
Citation: Nan, G.; Xu, J.; Liu, W.;

Chen, S.; Cen, Z.; Jiang, J. Enrichment

of Se-Te-Au in the Jilongshan Au-Cu

Skarn Deposit, Hubei Province:

Insight from Pyrite Texture and

Composition. Minerals 2023, 13, 1516.

https://doi.org/10.3390/

min13121516

Academic Editors: Jiajun Liu,

Shen Gao and Giorgio Garuti

Received: 23 October 2023

Revised: 26 November 2023

Accepted: 30 November 2023

Published: 3 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

minerals

Article

Enrichment of Se-Te-Au in the Jilongshan Au-Cu Skarn Deposit,
Hubei Province: Insight from Pyrite Texture and Composition
Guizhou Nan 1, Jing Xu 1,* , Wenyuan Liu 1, Suyu Chen 1, Zhihui Cen 2 and Jichen Jiang 1

1 Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China; 15146@163.com (W.L.)
2 Central South Geological Survey Institute, China Metallurgical Geology Bureau, Wuhan 430081, China
* Correspondence: xujing3800@126.com

Abstract: Selenium and Te are two important critical metals, which are often produced as by-products
in Au-Cu deposits related to magmatic–hydrothermal systems, such as porphyry and skarn deposits.
The Jilongshan Au-Cu deposit is a typical skarn deposit located in the middle and lower parts of the
Yangtze River metallogenic belt. Previous studies show that it has valuable Se and Te resources, but
their occurrence, particularly the relationship between the texture and composition of pyrite, and
the enrichment mechanism of Se, Te, and Au remain unclear. Here, the textures and the major and
trace elements of the Jilongshan pyrites were studied by using an optical microscope, EMPA, and
LA-ICP-MS to reveal the occurrence of Se, Te, and Au in pyrite, as well as their genetic links with the
pyrite mineralogical signature. The results show that there are three types of ores in the Jilongshan
deposit, including granite porphyry-hosted, skarn-hosted, and carbonate-hosted ores. All of these
ores contain major amounts of pyrite, which can be divided into four different generations. The first
generation of pyrite (Py1) belongs to sedimentary genesis with a typical framboid texture and its
Co/ Ni ratios are less than 1, whereas Py2, Py3, and Py4 belong to hydrothermal genesis and their
Co/ Ni ratios are between 1.0 and 30.2. Selenium concentrations in Py2 and Py3 are relatively high
(median, 138 ppm and 344 ppm, respectively), which are mainly present as isomorphism and a small
amount as selenite in pyrite. Compared with granite porphyry-hosted and skarn-hosted ores, pyrite
from carbonate-hosted ores has the highest Se concentrations. The latest generation of pyrite (Py4)
contains the highest concentrations of Te (average, 140 ppm) and Au (average, 12 ppm) among the
hydrothermal pyrites. Therefore, the precipitation of Se mainly occurs in pyrite during the early
high-temperature stage, whereas higher concentrations of Te and Au are mainly enriched in pyrite
during the late stage with low temperatures.

Keywords: selenium; tellurium; gold; pyrite; enrichment mechanism; Jilongshan skarn deposit

1. Introduction

Critical mineral commodities are significant to sustainable development and in large
demand in modern society. Therefore, the mineralization of critical mineral commodities
has been highlighted in the field of mineral deposit science in China and around the
world [1]. Tellurium and Se are typical disperse elements, which are usually very difficult
to form during industrial enrichment. However, many types of Au deposits or Au-rich
deposits mostly contain some Au, Ag, Bi, Pb, and other elements of tellurides, selenides,
as well as Te and Se contents in some Au deposits to meet the requirements of industrial
utilization [2,3]. The mineralization between Te, Se, and Au in such deposits should be
further studied to meet the strategic needs of our country.

Pyrite, as an important carrier of Se, Te, and Au, has been extensively studied in
recent years [4–11]. The trace elements of pyrite contain abundant genetic information
and have become a powerful tool for determining ore genesis types, restricting the source
of ore-forming materials, and inversing the evolution of metallogenic fluid [12,13]. Trace
elements occur in pyrite in two different forms: (a) substitution into the crystal lattice; and
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(b) nano-to-micro-scale mineral inclusions [6–8]. Based on the composition, concentrations,
and correlation of trace elements in pyrite, some significant insights are proposed to define
the possible enrichment mechanism and ore-forming processes (e.g., magma degassing,
fluid boiling, and water–rock interaction) of Se, Te, and Au [6–10,13–15].

The Jilongshan Au-Cu deposit is a typical skarn deposit. Many studies have been
reported about its deposit geology, geochronology, ore-forming fluids, and the occurrence
of Au and Ag [16–20]. However, there are barely no studies in regard to the occurrence and
enrichment mechanism of the critical elements in pyrite in this area, such as Se and Te. This
paper focuses on a systematic petrological observation of the pyrite in the Jilongshan de-
posit, and we divide different generations of pyrites based on cross relationships, alteration,
and associated/co-existing mineral assemblages. By using electron probe microanalysis
(EMPA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS),
we analyze the major and trace element concentrations in the classified pyrite. It reveals the
intrinsic relationship between the textures and compositions of pyrite and the enrichment
of Se, Te, and Au in the Jilongshan deposit, guiding the development and utilization of
critical metal commodities in the region.

