Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = Se-Te@Au

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6397 KB  
Article
Pyrite Trace-Element Signatures of Porphyry-Epithermal Systems in Xizang: Implications for Metallogenic Discrimination and Hydrothermal Evolution
by Hongzhong Guan, Jiancuo Luosang, Lutong Gao and Fuwei Xie
Minerals 2025, 15(11), 1113; https://doi.org/10.3390/min15111113 - 26 Oct 2025
Viewed by 333
Abstract
The Zhunuo porphyry Cu deposit (2.9 Mt Cu @ 0.48%) in the Gangdese belt, southern Xizang, represents a key Miocene post-collisional system. This study integrates textural, major-, and trace-element analyses of pyrite from distinct alteration zones to unravel its hydrothermal evolution and metal [...] Read more.
The Zhunuo porphyry Cu deposit (2.9 Mt Cu @ 0.48%) in the Gangdese belt, southern Xizang, represents a key Miocene post-collisional system. This study integrates textural, major-, and trace-element analyses of pyrite from distinct alteration zones to unravel its hydrothermal evolution and metal precipitation mechanisms. Our study identifies four distinct pyrite types (Py1-Py4) that record sequential hydrothermal stages: main-stage Py2-Py3 formed at 354 ± 48 to 372 ± 43 °C (based on Se thermometry), corresponding to A and B vein formation, respectively, and late-stage Py4 crystallized at 231 ± 30 °C, coinciding with D-vein development. LA-ICP-MS data revealed pyrite contains diverse trace elements with concentrations mostly below 1000 ppm, showing distinct distribution patterns among different pyrite types (Py1-Py4). Elemental correlations revealed coupled behaviors (e.g., Au-As, Zn-Cd positive correlations; Mo-Sc negative correlation). Tellurium variability (7–82 ppm) records dynamic fO2 fluctuations during system cooling. A comparative analysis of pyrite from the regional deposits (Xiongcun, Tiegelongnan, Bada, and Xiquheqiao) highlighted discriminative geochemical signatures: Zhunuo pyrite was enriched in Co-Bi-Ag-Pb (galena inclusions); Tiegelongnan exhibited the highest Cu but low Au-As; Xiquheqiao had the highest Au-As coupling; and Bada showed epithermal-type As enrichment. Partial Least Squares Discriminant Analysis (PLS-DA) identified Cu, As, and Bi as key discriminators for deposit types (VIP > 0.8), with post-collisional systems (Zhunuo and Xiquheqiao) showing intermediate Cu-Bi and elevated As versus arc-related deposits. This study establishes pyrite trace-element proxies (e.g., Se/Te, Co/Ni, and As-Bi-Pb) for reconstructing hydrothermal fluid evolution and proposes mineral-chemical indicators (Cu-As-Bi) to distinguish porphyry-epithermal systems in the Qinghai-Tibet Plateau. The results underscore pyrite’s utility in decoding metallogenic processes and exploration targeting in collisional settings. Full article
Show Figures

Figure 1

17 pages, 1411 KB  
Article
Mineral Composition of Chelidonium majus L. and Soils in Urban Areas
by Oimahmad Rahmonov, Dorota Środek, Sławomir Pytel, Teobald Kupka and Natalina Makieieva
Appl. Sci. 2025, 15(9), 4718; https://doi.org/10.3390/app15094718 - 24 Apr 2025
Cited by 2 | Viewed by 1446
Abstract
Chelidonium majus L. is a species with a wide medicinal use, commonly found in anthropogenically degraded habitats, forest edges, and urban parks. This study aimed to determine the chemical composition of the leaves, stems, and roots of Ch. majus and the soil in [...] Read more.
Chelidonium majus L. is a species with a wide medicinal use, commonly found in anthropogenically degraded habitats, forest edges, and urban parks. This study aimed to determine the chemical composition of the leaves, stems, and roots of Ch. majus and the soil in its rhizosphere in terms of the content of the main elements (Fe, Ca, P, Mg, Al, Na, K, S), trace elements and rare earth minerals (Ti, Mo, Ag, U, Au, Th, Sb, Bi, V, La, B, W, Sc, Tl, Se, Te, Ga, Cs, Ge, Hf, Nb, Rb, Sn, Ta, Zr, Y, Ce, In, Be, and Li), and their comparison in the parts analyzed. The study was conducted in five urban parks in southern Poland in a historically industrialized area. The results showed that Ca has the highest content among the macroelements. Its leaf content ranges from 24,700 to 40,700 mg·kg−1, while in soil, it ranges from 6500 to 15,000 mg·kg−1. In leaves, low values of Al (100–500 mg·kg−1) and Na (100 mg·kg−1) were found in comparison to the other elements tested, while high values of Al (5100–9800 mg·kg−1) were found in soils. Among the macroelements in the Ch. majus stems, K showed the highest concentration (>100,000 mg·kg−1), while the Ca content was 3–4 times lower in the stems than in the leaves. Rhizomes of Ch. majus accumulate the most K and Ca, in the range of 22,800–29,900 mg·kg−1 and 5400–8900 mg·kg−1, respectively. Fe and Al in all locations have higher values in the soil than in the tissues. In turn, the content of Ca, P, Mg, K, and S is higher in plants than in the soil. Determining the elemental content of medicinal plants is important information, as the plant draws these elements from the soil, and, at higher levels of toxicity, it may indicate that the plant should not be taken from this habitat for medicinal purposes. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

