int. J. Geogr. Inf. Sci. 2020, 34, 1475–1499. [Google Scholar] [CrossRef]
- Lin, J.; Li, X.; Wen, Y.; He, P. Modeling urban land-use changes using a landscape-driven patch-based cellular automaton (LP-CA). Cities 2023, 132, 103906. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2020, 85, 101569. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S.A. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Skaare, J.U.; Larsen, H.J.; Lie, E.; Bernhoft, A.; E Derocher, A.; Norstrom, R.; Ropstad, E.; Lunn, N.F.; Wiig, Ø. Ecological risk assessment of persistent organic pollutants in the arctic. Toxicology 2002, 181–182, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhao, S.; Nan, Z.; Wu, X.; Sun, X.; Cheng, G. An effective approach for mapping permafrost in a large area using subregion maps and satellite data. Permafr. Periglac. Process. 2020, 31, 548–560. [Google Scholar] [CrossRef]
- Huang, F.; Ochoa, C.G.; Jarvis, W.T.; Zhong, R.; Guo, L. Evolution of landscape pattern and the association with ecosystem services in the Ili-Balkhash Basin. Environ. Monit. Assess. 2022, 194, 171. [Google Scholar] [CrossRef] [PubMed]
- McEachran, Z.P.; Slesak, R.A.; Karwan, D.L. From skid trails to landscapes: Vegetation is the dominant factor influencing erosion after forest harvest in a low relief glaciated landscape. For. Ecol. Manag. 2018, 430, 299–311. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Zhao, C.; Chang, Y.; Liu, Y.; Zang, F. Spatial-temporal pattern analysis of landscape ecological risk assessment based on land use/land cover change in Baishuijiang National nature reserve in Gansu Province, China. Ecol. Indic. 2021, 124, 107454. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, Q.; Cheng, D.; Xu, C.; Chang, Y.; Lin, Y.; Li, B. Landscape ecological risk projection based on the PLUS model under the localized shared socioeconomic pathways in the Fujian Delta region. Ecol. Indic. 2022, 136, 108642. [Google Scholar] [CrossRef]
- Yang, R.; Bai, Z.; Pan, J.; Zhang, J.; Liu, X. Ecological risk analysis of countries along the belt and road based on LUCC: Taking Kuwait as a typical case. Acta Ecol. Sin. 2021, 42, 171–179. [Google Scholar] [CrossRef]
- Gao, B.; Wu, Y.; Li, C.; Zheng, K.; Wu, Y.; Wang, M.; Fan, X.; Ou, S. Multi-scenario prediction of landscape ecological risk in the Sichuan-Yunnan ecological barrier based on terrain gradients. Land 2022, 11, 2079. [Google Scholar] [CrossRef]
- Ren, Y.; Li, Z.; Li, J.; Ding, Y.; Miao, X. Analysis of Land Use/Cover Change and Driving Forces in the Selenga River Basin. Sensors 2022, 22, 1041. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Yasunari, T.; Ohata, T.; Natsagdorj, L.; Davaa, G.; Oyunbaatar, D. Hydrological regime analysis of the Selenge River basin, Mongolia. Hydrol. Process. 2003, 17, 2929–2945. [Google Scholar] [CrossRef]
- Zorigt, M.; Battulga, G.; Sarantuya, G.; Kenner, S.; Soninkhishig, N.; Hauck, M. Runoff dynamics of the upper Selenge basin, a major water source for Lake Baikal, under a warming climate. Reg. Environ. Chang. 2019, 19, 2609–2619. [Google Scholar] [CrossRef]
- Kasimov, N.; Karthe, D.; Chalov, S. Environmental change in the Selenga River—Lake Baikal Basin. Reg. Environ. Chang. 2017, 17, 1945–1949. [Google Scholar] [CrossRef]