2. Geological Setting
2.1. Regional Geology

The middle–lower parts of the Yangtze River is the most important Fe-Cu-Au and
other polymetallic metallogenic belt in China and is located south of the Dabieshan orogen
belt and north of the Yangtze Craton (Figure 1a). The Jilongshan Au-Cu skarn deposit is
located at the Fengshan orefield in this metallogenic belt [16].
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The Fengshan orefield mainly consists of three parts [18],including the western Ji-
longshan Au-Cu skarn deposit (Cu metal reserves, 279,900 tonnage; Au metal reserves,
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37.09 tonnage), the eastern Fengsandong Cu porphyry-skarn deposit (Cu metal reserves,
504,600 tonnage), and the northern Lijiawan Au skarn deposit (Cu metal reserves, 98,100 ton-
nage; Au metal reserves, 5.61 tonnage) (Figure 1b). The stratigraphic sequence in the
Fengshan area is exposed from the Silurian to the Quaternary, is relatively well-developed,
and is composed of dolomitic limestone, dolomite, limestone, shale, and sandstone. Major
structures in the area include a series of close to parallel ENE–EW trending transtensional
faults and EW trending faults. The main intrusions and ore occurrences in the area are
distributed along the faults, which play a significant role in controlling the intrusions
and skarn mineralization [16,19]. There are frequent magmatic activities in the region,
mostly in the Yanshan period intrusive activities. The molybdenite Re-Os isotopic model
age ranges from 147.7 ± 2.4 to 151.6 ± 4.02 Ma with an isochron age of 148.6 ± 1.5 Ma.
The intrusive rocks are mainly diorite, quartz diorite (138.2 ± 1.8 Ma), and granodiorite
porphyry (151.6 ± 0.7 Ma) [20,21]. Skarn Au and Cu mineralization is mainly related to the
quartz diorite and granodiorite porphyry in the region.

2.2. Deposit Geology

The Jilongshan deposit is controlled by the Jilongshan intrusion, Lower Triassic car-
bonatite, and faults (Figure 2a). The exposed strata in the mining area are relatively simple
and mainly consist of the Lower Triassic carbonates including limestone, dolomitic lime-
stone, and marble, except for the Quaternary. The magmatic rocks are mainly granodiorite
porphyry, with a marginal phase of quartz diorite porphyry [18]. Previous studies on zircon
U-Pb in the granodiorite porphyry have shown the age of 151.6 ± 0.7 Ma, indicating that it
is formed during the Early Jurassic–Late Cretaceous. It is consistent with the mineralization
age obtained with Re-Os isotope geochronology (148.6 ± 1.5 Ma) of molybdenite in the
skarn, indicating that skarn mineralization is related to the intrusion [19–21].
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The orebodies mainly exist in the contact zone between the granodiorite porphyry
and Lower Triassic carbonates, with a small amount located in the interlayer fracture
zone. The occurrence and spatial distribution of the orebodies are mainly controlled by
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NW-NWW trending faults. Skarn-type Au-Cu ore is the dominating mineralization style,
and minor porphyry-type and carbonate-type ores are also developed in the Jilongshan
deposit (Figure 3). The ore composition is relatively complex, and the main ore minerals
are pyrite, chalcopyrite, bornite, pyrrhotite, covellite, sphalerite, galena, and gold, with a
small amount of Te-Bi-Ag minerals. The alteration is strongly developed in the deposit,
mainly including skarn, carbonatization, silicification, chlorization, and potassium [18].
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Figure 3. Petrography of ore types in the Jilongshan deposit. (a) Unaltered granodiorite porphyry;
(b) pyrite–chalcopyrite veinlets in altered granodiorite porphyry; (c) pyrite–chalcopyrite–quartz-
fluorite veinlets in potassic granodiorite porphyry; (d) agglomerated pyrite–chalcopyrite in red-
brown garnet-dominated skarn; (e) agglomerated pyrite–chalcopyrite in garnet skarn; (f) galena and
pyrrhotite in pyroxene skarn; (g) carbonate breccia filled and cemented by irregular black sulfide
veinlets; (h) pyrite in carbonate with the occurrence of irregular black sulfide veinlets; (i) pyrite veinlets
developed at the margins of carbonate breccia. Mineral abbreviations: Cal—calcite, Ccp—chalcopyrite,
Fl—fluorite, Gn—galena, Grt—garnet, Po—pyrrhotite, Py—pyrite, Pyx—pyroxene, Qz—quartz.

Jilongshan Au-Cu mineralization can be divided into four stages based on cross-
cutting relationships and mineral assemblages according to previous studies [18], namely,
the skarn stage, retrograde stage, quartz-sulfide stage, and carbonate stage. Obvious
mineralization zones have been identified in the Jilongshan deposit [19]. Vertically, the
contact zone below the intrusion and wall rock is dominated by Au-Cu skarn ore bodies,
whereas the contact zone above the intrusion and wall rock has hydrothermal metasomatic-
type Au-Pb-Zn polymetallic ore bodies and Au ore bodies. Horizontally, Au-Cu skarn ore
bodies exist in the inner contact zone close to the Jilongshan intrusion, while hydrothermal
metasomatic-type Au or Au-polymetallic ore bodies appear in the outer contact zone far
from the Jilongshan intrusion [19].
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3. Materials and Methods

Fifty samples used in this study were mainly collected from ore piles and partially
from drill cores, with the types of ore mainly including skarn-hosted, porphyry-hosted,
and carbonate-hosted, which cover all ore types in the mining area. Many of our samples
come from ore piles, which makes it difficult to pinpoint the exact location of the samples.

The EPMA was carried out at the State Key Laboratory for Research on the Mechanism
of Endogenous Metallic Mineralization at Nanjing University and the EPMA Laboratory
of the Zijin School of Geology and Mining at Fuzhou University. Both laboratories were
equipped with the EPMA model JXA-8230, with an accelerating voltage of 15 kV, a beam
current of 20 nA, and a beam spot of 5 µm. Standards used were as follows: S (FeS2), Fe
(FeS2), As (FeAs2), Au (AuTe2), Ag (AgBiSe2), Te (AuTe2), Se (CuS), Pb (PbS), Co (Co), and
Ni (NiS). X-ray lines were as follows: S (Kα), Fe (Kα), As (Lα), Au (Lα), Ag (Lα), Te (Lα),
Se (Lα), Pb (Mα), Co (Kα), and Ni (Kα). Minimum detection limits (for pyrite) were (2σ):
S (62 ppm), Fe (178 ppm), As (266 ppm), Au (282 ppm), Ag (143 ppm), Te (166 ppm), Se
(131 ppm), Pb (189 ppm), Co (161 ppm), and Ni (156 ppm), with variable element peak
analysis times depending on the characteristics of the mineral elements.