51 pages, 28157 KB  
Article
Alteration Lithogeochemistry of an Archean Porphyry-Type Au(-Cu) Setting: The World-Class Côté Gold Deposit, Canada
by Laura R. Katz, Daniel J. Kontak and Benoit Dubé
Minerals 2025, 15(3), 256; https://doi.org/10.3390/min15030256 - 28 Feb 2025
Cited by 1 | Viewed by 1659
Abstract
Characterizing alteration and its geochemical signature provides critical information relevant to ore-deposit genesis and its related footprint; for porphyry-type deposits, zoned potassic-phyllic-propylitic alteration and metal enrichment are critical features. Here we integrate earlier lithological and mineralogical studies of the (10+ Moz Au) Archean [...] Read more.
Characterizing alteration and its geochemical signature provides critical information relevant to ore-deposit genesis and its related footprint; for porphyry-type deposits, zoned potassic-phyllic-propylitic alteration and metal enrichment are critical features. Here we integrate earlier lithological and mineralogical studies of the (10+ Moz Au) Archean Côté Gold porphyry-type Au(-Cu) deposit (Ontario, Canada) with identified alteration types to provide exploration vectors. The ca. 2740 tonalite-quartz diorite-diorite intrusive complex and co-temporal Au(-Cu) mineralization as disseminations, breccias and veins are co-spatial with ore-related alteration types (amphibole, biotite, muscovite). An early, locally developed amphibole event coring the deposit is followed by emplacement of a Au(-Cu) mineralized biotite-rich magmatic-hydrothermal breccia body and broad halo of disseminated biotite and quartz veining. These rocks record gains via mass balance calculations of K, Fe, Mg, LILE, and LREE with Au, Cu, Mo, Ag, Se and Bi. Later muscovite alteration is enriched in K, Rb, Cs, Ba, CO2, and LOI with varied Au, Cu, Mo, Te, As, and Bi values. A strong albite overprint records extreme Na gains with the loss of most other elements, including ore metals (i.e., Au, Cu). Together these data define an Au-Cu-Mo-Ag-Te-Bi-Se core co-spatial with biotite breccia versus a peripheral stockwork and sheeted vein zone with a Te-Se-Zn-Pb-As association. These features further support the posited porphyry-type model for the Côté Gold Au(-Cu) deposit. Full article
Show Figures

Figure 1

22 pages, 4121 KB  
Article
Geochemistry and Fluid Inclusion of Epithermal Gold-Silver Deposits in Kamchatka, Russia
by Maria Shapovalova, Elena Shaparenko and Nadezhda Tolstykh
Minerals 2025, 15(1), 2; https://doi.org/10.3390/min15010002 - 24 Dec 2024
Cited by 3 | Viewed by 2293
Abstract
The work focuses on five epithermal Au-Ag deposits of the Kamchatka volcanogenic belts: Rodnikovoe, Baranyevskoe, Kumroch, Lazurnoe (adularia-sericite type–Ad-Ser) and Maletoyvayam (acid-sulfate type–Ac-Sul). The geochemical characteristics of the deposits were presented based on the results of ICP-OES and fire-assay analysis. The compositions and [...] Read more.
The work focuses on five epithermal Au-Ag deposits of the Kamchatka volcanogenic belts: Rodnikovoe, Baranyevskoe, Kumroch, Lazurnoe (adularia-sericite type–Ad-Ser) and Maletoyvayam (acid-sulfate type–Ac-Sul). The geochemical characteristics of the deposits were presented based on the results of ICP-OES and fire-assay analysis. The compositions and physicochemical parameters of ore-forming fluids were based on microthermometry, Raman spectroscopy and gas chromatography-mass spectrometry. It was shown that all deposits were comparable in terms of temperatures, salinity and the predominance of H2O and CO2 in ore-forming fluids. The deposits were formed at temperatures of 160–308 °C by aqueous fluids with salinities of 0.5–6.8 wt. % (NaCl-eq.). The Maletoyvayam deposit differed from the other ones in significant enrichment in Se, Te, Sb, Bi and As, as well as much higher concentrations of hydrocarbons, nitrogenated and sulfonated compounds (31.4 rel.% in total) in the composition of fluid inclusions. This gave us a reason to assume that organic compounds favourably affected the concentrations of these elements in the mineralising fluid. Kumroch and Lazurnoe were distinguished from Rodnikovoe and Baranyevskoe by high Zn, Pb and Cu contents, where each of them represented a single system combining both Ad-Ser type epithermal gold-silver and copper porphyry mineralisations. The presence of alkanes, esters, ketones, carboxylic acids and aldehydes in different quantities at all deposits were indicators of the combination of biogenic and thermogenic origins of organic compounds. The contents of ore-forming elements in ores were consistent with the specificity of mineral assemblages in the Kamchatka deposits. Full article
Show Figures