- Hao, J.; Lin, Q.; Wu, T.; Chen, J.; Li, W.; Wu, X.; Hu, G.; La, Y. Spatial–temporal and driving factors of land use/cover change in Mongolia from 1990 to 2021. Remote Sens. 2023, 15, 1813. [Google Scholar] [CrossRef]
- Pande, C.B.; Moharir, K.N.; Khadri, S.F.R.; Patil, S. Study of land use classification in an arid region using multispectral satellite images. Appl. Water Sci. 2018, 8, 123. [Google Scholar] [CrossRef]
- Yu, M.; Li, Y.; Luo, G.; Yu, L.; Chen, M. Agroecosystem composition and landscape ecological risk evolution of rice terraces in the southern mountains, China. Ecol. Indic. 2022, 145, 109625. [Google Scholar] [CrossRef]
- Karimian, H.; Zou, W.; Chen, Y.; Xia, J.; Wang, Z. Landscape ecological risk assessment and driving factor analysis in Dongjiang river watershed. Chemosphere 2022, 307, 135835. [Google Scholar] [CrossRef]
- Fan, J.; Wang, Y.; Zhou, Z.; You, N.; Meng, J. Dynamic ecological risk assessment and management of land use in the middle reaches of the Heihe river based on landscape patterns and spatial statistics. Sustainability 2016, 8, 536. [Google Scholar] [CrossRef]
- Tian, P.; Li, J.; Gong, H.; Pu, R.; Cao, L.; Shao, S.; Shi, Z.; Feng, X.; Wang, L.; Liu, R. Research on land use changes and ecological risk assessment in Yongjiang river basin in Zhejiang Province, China. Sustainability 2019, 11, 2817. [Google Scholar] [CrossRef]
- Qian, Y.; Dong, Z.; Yan, Y.; Tang, L. Ecological risk assessment models for simulating impacts of land use and landscape pattern on ecosystem services. Sci. Total. Environ. 2022, 833, 155218. [Google Scholar] [CrossRef] [PubMed]
- Omar, H.; Cabral, P. Ecological Risk Assessment Based on Land Cover Changes: A Case of Zanzibar (Tanzania). Remote Sens. 2020, 12, 3114. [Google Scholar] [CrossRef]
- Pontius, R.G.; Huang, J.; Jiang, W.; Khallaghi, S.; Lin, Y.; Liu, J.; Quan, B.; Ye, S. Rules to write mathematics to clarify metrics such as the land use dynamic degrees. Landsc. Ecol. 2017, 32, 2249–2260. [Google Scholar] [CrossRef]
- Qiao, F.; Bai, Y.; Xie, L.; Yang, X.; Sun, S. Spatio-temporal characteristics of landscape ecological risks in the ecological functional zone of the Upper Yellow River, China. Int. J. Environ. Res. Public Health 2021, 18, 12943. [Google Scholar] [CrossRef]
- Xue, L.; Zhu, B.; Wu, Y.; Wei, G.; Liao, S.; Yang, C.; Wang, J.; Zhang, H.; Ren, L.; Han, Q. Dynamic projection of ecological risk in the Manas River basin based on terrain gradients. Sci. Total Environ. 2018, 653, 283–293. [Google Scholar] [CrossRef]
- Jaya, I.G.N.M.; Andriyana, Y.; Tantular, B.; Zulhanif; Ruchjana, B. Spatiotemporal dengue disease clustering by means local spatiotemporal Moran’s index. IOP Conf. Ser. Mater. Sci. Eng. 2019, 621, 012017. [Google Scholar] [CrossRef]
- Wang, S.; Li, R.; Wu, Y.; Zhao, S. Vegetation dynamics and their response to hydrothermal conditions in Inner Mongolia, China. Glob. Ecol. Conserv. 2022, 34, e02034. [Google Scholar] [CrossRef]
- Priess, J.A.; Schweitzer, C.; Wimmer, F.; Batkhishig, O.; Mimler, M. The consequences of land-use change and water demands in Central Mongolia. Land Use Policy 2011, 28, 4–10. [Google Scholar] [CrossRef]