Trace element tests by LA-ICP-MS of the representative pyrite grains were done
respectively at the Guangzhou Tuoyan Analytical Technology Co., Ltd., Guangzhou, China,
and the Center for Research on the Genesis and Exploration Techniques of Ore Deposits
of Hefei University of Technology’s Laboratory for Mineral Micro-Area Analysis. The
model of the former is an NWR 193 nm ArF Excimer laser-ablation system coupled to
an iCAP RQ (ICPMS). Helium (700 mL/min) was applied as a carrier gas. The ablated
aerosol was mixed with Ar (890 mL/min) as a transport gas before exiting the cell. Trace
element compositions of the samples are calibrated against various reference materials
(NIST SRM610 and MASS-1) without using an internal standard. The laser fluence was
3.5 J/cm2, with a repetition rate of 6 Hz, a 30 µm spot size, and an analysis time of 45 s,
followed by a 40 s background measurement. IOLITE was used to analyze the data. The
sulfide standards SRM612 and GE7b were used as the unknown sample to evaluate the
data quality. The laser ablation system of the latter is Cetac Analyte HE, and the ICP-MS is
Agilent 7900. It was used as a carrier gas and argon as a make-up gas to adjust sensitivity
during laser ablation. Sulfide trace element concentration was quantitatively calculated
using multiple reference standards (NIST610, NIST612, BCR-2G) and sulfide standard
(MASS-1) as methods for multi-external standard single internal standard. Minimum
detection limits of the selected elements are Co (0.30 ppm), Ni (0.49 ppm), Cu (0.45 ppm),
Zn (0.90 ppm), Ge (0.62 ppm), As (1.93 ppm), Se (0.78 ppm), Ag (0.01 ppm), Cd (0.04 ppm),
Sb (0.20 ppm), Te (0.10 ppm), Au (0.01 ppm), Tl (0.01 ppm), Bi (0.01 ppm), and Pb (0.01 ppm).

4. Results
4.1. Different Types of Ores and Related Petrography

Three types of ores, including porphyry-type, skarn-type, and carbonate-type, have been
identified in the Jilongshan deposit (Figure 3), and the following is a description of these
different types of ores and related mineral assemblages, particularly the pyrites (Table S1).

(1) Porphyry-type ore: It mainly occurs in the granodiorite porphyry in the shallow
part of the deposit. The granodiorite porphyry is gray and gray-white in color. It mainly
consists of quartz, plagioclase, amphibole, K-feldspar, and biotite. Sericitization, silicifica-
tion, pyritization, and potassium are major alterations within the granodiorite porphyry.
A small amount of sulfides, quartz, and fluorite occur in the granodiorite porphyry as
veinlets (Figure 3b,c). Pyrite is the main ore mineral, and a small amount of chalcopyrite is
also locally visible. The types of pyrite include majorly Py2 and minorly Py3 (see below).

(2) Skarn-type ore: It is the main ore type in the Jilongshan deposit. Sulfides occur in
the skarn-type ore as veinlets, are disseminated, and have massive texture (Figure 3d–f).
The skarn minerals are composed of garnet and pyroxene Minorly actinolite, epidote, and
chlorite also appear locally. The ore minerals are mainly composed of pyrite, chalcopyrite,
magnetite, pyrrhotite, sphalerite, galena, minor tetrahedrite, and bornite. The types of
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pyrites are mainly Py2 and Py4 (see below). It is worth noting that a small amount of
modified Py1 locally remains in the core of Py2.

(3) Carbonate-type ore: It is mainly hosted in the distal marble and related carbonates.
The quartz-sulfide mineral assemblages are seen as veins interspersed with limestone
(marble) or cemented formation breccia (Figure 3g–i). The ore minerals mainly include
tetrahedrite, chalcopyrite, pyrite, galena, and sphalerite. Calcite is the major gangue
mineral. A large number of Py1 and Py4 occur in this type of ore (see below).

4.2. Pyrite Types and Generational Characteristics

Reflected light microscopy was completed on all the samples to determine the mineral
textures, assemblages, and cross-cutting relationships among sulfides. The pyrites studied
in this paper are classified into four generations. As description above, different generations
of pyrites can occur in the same rock type. Similarly, different types of rocks can contain
the same type of pyrite. Therefore, there is absolutely no correspondence between the
pyrite generations and rock types. Here, the classification of the Jilongshan pyrite is mainly
defined according to pyrite sequences. They are characterized as follows:

(1) Framboidal pyrite (Py1): It is composed of submicron pyrite or microcrystals
of equal grain size, which resemble a strawberry. It formed during the sedimentary
period, mainly existing in black carbonaceous, muddy impure carbonate rocks. Observed
under the microscope, the diameter of framboidal pyrites varies from 9.7 µm to 44.5 µm
(Figures 4a–d and 5a,b). Some framboidal pyrites are surrounded by larger euhedral and
subhedral pyrites (Py2) (Figure 4a,e), representing Py1 formation in the early sediment
diagenesis. Some galena, sphalerite, and tetrahedrite, which formed during the later
hydrothermal stage, can be locally observed around Py1 (Figure 4d).
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framboidal with tight microcrystals; (c) single framboidal pyrite with large gaps between the mi-
crocrystals; (d) framboidal pyrite and surrounding microcrystals; (e) a ring of hydrothermal Py2
developed around altered Py1; (f) Py2 containing anhydrite and andalusite inclusions and replaced by
chalcopyrite; (g) the replacement of Py2 by later Py4 and tetrahedrite; (h) chalcopyrite–bornite vein-
lets cross-cutting Py2; (i) Py2 containing native Au, which was confirmed by EDS data even though
the color is not golden yellow; (j) Py2 replaced by chalcopyrite, bornite, and tetrahedrite. Mineral
abbreviations: And—andalusite; Anh—anhydrite; Au—native gold; Bn—bornite; Ccp—chalcopyrite;
Py—pyrite; Ttr—tetrahedrite.
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Figure 5. Backscattering characteristics of different generations of pyrite in the Jilongshan deposit.
(a) Framboidal pyrite (Py1) and little Py2; (b) different shape microcrystals of Py1; (c) fissure development
in Py2; (d) native gold in Py2; (e) some gangue minerals in Py2; (f) Py3 on the edge of chalcopyrite;
(g) Py3 inside chalcopyrite and some inclusions in Py3; (h) intergranular spaces of Py4 grains filled
with tetrahedrite; (i) chalcopyrite and fluorite in Py4; (j) Py4 has obscure zonation and was strongly
replaced by tetrahedrite; (k) cracks of Py4 grains filled with tetrahedrite; note that Ag- and As-bearing
tetrahedrites have brighter BSE images; (l) As-rich edge of Py4. Mineral abbreviations: And—andalusite;
Anh—anhydrite; Au—gold; Ccp—chalcopyrite; Fl—fluorite; Gn—galena; Py—pyrite; Sp—sphalerite;
Ttr—tetrahedrite.
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(2) Early-stage hydrothermal pyrite (Py2): It is formed during the early high-temperature
stage of hydrothermal fluids. It widely occurs in the porphyry-type, skarn-type, and
carbonate-type ores. This pyrite exhibits coarse grains, mostly subhedral to anhedral, with
local strong fragment and cleavage development (Figures 4e–g,j and 5c–e). It is widely
replaced by subsequent sulfides, such as chalcopyrite, bornite, hematite, electrum, hessite,
matildite, and tetrahedrite (Figures 4h,j and 5d). Native Au is found in Py2 (Figure 4i),
and internally some gangue minerals inclusions are present like gypsum, andalusite, and
fluorite, which are confirmed by electron spectrum analysis (Figures 4f and 5e).