Figure 1

25 pages, 8842 KB  
Article
Timing and Evolution of Gold Mineralization in the Maljavr Occurrence (NW Russia), NE Part of the Fennoscandian Shield
by Arkadii A. Kalinin, Nickolay M. Kudryashov and Yevgeny E. Savchenko
Minerals 2024, 14(6), 535; https://doi.org/10.3390/min14060535 - 22 May 2024
Viewed by 1900
Abstract
Gold occurrence Maljavr is the first Archean conglomerate-hosted gold mineralization found in the Fennoscandian Shield. Gold-mineralized metasomatic rocks form a set of lenses within a 10 m thick linear zone, conformable to the bedding of host conglomerates. The lenses are up to 10 [...] Read more.
Gold occurrence Maljavr is the first Archean conglomerate-hosted gold mineralization found in the Fennoscandian Shield. Gold-mineralized metasomatic rocks form a set of lenses within a 10 m thick linear zone, conformable to the bedding of host conglomerates. The lenses are up to 10 m long and up to 1 m thick and they clearly exhibit three alteration envelopes: the rock in the central part consists of garnet and quartz or garnet-only; biotite, garnet, and quartz make the intermediate biotite–garnet envelope; hornblende, hedenbergite, and quartz are the principal rock-forming minerals in the outer zone of the lenses. All metasomatic rocks contain sulfide mineralization up to 15–20 vol.% and up to 0.6 g/t Au. The main ore mineral is pyrrhotite, and the minor minerals are arsenopyrite, chalcopyrite, pentlandite, löllingite, and troilite. The age of zircon from biotite gneiss in the zone of alteration is 2664 ± 18 Ma, this is considered as the time of formation of lenses of metasomatic rocks. Biotite gneiss-conglomerate and metasomatic rocks were later intruded by tourmaline granite pegmatite 2508 ± 7 Ma. The injection of pegmatite caused re-crystallization of sulfides (mainly arsenopyrite and löllingite) and redistribution of gold. Visible gold in association with Bi minerals native bismuth, ehrigite, maldonite, bismuthinite, joseite-B, and hedleyite was found in inclusions in recrystallized arsenopyrite and löllingite. Au content in the rocks with recrystallized arsenopyrite and löllingite is >1 g/t, up to 30 g/t in hand samples. The 2508 Ma pegmatite is interpreted as synchronous with formation of gold mineralization in its present form. The linkage of gold mineralization with pegmatite and geochemical association Au-As-Se-Te-Bi in the mineralized rocks agree with characteristics of intrusion-related gold deposits worldwide. Biotite gneiss–metaconglomerate, hosting the mineralized altered rocks, was the probable primary source of arsenic and gold for mineralization. Full article
Show Figures

Figure 1

23 pages, 18571 KB  
Article
Constraints on Ore Genesis from Trace Ore Mineralogy: A New Occurrence of Kupčíkite and Paděraite from the Zhibula Cu Skarn Deposit, Southern Tibet
by Jing Xu, Cristiana Liana Ciobanu, Nigel John Cook, Shen Gao, Taiping Zhao and Jichen Jiang
Minerals 2024, 14(5), 474; https://doi.org/10.3390/min14050474 - 29 Apr 2024
Cited by 2 | Viewed by 1806
Abstract
Mineral assemblages containing Cu-Bi sulfosalts, Bi chalcogenides, and Ag-(Au) tellurides have been identified in the mid-Miocene Zhibula Cu skarn deposit, Gangdese Belt, southern Tibet. Different mineral assemblages from three locations in the deposit, including proximal massive garnet skarn, proximal retrogressed pyroxene-dominant skarn in [...] Read more.
Mineral assemblages containing Cu-Bi sulfosalts, Bi chalcogenides, and Ag-(Au) tellurides have been identified in the mid-Miocene Zhibula Cu skarn deposit, Gangdese Belt, southern Tibet. Different mineral assemblages from three locations in the deposit, including proximal massive garnet skarn, proximal retrogressed pyroxene-dominant skarn in contact with marble, and distal banded garnet–pyroxene skarn hosted in marble, are studied to constrain the evolution of the mineralization. Hypogene bornite contains elevated Bi (mean 6.73 wt.%) and co-exists in proximal andradite skarn with a second bornite with far lower Bi content, carrollite, Au-Ag tellurides (hessite, petzite), and wittichenite. This assemblage indicates formation at relatively high temperatures (>400 °C) and high fS2 and fTe2 during prograde-stage mineralization. Assemblages of Bi sulfosalts (wittichenite, aikinite, kupčíkite, and paděraite) and bismuth chalcogenides (e.g., tetradymite) in proximal pyroxene skarn are also indicative of formation at relatively high temperatures, but at relatively lower fTe2 and fS2 conditions. Within the reduced distal skarn (chalcopyrite–pyrrhotite-bearing) in marble, cobalt, and nickel occur as discrete minerals: cobaltite, melonite and cobaltic pentlandite. The trace ore mineral signature of the Zhibula skarn and the distributions of precious and critical trace elements such as Ag, Au, Co, Te, Se, and Bi support an evolving magmatic–hydrothermal system in which different parts of the deposit each define ore formation at distinct local physicochemical conditions. This is the first report of kupčíkite and paděraite from a Chinese location. Their compositions are comparable to other occurrences, but conspicuously, they do not form nanoscale intergrowths with one another. Full article
(This article belongs to the Special Issue Selenium, Tellurium and Precious Metal Mineralogy)
Show Figures