- Pang, G.; Wang, X.; Yang, M. Using the NDVI to identify variations in, and responses of, vegetation to climate change on the Tibetan Plateau from 1982 to 2012. Quat. Int. 2017, 444, 87–96. [Google Scholar] [CrossRef]
- Minderlein, S.; Menzel, L. Evapotranspiration and energy balance dynamics of a semi-arid mountainous steppe and shrubland site in Northern Mongolia. Environ. Earth Sci. 2015, 73, 593–609. [Google Scholar] [CrossRef]
- Martins, C.C.; Adams, J.K.; Yang, H.; Shchetnikov, A.A.; Di Domenico, M.; Rose, N.L.; Mackay, A.W. Earthquake, floods and changing land use history: A 200-year overview of environmental changes in Selenga River basin as indicated by n-alkanes and related proxies in sediments from shallow lakes. Sci. Total Environ. 2023, 873, 162245. [Google Scholar] [CrossRef] [PubMed]
- Goncharov, A.V.; Baturina, N.S.; Maryinsky, V.V.; Kaus, A.K.; Chalov, S.R. Ecological assessment of the Selenga River basin, the main tributary of Lake Baikal, using aquatic macroinvertebrate communities as bioindicators. J. Great Lakes Res. 2020, 46, 53–61. [Google Scholar] [CrossRef]
- Meng, X.; Gao, X.; Li, S.; Li, S.; Lei, J. Monitoring desertification in Mongolia based on Landsat images and Google Earth Engine from 1990 to 2020. Ecol. Indic. 2021, 129, 107908. [Google Scholar] [CrossRef]
- Yekimovskaya, O.A.; Lopatina, D.N. The features of development of agricultural land use in the Republic of Buryatia and Mongolia (the Selenga River basin). IOP Conf. Ser. Earth Environ. Sci. 2019, 320, 012007. [Google Scholar] [CrossRef]
- Bazarzhapov, T.Z.; Shiretorova, V.G.; Radnaeva, L.D.; Suocheng, D.; Tulokhonov, A.K. Chemical composition of surface water in the main tributaries of Lake Baikal—The Selenga and the Barguzin Rivers. IOP Conf. Ser. Earth Environ. Sci. 2019, 320, 012020. [Google Scholar] [CrossRef]
- Wei, H.; Wang, J.; Han, B. Desertification information extraction along the China–Mongolia railway supported by multisource feature space and geographical zoning modeling. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 392–402. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.; Kinnucan, H.; Chen, J. Bound to Ulaanbaatar in Mongolia. Eurasian Geogr. Econ. 2022, 64, 460–483. [Google Scholar] [CrossRef]
- Dong, S.; Zheng, J.; Li, Y.; Li, Z.; Li, F.; Jin, L.; Yang, Y.; Bilgaev, A. Quantitative Analysis of the Coupling Coordination Degree Between Urbanization and Eco-environment in Mongolia. Chin. Geogr. Sci. 2019, 29, 861–871. [Google Scholar] [CrossRef]
- Ren, Y.; Li, Z.; Li, J.; Dashtseren, A.; Li, Y.; Altanbagana, M. Comparative analysis of driving forces of land use/cover change in the upper, middle and lower reaches of the Selenga River Basin. Land Use Policy 2022, 117, 106118. [Google Scholar] [CrossRef]
- Ju, H.; Niu, C.; Zhang, S.; Jiang, W.; Zhang, Z.; Zhang, X.; Yang, Z.; Cui, Y. Spatiotemporal patterns and modifiable areal unit problems of the landscape ecological risk in coastal areas: A case study of the Shandong Peninsula, China. J. Clean. Prod. 2021, 310, 127522. [Google Scholar] [CrossRef]