(3) Late-stage hydrothermal pyrite (Py3): It is formed later than Py2 and is mainly
distributed in carbonates with mostly subhedral to anhedral fine grains. It is formed
later than chalcopyrite and exists along the edges of chalcopyrite or fills in its cracks
(Figures 5f,g and 6a–d). A small amount of Py3 in chalcopyrite coexists with tetrahedrite
(Figures 5g and 6a).
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Figure 6. Characteristics of different generations of pyrites in the Jilongshan deposit. (a) Euhedral or
subeuhedral Py3 developed in chalcopyrite; (b) insert from (a) showing detailed Py3 occur in both
inside and edge of chalcopyrite, note the pore and mineral inclusions in chalcopyrite indicating the
replacement chalcopyrite by Py3 and tetrahedrite; (c,d) Py3 developed at both the edge of chalcopy-
rite and in the internal fractures; (e) Py4–sphalerite–galena–tetrahedrite assemblage; (f) tetrahedrite
developed in the fractures of Py4 with minor chalcopyrite; (g,h) Py4 filled with tetrahedrite between
grains; (i) galena, sphalerite, and chalcopyrite developed around Py4, pyrrhotite in Py4; (j) tetra-
hedrite in Py4. Mineral abbreviations: Ccp—chalcopyrite; Gn—galena; Py—pyrite; Po—pyrrhotite;
Sp—sphalerite; Ttr—tetrahedrite.
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(4) Low-temperature pyrite (Py4): It is formed at the latest stage and is primarily
observed in carbonate. A small amount of Py4 was formed by recrystallization or secondary
enlargement of early framboidal pyrite (Figures 5h–l and 6g,h,j). It is often associated with
tetrahedrite, galena, and sphalerite (Figures 5i–k and 6e–j). A small amount of pyrrhotite is
identified in Py4 (Figure 6i). In addition, coloradoite, orpiment, and realgar are associated
with Py4 [18].

4.3. EMPA Analyses

A total of 81 EMPA analyses were conducted on pyrite grains representing different
generations. The results show that S concentrations of pyrites range from 47.26 wt.% to
53.73 wt.%, and Fe concentrations of pyrites range from 38.44 wt.% to 47.80 wt.% in the
Jilongshan Au-Cu skarn deposit (Table 1). Moreover, different generations of pyrite contain
varied Au, Se, and Te concentrations: the concentrations of Pb, As, and Te are the highest in
Py1, averaging 0.26 wt.%, 1.13 wt.%, and 0.19 wt.%, respectively; Py2 is the purest and the
concentrations of Te and Ni are below the detection limit; Se and Ag concentrations in Py3
are the highest, averaging 0.06 wt.% and 0.27 wt.%, respectively; Te concentration in Py4 is
below the detection limit.

Table 1. EPMA data for pyrite in the Jilongshan deposit (wt.%).

Types Fe S Pb As Te Ag Ni Co Au Se Total

Py1
(n = 19)

Max 46.98 52.60 1.99 * 4.94 0.28 * 0.69 * 0.04 0.11 0.13 0.04 99.49
Min 40.93 47.26 0.02 0.06 0.03 0.02 0.02 0.02 0.03 0.02 97.11

Median 45.47 51.39 0.21 0.89 0.26 0.05 0.04 0.06 0.08 0.03 98.13
Mean 45.13 51.25 0.54 1.19 0.19 0.17 0.03 0.06 0.08 0.03 98.11

Py2
(n = 14)

Max 47.80 53.49 0.07 0.08 <dl 0.05 <dl 0.06 0.14 0.03 101.01
Min 45.55 51.77 0.07 0.04 <dl 0.04 <dl 0.02 0.06 0.02 97.55

Median 46.15 52.19 0.07 0.06 <dl 0.04 <dl 0.04 0.08 0.02 98.40
Mean 46.24 52.46 0.07 0.06 <dl 0.04 <dl 0.04 0.09 0.02 98.81

Py3
(n = 20)

Max 47.12 53.23 0.16 0.23 0.03 1.37 * 0.11 0.09 0.10 0.23 * 100.42
Min 43.67 50.59 0.02 0.03 0.02 0.02 0.02 0.02 0.09 0.02 97.38

Median 46.35 52.50 0.08 0.10 0.02 0.08 0.04 0.04 0.09 0.05 99.04
Mean 46.02 52.38 0.08 0.12 0.02 0.27 0.04 0.04 0.09 0.06 98.97

Py4
(n = 28)

Max 47.03 53.73 0.25 2.73 <dl 0.51 * 0.07 0.18 0.08 0.07 100.68
Min 38.44 49.16 0.03 0.03 <dl 0.02 0.02 0.02 0.03 0.02 98.26

Median 46.45 52.79 0.04 0.07 <dl 0.05 0.02 0.04 0.05 0.04 99.51
Mean 46.07 52.70 0.08 0.31 <dl 0.09 0.04 0.05 0.05 0.04 99.51

Note: <dl, below detection limit; *, data affected by mineral inclusions. The full dataset is given in Table S2.