Graphical abstract

26 pages, 9058 KB  
Article
Trace Element and Sulfur Isotope Signatures of Volcanogenic Massive Sulfide (VMS) Mineralization: A Case Study from the Sunnhordland Area in SW Norway
by Sabina Strmic Palinkas, Trond Fjellet, Håvard Hallås Stubseid, Xuan Liu, Jorge Enrique Spangenberg, Andrea Čobić and Rolf Birger Pedersen
Minerals 2024, 14(4), 384; https://doi.org/10.3390/min14040384 - 7 Apr 2024
Cited by 3 | Viewed by 2949
Abstract
The Sunnhordland area in SW Norway hosts more than 100 known mineral occurrences, mostly of volcanogenic massive sulfide (VMS) and orogeny Au types. The VMS mineralization is hosted by plutonic, volcanic and sedimentary lithologies of the Lower Ordovician ophiolitic complexes. This study presents [...] Read more.
The Sunnhordland area in SW Norway hosts more than 100 known mineral occurrences, mostly of volcanogenic massive sulfide (VMS) and orogeny Au types. The VMS mineralization is hosted by plutonic, volcanic and sedimentary lithologies of the Lower Ordovician ophiolitic complexes. This study presents new trace element and δ34S data from VMS deposits hosted by gabbro and basalt of the Lykling Ophiolite Complex and organic-rich sediments of the Langevåg Group. The Alsvågen gabbro-hosted VMS mineralization exhibits a significant Cu content (1.2 to >10 wt.%), with chalcopyrite and cubanite being the main Cu-bearing minerals. The enrichment of pyrite in Co, Se, and Te and the high Se/As and Se/Tl ratios indicate elevated formation temperatures, while the high Se/S ratio indicates a contribution of magmatic volatiles. The δ34S values of the sulfide phases also support a substantial influx of magmatic sulfur. Chalcopyrite from the Alsvågen VMS mineralization shows significant enrichment in Se, Ag, Zn, Cd and In, while pyrrhotite concentrates Ni and Co. The Lindøya basalt-hosted VMS mineralization consists mainly of pyrite and pyrrhotite. Pyrite is enriched in As, Mn, Pb, Sb, V, and Tl. The δ34S values of sulfides and the Se/S ratio in pyrite suggest that sulfur was predominantly sourced from the host basalt. The Litlabø sediment-hosted VMS mineralization is also dominated by pyrite and pyrrhotite. Pyrite is enriched in As, Mn, Pb, Sb, V and Tl. The δ34S values, which range from −19.7 to −15.7 ‰ VCDT, point to the bacterial reduction of marine sulfate as the main source of sulfur. Trace element characteristics of pyrite, especially the Tl, Sb, Se, As, Co and Ni concentrations, together with their mutual ratios, provide a solid basis for distinguishing gabbro-hosted VMS mineralization from basalt- and sediment-hosted types of VMS mineralization in the study area. The distinctive trace element features of pyrite, in conjunction with its sulfur isotope signature, have been identified as a robust tool for the discrimination of gabbro-, basalt- and sediment-hosted VMS mineralization. Full article
(This article belongs to the Special Issue Submarine Volcanism, Related Hydrothermal Systems and Mineralizations)
Show Figures