- Swadling, D.S.; West, G.J.; Gibson, P.T.; Laird, R.J.; Glasby, T.M. Don’t go breaking apart: Anthropogenic disturbances predict meadow fragmentation of an endangered seagrass. Aquat. Conserv. Mar. Freshw. Ecosyst. 2023, 33, 56–69. [Google Scholar] [CrossRef]
- Ekimovskaya, O.A.; Belozertseva, I.A.; Amgalan, S.E.; Badmaev, N.B. Economic-geographical characteristics of agricultural land use within the Selenga river basin. IOP Conf. Ser. Earth Environ. Sci. 2018, 190, 012019. [Google Scholar] [CrossRef]
- Fraver, S.; Brokaw, N.V.L.; Smith, A.P. Delimiting the gap phase in the growth cycle of a Panamanian forest. J. Trop. Ecol. 1998, 14, 673–681. [Google Scholar] [CrossRef]
- Duan, S.; He, H.S.; Spetich, M. Effects of growing-season drought on phenology and productivity in the west region of central hardwood forests, USA. Forests 2018, 9, 377. [Google Scholar] [CrossRef]
- Fernández-Giménez, M.E.; Venable, N.H.; Angerer, J.; Fassnacht, S.R.; Reid, R.S.; Khishigbayar, J. Exploring linked ecological and cultural tipping points in Mongolia. Anthropocene 2017, 17, 46–69. [Google Scholar] [CrossRef]
- Lin, J.; Lin, M.; Chen, W.; Zhang, A.; Qi, X.; Hou, H. Ecological risks of geological disasters and the patterns of the urban agglomeration in the Fujian Delta region. Ecol. Indic. 2021, 125, 107475. [Google Scholar] [CrossRef]
- Garmaev, E.Z.; P’yankov, S.V.; Shikhov, A.N.; Ayurzhanaev, A.A.; Sodnomov, B.V.; Abdullin, R.K.; Tsydypov, B.Z.; Andreev, S.G.; Chernykh, V.N. Mapping modern climate change in the Selenga river basin. Russ. Meteorol. Hydrol. 2022, 47, 113–122. [Google Scholar] [CrossRef]
- Zhu, Z.; Mei, Z.; Xu, X.; Feng, Y.; Ren, G. Landscape ecological risk assessment based on land use change in the Yellow River basin of Shaanxi, China. Int. J. Environ. Res. Public Health 2022, 19, 9547. [Google Scholar] [CrossRef]
- Xu, S.; Wang, J.; Altansukh, O.; Chuluun, T. Spatial-temporal pattern of desertification in the Selenge River Basin of Mongolia from 1990 to 2020. Front. Environ. Sci. 2023, 11, 1125583. [Google Scholar] [CrossRef]
- Jiang, L.; Jiapaer, G.; Bao, A.; Kurban, A.; Guo, H.; Zheng, G.; De Maeyer, P. Monitoring the long-term desertification process and assessing the relative roles of its drivers in Central Asia. Ecol. Indic. 2019, 104, 195–208. [Google Scholar] [CrossRef]
- Hu, Y.; Han, Y.; Zhang, Y. Land desertification and its influencing factors in Kazakhstan. J. Arid Environ. 2020, 180, 104203. [Google Scholar] [CrossRef]
- Guo, X.; Chen, R.; Thomas, D.S.; Li, Q.; Xia, Z.; Pan, Z. Divergent processes and trends of desertification in Inner Mongolia and Mongolia. Land Degrad. Dev. 2020, 32, 3684–3697. [Google Scholar] [CrossRef]
- Li, X.; Yang, L. Accelerated Restoration of Vegetation in Wuwei in the Arid Region of Northwestern China since 2000 Driven by the Interaction between Climate and Human Beings. Remote Sens. 2023, 15, 2675. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Enebish, B.; Dashkhuu, D.; Renchin, M.; Russell, M.; Singh, P. Impact of Climate on the NDVI of Northern Mongolia. J. Indian Soc. Remote Sens. 2019, 48, 333–340. [Google Scholar] [CrossRef]