4.4. LA-ICP-MS Analyses

A total of 78 LA-ICP-MS spot analyses (Pyl, n = 16; Py2, n = 26; Py3, n = 15; and Py4,
n = 21) were completed in this study for four generations of pyrites. These spot analyses
were conducted to figure out the concentrations of different trace elements. It is difficult
to avoid some micro- to submicro-mineral inclusions in the pyrites, which may explain
some of the outliers. So, we show the LA-ICP-MS time-resolved depth profiles in different
generations of pyrites (Figure 7). Mineral inclusions such as Ag-Bi, native Au, Pb-Bi, Se-Ag,
and Te-Au-Ag may occur in the Jilongshan pyrites. It should be noted that during the
LA-ICP-MS data process, we tried to avoid these mineral inclusions, and the detailed data
are listed in Table S3. The data for all pyrites except for Py1 that were affected by mineral
inclusions are excluded from Table 2 and subsequent plots (Figures 8, 9, 11, 12 and 14).
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and Bi indicating the presence of Ag/Bi micro- and/or nano-inclusions; (b) The spiky signal of Au
indicating the presence of Au micro- and/or nano-inclusions; (c) Se, Te, and Au occurring in the
form of isomorphisms; (d) the same changing trend of Pb and Bi indicating the presence of Pb/Bi
micro- and/or nano-inclusions; (e) Se, Te, and Au occurring in the form of isomorphisms; (f) the
spiky signals of Se and Ag indicating the presence of Se-Ag micro- and/or nano-inclusions; (g) Se, Te,
and Au occurring in the form of isomorphisms; (h) the spiky signals of Te, Au, and Ag indicating the
presence of Te-Au-Ag micro- and/or nano-inclusions. The gray areas in (a,e) refer to the effective
denudation time for data calculation, which means the final data in the table are out of the effect from
mineral inclusions.

Table 2. LA-ICP-MS data for pyrite in the Jilongshan deposit (ppm).

Co Ni Cu Zn Ge As Se Ag Cd Sb Te Au TI Bi Pb

Py1 *
(n = 16)

Max 1.1 4.7 5481 17,116 11 88,106 23 5197 1419 6068 10,105 726 3618 4.3 19,189
Min 1.1 3.7 991 8.1 5.1 17,548 15 656 8.5 785 407 28 890 0.40 3600

Median 1.1 4.2 3440 74 7.0 31,149 20 1902 23 1992 2163 142 2480 0.87 13,654
Mean 1.1 4.2 3408 1795 7.4 44,319 20 2483 159 2940 3682 256 2158 1.4 12,529

Py2
(n = 26)

Max 1102 797 138 269 7.0 1667 924 17 <dl 3.7 208 0.09 0.05 89 98
Min 4.2 1.8 3.2 11 1.7 5.6 8.1 0.06 <dl 0.59 1.6 0.00 0.01 0.03 0.00

Median 135 23 7.0 118 5.4 182 138 2.1 <dl 0.95 30 0.05 0.02 3.0 3.1
Mean 294 187 24 129 5.1 393 244 4.5 <dl 1.7 47 0.05 0.02 18 13

Py3
(n = 15)

Max 652 274 <dl 2728 6.1 865 613 944 306 122 9.2 0.80 34 21 179
Min 34 13 <dl 2327 4.9 26 201 88 17 0.76 3.3 0.11 0.22 0.53 15

Median 194 66 <dl 2626 5.3 159 344 234 40 41 4.9 0.52 0.80 2.4 62
Mean 248 83 <dl 2560 5.4 297 345 334 83 54 6.0 0.46 8.6 4.7 75

Py4
(n = 21)

Max 216 164 830 259 9.7 3031 388 550 70 468 494 145 230 56 618
Min 1.7 1.3 1.9 4.8 4.3 109 0.20 0.10 1.3 0.68 3.2 0.08 0.01 0.00 2.4

Median 5.7 8.5 119 29 5.7 1008 114 20 2.9 31 90 2.9 2.0 0.69 133
Mean 39 23 287 65 5.8 1292 165 70 12 100 140 12 28 6.5 162

Note: <dl, below detection limit. The full dataset is given in Table S3. Because Py1 is framboidal pyrite and the grains
are very fine, it is difficult to exclude all data which are affected by inclusions, so all data here are shown as Py1 *.

In all generations of pyrites, the Se concentrations (median)are Py1 (20 ppm), Py2
(138 ppm), Py3 (344 ppm), and Py4 (114 ppm), respectively. The Te concentrations (median)
are Py1 (2163 ppm), Py2 (30 ppm), Py3 (4.9 ppm), and Py4 (90 ppm). The Au concentrations
(median) are Py1 (142 ppm), Py2 (0.05 ppm), Py3 (0.52 ppm), and Py4 (2.9 ppm). Different
generations of pyrites show significant variations in trace element concentrations (Figure 8).
The concentrations of trace elements including Cu, As, Ag, Sb, Te, Au, Tl, and Pb in Py1 are
the highest compared with those in Py2, Py3, and Py4. Compared with Py1, Co, Ni, and Se
contents gradually increase in Py2, however other trace element contents decrease. The
contents of Zn and Se in Py3 are the highest among the four generations of pyrites. The
contents of Te and Au in Py4 gradually increase compared with those in Py2 and Py3. In
addition, the dataset shows a good positive correlation of Se vs. Ni in Py2 and Py3, Se vs.
Co in Py4, and Te vs. Au in Py1 and Py4 (Figure 9b,d,e). There is also a negative correlation
of Se vs. Au and Se vs. Te in Py4 (Figure 9a,c,f). Further, in this study, LA-ICP-MS spot
analyses were also performed on different positions of some individual pyrite grains, and
thus, the changes in trace element contents in the same pyrite grains during the formation
process were observed, and the results are shown in Figure 10.
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Figure 8. Box plot of the trace element concentrations in four generations of pyrites in the Jilongshan
deposit.
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Figure 10. Characteristics of changes in trace element concentrations of representative pyrite in the
Jilongshan deposit. (a) The concentrations of Se, Te, and Au in framboidal pyrite (Py1); (b) comparison
of concentrations of Se and Co between Py1 and Py2; (c,d) the changes in concentrations of Se and Te
in Py2, and numbers (1–8) refer to different LA-ICP-MA spot analysis locations; (e) the changes in
concentrations of Se, Te, and Au in Py3; (f) the changes in concentrations of Se, Te, and Au in Py4.
These numbers represent different LA-ICP-MS spots.