Figure 1

17 pages, 4915 KB  
Article
Precious-Metal Mineralization and Formation Conditions of the Biche-Kadyr-Oos Epithermal Au-Ag Ore Occurrence (Eastern Sayan, Russia)
by Renat V. Kuzhuget, Natalia N. Ankusheva, Ailai K. Hertek, Yuri A. Kalinin, Bulat B. Damdinov, Franco Pirajno, Yuri V. Butanaev, Nadezhda V. Suge-Maadyr and Sholban N. Soldup
Minerals 2023, 13(12), 1529; https://doi.org/10.3390/min13121529 - 8 Dec 2023
Cited by 1 | Viewed by 1877
Abstract
The Biche-Kadyr-Oos epithermal Au-Ag ore occurrence is a prospective object in the Ak-Sug porphyry copper ore cluster (Eastern Sayan) in the northern part of the Central Asian orogenic belt (CAOB). The mineralization consists of gold-sulfide-quartz and gold-polysulfide-carbonate-quartz veins with argillic zones in the [...] Read more.
The Biche-Kadyr-Oos epithermal Au-Ag ore occurrence is a prospective object in the Ak-Sug porphyry copper ore cluster (Eastern Sayan) in the northern part of the Central Asian orogenic belt (CAOB). The mineralization consists of gold-sulfide-quartz and gold-polysulfide-carbonate-quartz veins with argillic zones in the Lower Cambrian volcanic-sedimentary rocks. The origin of the Au-Ag ore occurrence is still debatable. To determine the origin, we examined the mineralogical and geochemical features, conditions of formation, and fluid sources of the Biche-Kadyr-Oos ore. A mineralogical and geochemical investigation outlines three stages of mineral formation: early argillic stage; gold-sulfide-quartz stage with pyrite, marcasite, pyrrhotite, arsenopyrite, chalcopyrite, less frequently sphalerite, hessite, gold, and electrum; and late gold-polysulfide-carbonate-quartz stage with gold, electrum, Hg-electrum, Se-acanthite, Se-galena, bornite, tennantite, tetrahedrite, hessite, tellurobismuthite, bismuthinite, matildite, jamesonite, ourayite, native Bi, and barite. Fluid inclusion study (thermometry, Raman spectroscopy) in quartz and mineral thermometry (electrum and sphalerite paragenesis) determined that ore veins were formed at P~0.5 kbar from CO2-water Na-K-chloride fluid (4.9–9.6 wt % NaCl eqv) and temperatures from 300 to 200 °C (early gold-sulfide-quartz veins at 300–230 °C, and late gold-polysulfide-carbonate-quartz veins at 290–200 °C) and variations in fO2, fS2, fSe2 and fTe2. The S isotopic composition in sulfides and δ34SH2S values of the fluid are +1.3‰ and +4.7‰, respectively, (T = 300–275 °C) indicating magmatic S in ore formation. The oxygen isotope data indicate that during the formation of veins, the magmatic fluid mixed with meteoric water (δ18Ofluid is from +3.4 to +6.4‰). The isotopic data that were obtained combined with mineralogical and geochemical features and conditions of ore formation indicate the similarity of Biche-Kadyr-Oos ore occurrence with epithermal Au-Ag deposits of intermediate sulfidation (IS) type. The presence of epithermal Au-Ag mineralization of the Biche-Kadyr-Oos IS type in ore cluster of the Ak-Sug Cu-Au-Mo porphyry deposit indicates the existence of a single porphyry-epithermal ore-magmatic system. Full article
Show Figures

Figure 1

23 pages, 20609 KB  
Article
Enrichment of Se-Te-Au in the Jilongshan Au-Cu Skarn Deposit, Hubei Province: Insight from Pyrite Texture and Composition
by Guizhou Nan, Jing Xu, Wenyuan Liu, Suyu Chen, Zhihui Cen and Jichen Jiang
Minerals 2023, 13(12), 1516; https://doi.org/10.3390/min13121516 - 3 Dec 2023
Cited by 5 | Viewed by 2092
Abstract
Selenium and Te are two important critical metals, which are often produced as by-products in Au-Cu deposits related to magmatic–hydrothermal systems, such as porphyry and skarn deposits. The Jilongshan Au-Cu deposit is a typical skarn deposit located in the middle and lower parts [...] Read more.
Selenium and Te are two important critical metals, which are often produced as by-products in Au-Cu deposits related to magmatic–hydrothermal systems, such as porphyry and skarn deposits. The Jilongshan Au-Cu deposit is a typical skarn deposit located in the middle and lower parts of the Yangtze River metallogenic belt. Previous studies show that it has valuable Se and Te resources, but their occurrence, particularly the relationship between the texture and composition of pyrite, and the enrichment mechanism of Se, Te, and Au remain unclear. Here, the textures and the major and trace elements of the Jilongshan pyrites were studied by using an optical microscope, EMPA, and LA-ICP-MS to reveal the occurrence of Se, Te, and Au in pyrite, as well as their genetic links with the pyrite mineralogical signature. The results show that there are three types of ores in the Jilongshan deposit, including granite porphyry-hosted, skarn-hosted, and carbonate-hosted ores. All of these ores contain major amounts of pyrite, which can be divided into four different generations. The first generation of pyrite (Py1) belongs to sedimentary genesis with a typical framboid texture and its Co/ Ni ratios are less than 1, whereas Py2, Py3, and Py4 belong to hydrothermal genesis and their Co/ Ni ratios are between 1.0 and 30.2. Selenium concentrations in Py2 and Py3 are relatively high (median, 138 ppm and 344 ppm, respectively), which are mainly present as isomorphism and a small amount as selenite in pyrite. Compared with granite porphyry-hosted and skarn-hosted ores, pyrite from carbonate-hosted ores has the highest Se concentrations. The latest generation of pyrite (Py4) contains the highest concentrations of Te (average, 140 ppm) and Au (average, 12 ppm) among the hydrothermal pyrites. Therefore, the precipitation of Se mainly occurs in pyrite during the early high-temperature stage, whereas higher concentrations of Te and Au are mainly enriched in pyrite during the late stage with low temperatures. Full article
(This article belongs to the Special Issue Selenium, Tellurium and Precious Metal Mineralogy)
Show Figures