- Molinos, J.G.; Takao, S.; Kumagai, N.H.; Poloczanska, E.S.; Burrows, M.T.; Fujii, M.; Yamano, H. Improving the interpretability of climate landscape metrics: An ecological risk analysis of Japan’s Marine Protected Areas. Glob. Chang. Biol. 2017, 23, 4440–4452. [Google Scholar] [CrossRef]
Data Types | Time | Data Source | Data Address | |
---|---|---|---|---|
Driving factors | DEM | 2000 | NASA | https://srtm.csi.cgiar.org |
NDVI | 1990–2020 | NOAA | https://www.noaa.gov/ | |
EVI | 1990–2020 | NOAA | https://www.noaa.gov/ | |
Road, Railroad | 1990–2021 | GRIP global roads | https://download.geofabrik.de/index.html | |
Influencing factors | Temperature | 1990–2021 | CRU | https://crudata.uea.ac.uk |
Precipitation | 1990–2021 | CRU | https://crudata.uea.ac.uk |
Land Use Type | Area/km2 | |||||
---|---|---|---|---|---|---|
1990 | 2000 | 2010 | 2020 | 2030 | 2040 | |
Cropland | 7710 | 8005 | 7758 | 8729 | 9400 | 10065 |
Forest | 77,357 | 72,882 | 79,202 | 86,096 | 86,320 | 86,546 |
Built area | 212 | 245 | 402 | 724 | 1079 | 1396 |
Water | 4649 | 4687 | 3957 | 4478 | 4880 | 5562 |
Barren | 4472 | 4435 | 6707 | 7419 | 7395 | 7373 |
Grassland | 220,601 | 224,770 | 214,670 | 204,538 | 202,498 | 200,530 |
Year | Model | Nugget Value | Sill Values | Block Base Ratio | Range |
---|---|---|---|---|---|
1990 | Gaussian Model | 0.009460 | 0.012340 | 0.76661 | 168,932 |
2000 | Gaussian Model | 0.009394 | 0.014640 | 0.64167 | 220,984 |
2010 | Gaussian Model | 0.008884 | 0.012260 | 0.72463 | 166,216 |
2020 | Exponential Model | 0.012148 | 0.014340 | 0.84714 | 193,716 |
2030 | Gaussian Model | 0.013505 | 0.016000 | 0.84406 | 345,408 |
2040 | Exponential Model | 0.013807 | 0.016360 | 0.84395 | 215,776 |
Year | Ecological Risk Area Percentage (%) | LER Value | ||||||
---|---|---|---|---|---|---|---|---|
Low Risk | Relatively Low Risk | Medium Risk | Relatively High Risk | High Risk | Max | Mean | Min | |
1990 | 2.31 | 19.32 | 41.24 | 28.42 | 8.71 | 0.153 | 0.081 | 0 |
2000 | 2.19 | 20.63 | 38.49 | 30.08 | 8.61 | 0.146 | 0.081 | 0 |
2010 | 2.18 | 18.53 | 40.13 | 26.94 | 12.22 | 0.147 | 0.085 | 0 |
2020 | 4.06 | 29.50 | 33.97 | 23.79 | 8.68 | 0.161 | 0.078 | 0 |
2030 | 4.45 | 27.92 | 32.64 | 23.84 | 11.16 | 0.163 | 0.079 | 0 |
2040 | 4.54 | 27.77 | 31.91 | 24.78 | 11.00 | 0.162 | 0.079 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Lin, Q.; Hao, J.; Wu, X.; Zhou, Z.; Lou, P.; Liu, Y. Landscape Ecological Risk Assessment and Analysis of Influencing Factors in Selenga River Basin. Remote Sens. 2023, 15, 4262. https://doi.org/10.3390/rs15174262
Li W, Lin Q, Hao J, Wu X, Zhou Z, Lou P, Liu Y. Landscape Ecological Risk Assessment and Analysis of Influencing Factors in Selenga River Basin. Remote Sensing. 2023; 15(17):4262. https://doi.org/10.3390/rs15174262
Chicago/Turabian StyleLi, Wangping, Qingrun Lin, Junming Hao, Xiaodong Wu, Zhaoye Zhou, Peiqing Lou, and Yadong Liu. 2023. "Landscape Ecological Risk Assessment and Analysis of Influencing Factors in Selenga River Basin" Remote Sensing 15, no. 17: 4262. https://doi.org/10.3390/rs15174262
APA StyleLi, W., Lin, Q., Hao, J., Wu, X., Zhou, Z., Lou, P., & Liu, Y. (2023). Landscape Ecological Risk Assessment and Analysis of Influencing Factors in Selenga River Basin. Remote Sensing, 15(17), 4262. https://doi.org/10.3390/rs15174262