Principle component analysis (PCA) has become an important tool to simplify and
reduce the dimensions of high dimensional multivariate datasets. There are some studies on
differentiating geological samples with similar characteristics using PCA [22,23]. According
to the results of LA-ICP-MS, we tried to classify pyrite using the PCA method and the
result is exhibited in Figure 11. The characteristics of the trace elements can be reflected in
the PCA results as the analysis points of Py1, Py2, Py3, and Py4 are clustered in different
regions (Figure 11a), respectively. In the loading plot, the analyzed trace elements of pyrites
seem to be grouped into three groups according to their correlation: Group 1 (Cd, Ge,
Te, Pb, Au, Ag, Tl, As, and Sb), Group 2 (Co, Ni, and Se), and Group 3 (Bi) (Figure 11b).
However, as the effect of mineral inclusions on Py1 cannot be excluded, the PCA plot
for Group 1 and Py1 represent the elements in mineral inclusions, instead of the crystal
structure of pyrite.
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and framed groups of elements with similar behavior.

5. Discussion
5.1. Pyrite Genesis

Cobalt and Ni are relatively common trace elements in pyrite, and the Co/Ni ratio is
relatively stable in different types of deposits. The physicochemical conditions during their
precipitation have a significant impact on their concentrations in pyrite; thus, variations
in the Co/Ni ratios are often used to indicate differences in the genesis of pyrite [24,25].
Cobalt and Ni mainly enter the lattice of pyrite through isomorphism, and temperature has
an effect on the substitution behavior of Co and Ni for Fe. Generally, the concentrations of
Co and Ni in pyrite are higher at high temperatures than low temperatures [26]. The Co/Ni
ratios in sedimentary pyrite are generally less than 1, hydrothermal pyrite usually has
Co/Ni ratios between 1.17 and 5, and volcanic pyrite generally has Co/Ni ratios ranging
from 5 to 50 [24,27]. In this paper, Py1 falls in the sedimentary zone, and Py2, Py3, and Py4
mainly are plotted in the hydrothermal zone (Figure 12). Thus, pyrites in the Jilongshan
deposit mainly include sedimentary and hydrothermal genesis related to magmatism,
which are the same as our results from geological and petrographic observations.
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Previous studies on the formation mechanism and size of framboidal pyrites sug-
gest that the size of framboidal pyrite can reflect the redox conditions of deposition [28].
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Framboidal pyrites formed in euxinic environments have an average size of 5.0 (±1.7)
µm, while in oxidic environments, it is 7.7 (±4.1) µm [28,29]. Wignall [30] concluded that
framboidal pyrites with an average size of 7.5 µm are formed in an oxidic environment,
and the maximum size is often larger than 13 µm. In this study, using statistics, the size
distribution of the six areas where the framboidal texture is relatively developed are an-
alyzed; the statistical results are shown in Table 3. The analyzed results suggest that the
average size of framboidal pyrites in five areas (104-1-1, 104-1-2, 104-1-3, 104-2-1, and
104-2-2) are 10.0~13.2 µm, indicating that these framboidal pyrites developed in oxidic or
dysoxic environments; and the average size of framboidal pyrites from the area 104-2-3 is
30.6 µm, indicating that this developed in a relatively higher degree of oxidic environment
(Figure 13).

Table 3. Descriptive statistics of size distribution for Jilongshan framboid pyrite (µm).

Area N Mean Median Max Standard
Deviation Skewness

104-1-1 292 10.0 9.7 23.4 4.18 0.56
104-1-2 64 13.0 12.6 23.0 3.81 0.17
104-1-3 125 13.2 12.6 30.0 4.19 1.01
104-2-1 64 12.9 12.9 26.8 5.43 0.31
104-2-2 121 11.9 11.3 34.4 5.19 0.85
104-2-3 14 30.6 31.5 44.5 7.70 0.11
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Figure 13. Binary plot of mean vs standard deviation for framboidal pyrite from the Jilongshan
deposit [28,31].

5.2. Occurence of Se, Te, and Au in Pyrite

Previous studies have classified Se deposits into five types: magmatic, porphyry, skarn,
submarine exhalation, and volcanic sedimentation [32,33]. The occurrences of Se in all ore
deposits can be divided into three types: (1) existing as independent selenium minerals,
such as naumannite (Ag2Se), clausthalite (PbSe), etc.; (2) substitute to crystal lattice (S2−)
as isomorphism in sulphides (e.g., pyrite, sphalerite, and galena); (3) organic matter that
adsorbs Se, which can occur in calcareous rocks [34–38]. The LA-ICP-MS ablation curves
for Se in Py2 from the Jilongshan deposit are generally smooth, without a “peak“ signal
(Figure 7c,d), indicating that Se exists in the lattice of pyrite in the form of isomorphism.
Electron probe results showed that Se and Ag in Py3 can reach 0.23 wt.% and 1.37 wt.%,
respectively (Table 1), indicating that there might be sub-microscopic Se-bearing inclusions
such as naumannite in the pyrite. Spectra of Se in Py3 also suggest that Se-Ag-bearing
inclusions exist (Figure 7f).