Figure 1

25 pages, 6134 KB  
Article
Geochemical and Isotopic Fractionation in the Hypogene Ore, Gossan, and Saprolite of the Alvo 118 Deposit: Implications for Copper Exploration in the Regolith of the Carajás Mineral Province
by Pabllo Henrique Costa dos Santos, Marcondes Lima da Costa and Desiree Lisette Roerdink
Minerals 2023, 13(11), 1441; https://doi.org/10.3390/min13111441 - 15 Nov 2023
Cited by 3 | Viewed by 2189
Abstract
In the Carajás Mineral Province, gossan formation and lateritization have produced numerous supergene orebodies at the expense of IOCG deposits and host rocks. The Alvo 118 deposit comprises massive and disseminated hypogene copper sulfides associated with gossan and mineralized saprolites. The hypogene reserves [...] Read more.
In the Carajás Mineral Province, gossan formation and lateritization have produced numerous supergene orebodies at the expense of IOCG deposits and host rocks. The Alvo 118 deposit comprises massive and disseminated hypogene copper sulfides associated with gossan and mineralized saprolites. The hypogene reserves are 170 Mt, with 1% Cu and 0.3 ppm Au, while the supergenes are 55 Mt, comprised of 30% gossan and 70% saprolite, with 0.92% Cu and 0.03 ppm Au. The gossan includes goethite, malachite, cuprite, and libethenite zones. The saprolite comprises kaolinite, vermiculite, smectite, and relics of chlorite. In the hypogene mineralization, Ag, Te, Pb, Se, Bi, Au, In, Y, Sn, and U are mainly hosted by chalcopyrite and petzite, altaite, galena, uraninite, stannite, and cassiterite. In the gossan, Ag, Te, Pb, Se, and Bi are hosted by Cu minerals, while Au, In, Y, Sn, and U are associated with iron oxyhydroxides, in addition to Zn, As, Be, Ga, Ga, Mo, Ni, and Sc. As supporting information, δ65Cu values indicate that the gossan is immature and, at least partly, not affected by leaching. In the saprolite, Ga, Sc, Sn, V, Mn, Co, and Cr are associated with the iron oxyhydroxides, partially derived from the host rock weathering. The δ56Fe values indicate that hypogene low contribution of the hypogene mineralization to the saprolite iron content. The association of Al2O3, Hf, Zr, Th, TiO2, Ce, La, Ba, and Sr represents the geochemical signature of the host rocks, with dominant contributions from chlorites, while In, Y, Te, Pb, Bi, and Se are the main pathfinders of Cu mineralization. Full article
(This article belongs to the Special Issue Mineral Evolution and Mineralization during Weathering)
Show Figures

Figure 1

22 pages, 4750 KB  
Review
Fertility Indicators for Porphyry-Cu-Au+Pd±Pt Deposits: Evidence from Skouries, Chalkidiki Peninsula, Greece, and Comparison with Worldwide Mineralizations
by Maria Economou-Eliopoulos, Federica Zaccarini and Giorgio Garuti
Minerals 2023, 13(11), 1413; https://doi.org/10.3390/min13111413 - 6 Nov 2023
Cited by 2 | Viewed by 2679
Abstract
The research interest for many authors has been focused on the origin, recovery, and exploration of critical metals, including platinum-group elements (PGEs), with the aim of finding new potential sources. Many giant porphyry Cu deposits are well known around the Pacific Rim, in [...] Read more.
The research interest for many authors has been focused on the origin, recovery, and exploration of critical metals, including platinum-group elements (PGEs), with the aim of finding new potential sources. Many giant porphyry Cu deposits are well known around the Pacific Rim, in the Balkan–Carpathian system, Himalayas, China, and Malaysia. However, only certain porphyry Cu-Au deposits are characterized by the presence of significant Pd and Pt contents (up to 20 ppm). This contribution provides new analytical data on porphyry-Cu-Au±Pd±Pt deposits from the Chalkidiki Peninsula and an overview of the existing geochemical characteristics of selected porphyry-Cu deposits worldwide in order to define significant differences between PGE-fertile and PGE-poor porphyry-Cu intrusions. The larger Mg, Cr, Ni, Co, and Re contents and smaller LILE elements (Ba and Sr) in fertile porphyry-Cu-Au-(PGE) reflect the larger contribution from the mantle to the parent magmas. In contrast, the smaller Mg, Cr, Ni, Co, and Re contents and larger Ba and Sr in PGE-poor porphyry-Cu-Mo deposits from the Chalkidiki Peninsula (Vathi, Pontokerasia, and Gerakario) and Russia–Mongolia suggest the presence of parent magmas with a more crustal contribution. Although there is an overlap in the plots of those elements, probably due to the evolution of the ore-forming system, consideration of the maximum contents of Mg, Cr, Ni, and Co is proposed. Magnetite which separated from the mineralized Skouries porphyry of Greece showed small negative Eu anomalies (Eu/Eu* ≥ 0.55), reflecting a relatively high oxidation state during the cooling of the ore-forming system. The relatively high, up to 6 ppm (Pd+Pt), and low Cr content towards the transition from the porphyry to epithermal environment, coupled with the occurrence of Pd, Te, and Se minerals (merenskyite, clausthalite), and tetrahedrite–tennantite in fertile porphyry Cu deposits (Elatsite deposit, Bulgaria), reflect a highly fractionated ore-forming system. Thus, in addition to the crustal and mantle recycling, metasomatism, high oxidation state, and abundant magmatic water, other factors required for the origin of fertile porphyry-Cu deposits are the critical degree of mantle melting to release Pt and Pd in the ore-forming fluids and the degree of fractionation, as reflected in the mineral chemistry and geochemical data. Full article
Show Figures