There are two different occurrences for Te, including independent tellurides (tetradymite
(Bi2TeS2), hessite (Ag2Te), tellurobismuthite (Bi2Te3), etc.) and Te incorporation into sulfide
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lattices [6,7,39]. Tellurium mainly exists in some Au deposits as calaverite (AuTe2) and hessite
(Ag2Te); for instance, it often develops in epithermal low-temperature hydrothermal Au
deposits [40]. Five different tellurides have been discovered in the Dongping Au mining
area, including tetradymite (Bi2TeS2), tellurobismuthite (Bi2Te3), petzite (Ag3AuTe2), altaite
(PbTe), and calaverite (AuTe2) [40]. In the Jilongshan deposit, the LA-ICP-MS analysis signals
of Te in pyrite show different forms: some are relatively smooth, indicating that Te exists
in the pyrite crystal structure (Figure 7c), others have the same variation trend as with
Au-Ag, which may exist in the form of petzite (Ag3AuTe2) or other Te-Au-Ag inclusions
(Figure 7h) [41]. The PCA results can also reflect the correlation of Te, Au, and Ag, particularly
in Py1 (Figure 11b). The As-Te solubility curve for pyrites also confirmed the two occurrences
of tellurium (Figure 14a).
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Jilongshan deposit. The black dashed line defines the solubility limit for Au (Te) solid solution in
pyrite as a function of As. Gold (Te) concentrations above the solubility line indicate inclusions in
pyrite [8].

Gold in many deposits have been classified into visible gold and invisible gold [6].
Based on the texture relationship between Au and sulfides, visible gold often exists by
filling the cracks of other minerals or in the form of inclusions. Invisible gold can also be
divided into submicron–nanometer native Au and Au+ in the lattice [4,6]. Electron energy
spectrum analyses show that native Au exists in pyrite as shown in Figure 4i; the ablation
curve of Au in pyrite changes similarly to Te and Ag, indicating the existence of sub-micron
to nanometer-level inclusions of Au in pyrite (Figure 7h). Further, the correlation of Au
vs. As from pyrite reflects that part of Au also occurs as a solid solution in the Jilongshan
pyrite (Figure 14b).

In order to deepen the understanding of Se, Te, and Au enrichment in pyrite in the
Jilongshan deposit, we collected the trace elements’ data of pyrite in other skarn Au-Cu
related deposits in the middle and lower parts of the Yangtze River metallogenic belt,
including the Baoshantao, Dongguashan, Fenghuangshan, and Xinqiao deposits [42–44].
Figure 15 shows that the Se content in pyrite from the Jilongshan deposit is obviously
higher than that in other deposits. The Au contents of pyrite in Jilongshan and Xinqiao
are similar, but are higher than the other three deposits. Additionally, the Te contents of
pyrite in Jilongshan are higher than those in Xinqiao, as the data of the other three deposits
are not compared. Therefore, pyrite in the Jilongshan is a good host mineral of Se and Te,
which may generate significant economic benefits.
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5.3. Enrichment Conditions of Se, Te, and Au

The distribution of trace elements in pyrite is affected by temperature, pressure, pH,
redox conditions, and other factors. Variations in these physicochemical conditions can lead
to different enrichment degrees of ore-forming elements in fluids [13–15,41]. According to
the textures and compositions of different generations of pyrites, we can retrospectively
analyze the evolution of pyrite, and the variations in the concentrations of trace elements in
pyrite at different stages, especially Se, Te, and Au, further indicate the enrichment process
of these elements. Therefore, we discuss the effects of temperature and redox conditions on
the enrichment of several critical metal elements mentioned above.

(1) Temperature

Temperature plays a significant role in the precipitation of trace elements in pyrite.
There is a certain correlation between Se concentrations and temperatures. Some studies
suggest that the Se concentrations in pyrite will continuously increase with the rise in
hydrothermal fluid temperature [45], but others think that Se-rich pyrite is formed in a
low-temperature environment [46]. However, the concentration of Te in pyrite does not
significantly vary with temperature changes. Gold can exist in the form of Au-Cl complexes
or Au-S complexes during a wide-temperature range from below 250 ◦C to more than
300 ◦C in pyrite [47].

Previous studies have shown that high temperatures are favorable for the incorpora-
tion of Co into the pyrite lattice [48,49]. In the Jilongshan deposit, different generations
of pyrite have the following Co concentrations: Py1 (median, 1.1 ppm), Py2 (median,
135 ppm), Py3 (median, 194 ppm), and Py4 (median, 5.7 ppm). Evidently, the geological
phenomena show that the formation temperature of hydrothermal pyrite is higher than
that of sedimentary framboidal pyrite. This is consistent with the significantly higher Co
concentration measured in hydrothermal pyrite (Py2, Py3, and Py4) compared to sedi-
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mentary pyrite (Py1). Moreover, the Co concentrations in hydrothermal pyrites (Py2 and
Py3) are higher than that in Py4, indicating a temperature reduction trend from Py2 to
Py4. This corresponds with the common coexistence of Py2 and Py3 with chalcopyrite and
bornite (Figure 5h,j and Figure 6a–c), while Py4 coexists with low-temperature mineral
combinations like galena, sphalerite, and covellite (Figure 6e–i). Additionally, studies on
fluid inclusions in the Jilongshan deposit show that the homogenization temperatures of
fluid inclusions in quartz range from 126 ◦C to 386 ◦C, with an average temperature of
286 ◦C; those in calcite are from 95 ◦C to 328 ◦C, averaging 222 ◦C, also indicating a tem-
perature decrease from the early quartz sulfide stage to the late carbonate rock stage [18].
Further, He-Ar isotopic studies indicate an increase in the meteoric water mixing into the
ore-forming fluids during the sulfide stage, which explains the causation for temperature
variations in the evolution process of the ore-forming fluids [18]. Therefore, the decreased
temperature in ore-forming fluids is probably caused both by the distance from the por-
phyry as the pyrogen and metal source and the mixing with meteoric water during the fluid
migration from proximal (close to intrusive porphyry) to distal (sedimentary carbonatites).

The average Se concentrations in hydrothermal pyrites in the Jilongshan deposit are
Py2 (median, 138 ppm), Py3 (median, 344 ppm), and Py4 (median, 114 ppm), respectively,
which are showing a decreasing trend. As mentioned above, the formed temperatures of
the Jilongshan hydrothermal pyrites reduce from Py2 to Py4, and the decreased Se contents
in these pyrites suggest that a decrease in temperature is not conducive to the enriched
precipitation of Se. This is consistent with previous ideas that early-stage high-temperature
pyrite (Py2, Py3) is conducive to Se enrichment [45]. In contrast, the Te concentrations in
different generations of pyrites are Py2 (median, 30 ppm), Py3 (median, 4.9 ppm), and Py4
(median, 90 ppm). The Au concentrations in these pyrites are Py2 (median, 0.05 ppm),
Py3 (median, 0.52 ppm), and Py4 (median, 2.9 ppm), respectively. Both Au and Te in
pyrite show an increasing trend from Py2 to Py4 (Figure 8). These may suggest that Te and
Au mainly accumulate and precipitate in low-temperature pyrite during fluid evolution.
However, the native Au precipitates in Py2 might be another reason explaining why the
crystal Au contents in Py2 are less those in Py4.

(2) Redox Conditions

Varies in redox conditions also affect the enrichment of trace elements in pyrite.
Previous studies have indicated that the solubility of Te is lower in reductive fluids, and
a direct cause of Te precipitation is the reduction of Te4+ concentration in the fluid [50].
The high concentration of Te (20,803 ppm) in pyrite collected from the Dongping orogenic
gold deposit can be interpreted as being due to a sudden reduction in the oxygen fugacity
of the hydrothermal fluid [12]. Keith et al. [6] found out that there is no determined
relationship between Se and As in pyrites from different types of deposits and suggested
that the precipitation of Se is essentially unaffected by changes in redox conditions. For
Au, it is typically transported as Au(HS)2− complexes, involving a chemical equilibrium
Au + H2S + HS− = Au(HS)2

− + 0.5H2, and the increase in oxygen fugacity is conducive to
gold precipitation [51].

In the Jilongshan deposit, the concentrations of Te and Au are highest in Py1. From
the discussion in Section 5.1, it is known that framboidal pyrite forms in a dysoxic or oxidic
environment. This framboidal pyrite contains the highest Au and Te contents, probably
because of sedimentation, which has high background values for Au and Te. In such a case,
the framboidal pyrite can be a potential source for Jilongshan Au and Te mineralization.
However, based on the occurrence of Py1 in Jilongshan, the overprinted minerals (e.g.,
tetrahedrite, sphalerite, and galena) from hydrothermal fluids are quite obvious (Figure 4d).
At present, it is therefore hard to distinguish whether the high concentrations of Au and Te
are from sedimentation or late magmatic hydrothermal fluids, which needs further isotope
evidence, for example, S isotope of pyrite. Nevertheless, we here focused on the redox
conditions during the magmatic hydrothermal stage, which produced mainly hydrothermal
pyrites (Py2, Py3, and Py4). Han and Xie [18] deduced that oxygen fugacity during the
quartz-sulfide stage experienced a transition from early low oxygen fugacity to later high
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oxygen fugacity according to the mineral assemblage. The concentrations of Te and Au
are highest in Py4, indicating that relatively low temperature and high oxygen fugacity
are more conducive to the precipitation of Te and Au as isomorphisms in pyrite. There
is a strong positive correlation between Te and Au in Py4 (Figure 9e). Both single pyrite
grains and the laser ablation curve (Figures 7h and 10e,f) suggest that Te-Au melts may
exist in pyrite.

In summary, the evolution of different generations of pyrites can be represented
in Figure 16. Framboidal pyrite (Py1) is formed during the sedimentation period with
microcrystals of different morphologies. Although it contains high concentrations of Te, Au,
As, and Ag, as we have mentioned above, at present, we can hardly distinguish whether
it is a primary sedimentation product or it has been modified by hydrothermal fluids.
More works such as S isotope need to be performed to verify this. Due to the subduction
of the Paleo-Pacific plate and lithospheric stretching and thinning, large-scale magmatic
underplating occurred in the Mesozoic, which also resulted in large-scale mineralization
in the region [19]. During the mineralization process of skarn, due to the participation
of magmatic hydrothermal fluids, the concentrations of various trace elements gradually
increased in the fluids. Py1 was transformed during water–rock reactions, forming the
margin of Py2 (Figure 4e). Further precipitation of ore-forming elements in the fluid
resulted in the crystallization of coarse grains, euhedral Py2, which later experienced stress
fracturing, with its cracks filled later by chalcopyrite (Figure 4g,h). The concentrations of
As and Te within the same pyrite grain in different locations varied, while Se was relatively
uniform (Figure 10c,d). As the fluid migrated further outward, the early-stage mineral (e.g.,
chalcopyrite) was replaced by Py3 attached to the edges or by filling its cracks (Figure 10e).
Continuous precipitation of Se further led to the highest concentration in Py3. At the same
time, the concentrations of Au and Te gradually increased as well. Selenium and Ni in Py2
and Py3 show a certain positive correlation and both have relatively high concentrations.
With a further decrease in temperature and fluids going much farther away from the
intrusion, Py4 was formed. The positive correlation between Te and Au suggests that a
Te-Au melt may have formed in the fluid and moved to precipitate in Py4 (Figure 9e). In
addition, the concentration of As in Py4 significantly increased compared to Py3. Arsenic
and S can be combined to form [AsS]2−, causing lattice distortion, thereby promoting the
introduction of Au+ and As3+ into the pyrite lattice to form invisible gold [52]. This is
conducive for Py4 to become the main mineralization stage for Au and Te, which is in line
with our test results.
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6. Conclusions

The following conclusions are reached:

1. The pyrite in the Jilongshan deposit can be divided into four different generations:
Py1 is framboidal pyrite formed during the sedimentary period; Py2, Py3, and Py4 all
belong to pyrite formed during the hydrothermal period.

2. In the Jilongshan pyrites, Se mainly occurs as isomorphism. Tellurium can occur as
both isomorphism and Te-bearing inclusions. Gold mainly occurs as lattice gold and
in a small amount as native Au in pyrite.

3. High temperatures contribute to the enrichment and precipitation of Se in hydrother-
mal pyrite, such as Py2 (median, 138 ppm) and Py3 (median, 344 ppm), while low
temperatures and an increase in oxygen fugacity are conducive to the enrichment
and precipitation of Au and Te in hydrothermal pyrite, particularly in Py4, which has
average Te and Au concentrations of 140 ppm and 12 ppm, respectively.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/min13121516/s1, Table S1: Detailed information for studied samples in Jilongshan Cu-Au
deposits. Table S2: EPMA data for Jilongshan pyrite (wt.%). Table S3: LA-ICP-MS data for Jilongshan
pyrite (ppm).
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