Figure 1

23 pages, 7955 KB  
Article
Distribution of Potentially Toxic Elements in the City of Zintan and Its Surroundings (Northwestern Libya) by Surface Soil Sampling
by Boris Vakanjac, Zorana Naunovic, Vesna Ristić Vakanjac, Tanita Đumić, Saša Bakrač, Jana Štrbački, Vuk Gajić and Taher Mohamed Alzarog
Minerals 2023, 13(8), 1048; https://doi.org/10.3390/min13081048 - 7 Aug 2023
Cited by 1 | Viewed by 2834
Abstract
The study area is the city of Zintan, in northwestern Libya, which has grown over the past 30 years. Its current population is roughly 30,000. Although the city is in part commercial, most of the population engages in agriculture and primarily grows cereal [...] Read more.
The study area is the city of Zintan, in northwestern Libya, which has grown over the past 30 years. Its current population is roughly 30,000. Although the city is in part commercial, most of the population engages in agriculture and primarily grows cereal crops (wheat and barley). The demand of the growing city for agricultural products has increased, intensifying the use of fertilizers, pesticides, and insecticides. Consequently, concentrations of potentially toxic elements (PTE) in the soil have increased. To assess the soil quality (to provide a snapshot of the condition of the soil), systematic sampling was undertaken across a grid of about 2 km × 2 km. The main objective was to determine the chemical and mineral composition of the area of interest, keeping in mind the geological footprint of the terrain. The geologic framework itself is not conducive to elevated concentrations of elements like U, Th, Mo, As, Hg, Pb, and Cr. Therefore, metal concentrations greater than the amounts in the Earth’s crust are most likely of anthropogenic origin. A total of 143 samples were collected and chemical analyses were performed using a Thermo Fisher Scientific Niton XL3t GOLDD+ XRF analyzer for the following elements: Mo, Zr, Sr, U, Rb, Th, Pb, Au, Se, As, Hg, Zn, W, Cu, Ni, Co, Fe, Mn, Cr, V, Ti, Sc, Ca, K, S, Ba, Cs, Te, Sb, Sn, Cd, Pd, and Ag. This paper provides examples of elevated concentrations, potentially harmful to the environment, such as those of the following: sulfur of unknown origin (two to three times higher than the Earth’s crust average); arsenic, given that there are no related natural phenomena (all the samples measured displayed concentrations higher than those found in the Earth’s crust); mercury (concentrations much higher than permissible levels); cesium (additional investigations required to determine the origin); molybdenum; and uranium likely resulting from the use of superphosphates (concentrations nearly always significantly higher than those in the Earth’s crust). Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

12 pages, 4363 KB  
Article
Infrared Evanescent Wave Sensing Based on a Ge10As30Se40Te20 Fiber for Alcohol Detection
by Zijian Li, Yongkun Zhao, Tianxiang You, Jihong Zhu, Mengling Xia, Ping Lu, Xianghua Zhang and Yinsheng Xu
Sensors 2023, 23(10), 4841; https://doi.org/10.3390/s23104841 - 17 May 2023
Cited by 6 | Viewed by 2773
Abstract
Infrared evanescent wave sensing based on chalcogenide fiber is an emerging technology for qualitative and quantitative analysis of most organic compounds. Here, a tapered fiber sensor made from Ge10As30Se40Te20 glass fiber was reported. The fundamental modes [...] Read more.
Infrared evanescent wave sensing based on chalcogenide fiber is an emerging technology for qualitative and quantitative analysis of most organic compounds. Here, a tapered fiber sensor made from Ge10As30Se40Te20 glass fiber was reported. The fundamental modes and intensity of evanescent waves in fibers with different diameters were simulated with COMSOL. The 30 mm length tapered fiber sensors with different waist diameters, 110, 63, and 31 μm, were fabricated for ethanol detection. The sensor with a waist diameter of 31 μm has the highest sensitivity of 0.73 a.u./% and a limit of detection (LoD) of 0.195 vol.% for ethanol. Finally, this sensor has been used to analyze alcohols, including Chinese baijiu (Chinese distilled spirits), red wine, Shaoxing wine (Chinese rice wine), Rio cocktail, and Tsingtao beer. It is shown that the ethanol concentration is consistent with the nominal alcoholicity. Moreover, other components such as CO2 and maltose can be detected in Tsingtao beer, demonstrating the feasibility of its application in detecting food additives. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

27 pages, 5239 KB  
Article
Multi-Element Assessment of Potentially Toxic and Essential Elements in New and Traditional Food Varieties in Sweden
by Barbro Kollander, Ilia Rodushkin and Birgitta Sundström
Foods 2023, 12(9), 1831; https://doi.org/10.3390/foods12091831 - 28 Apr 2023
Cited by 11 | Viewed by 4492
Abstract
With the global movement toward the consumption of a more sustainable diet that includes a higher proportion of plant-based foods, it is important to determine how such a change could alter the intake of cadmium and other elements, both essential and toxic. In [...] Read more.
With the global movement toward the consumption of a more sustainable diet that includes a higher proportion of plant-based foods, it is important to determine how such a change could alter the intake of cadmium and other elements, both essential and toxic. In this study, we report on the levels of a wide range of elements in foodstuffs that are both traditional and “new” to the Swedish market. The data were obtained using analytical methods providing very low detection limits and include market basket data for different food groups to provide the general levels in foods consumed in Sweden and to facilitate comparisons among traditional and “new” food items. This dataset could be used to estimate changes in nutritional intake as well as exposure associated with a change in diet. The concentrations of known toxic and essential elements are provided for all the food matrices studied. Moreover, the concentrations of less routinely analyzed elements are available in some matrices. Depending on the food variety, the dataset includes the concentrations of inorganic arsenic and up to 74 elements (Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, Hg, K, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, S, Sb, Sc, Se, Si, Sn, Sr, Ta, Te, Th, Ti, Tl, U, W, V, Y, Zn, Zr, rare Earth elements (REEs) (Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tm, and Yb), platinum group elements (PGEs) (Ir, Os, Pd, Pr, Pt, Re, Rh, Ru, and Pr), and halogens (Br, Cl, and I)). The main focus (and thus the most detailed information on variation within a given food group) is on foods that are currently the largest contributors to dietary cadmium exposure in Sweden, such as pasta, rice, potato products, and different sorts of bread. Additionally, elemental concentrations in selected food varieties regarded as relatively new or “novel” to the Swedish market are provided, including teff flour, chia seeds, algae products, and gluten-free products. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

16 pages, 7299 KB  
Article
Mineralogy and Mineral Chemistry of the Au-Ag-Te-(Bi-Se) San Luis Alta Deposit, Mid-South Peru
by Pura Alfonso, Elsa Ccolqque, Maite Garcia-Valles, Arnau Martínez, Maria Teresa Yubero, Hernan Anticoi and Nor Sidki-Rius
Minerals 2023, 13(4), 568; https://doi.org/10.3390/min13040568 - 18 Apr 2023
Cited by 3 | Viewed by 2907
Abstract
A mineralogical and mineral chemistry study was carried out in the San Luis Alta telluride-rich gold deposit, mid-south Peru, to contribute towards determining its formation and improving the ore processing. The San Luis mineralization is considered an intrusion-related gold deposit located in the [...] Read more.
A mineralogical and mineral chemistry study was carried out in the San Luis Alta telluride-rich gold deposit, mid-south Peru, to contribute towards determining its formation and improving the ore processing. The San Luis mineralization is considered an intrusion-related gold deposit located in the Arequipa segment of the Coastal Batholith. The mineralization occurs in quartz veins hosted in diorites and granodiorites from the Tiabaya Super-Unit. These veins are sulfide-rich in the deep areas and contain abundant iron oxides. Sulfides are mainly pyrite with minor chalcopyrite and galena. Native gold and telluride minerals are abundant. Mineral chemistry was determined using an electron microprobe. The mineralogy of veins was classified into four stages. Gold occurs in the three last stages either in large grains, visible to the naked eye, or, more frequently, in grains of less than 10 µm. Gold appears as grains encapsulated in pyrite, Fe oxides, quartz and filling fractures. The first stage is characterized by the deposition of quartz and massive pyrite, which does not contain gold. During the second stage, hessite, calaverite, petzite and altaite are formed. Additionally, Bi-tellurides, mainly volynskite, rucklidgeite, kochkarite and tellurobusmuthine, are formed. Some of these minerals occur as blebs encapsulated in pyrite, suggesting that a Bi-Te-rich melt was formed from the ore-forming hydrothermal fluid and transported the Au and Ag elements. This stage was followed by a fracturing event and tellurobismuthite, tetradymite and montbrayite precipitated. In the last stage, a supergene replacement formed covellite, bornite and goethite. Te-Bi minerals do not appear in this stage, but selenium minerals occur in minor amounts. Chlorargyrite and iodargyrite occur and are associated with gold. Full article
Show Figures

Figure 1

Back to TopTop