Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = Sandhills

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1025 KiB  
Article
Neither Scale of Response Nor Threshold in Habitat Availability Is Conserved Across Species of Forest-Dwelling Songbirds Responding to Habitat Loss
by Bill A. Thompson
Birds 2025, 6(1), 9; https://doi.org/10.3390/birds6010009 - 10 Feb 2025
Viewed by 786
Abstract
Thresholds can be an effective tool in conservation planning, as they can form a defensible target for habitat conservation or restoration. Generalized thresholds must be used with caution, however, as threshold responses may vary with species and spatial scale. The objectives of this [...] Read more.
Thresholds can be an effective tool in conservation planning, as they can form a defensible target for habitat conservation or restoration. Generalized thresholds must be used with caution, however, as threshold responses may vary with species and spatial scale. The objectives of this study were to identify the scales at which forest-dwelling birds respond to both habitat availability and critical thresholds in forest cover associated with their occurrence, and to assess if life history traits relate to either scale of response or critical threshold. Using point count data from the Ontario Breeding Bird Atlas, I generated concentric buffers ranging from 100 m to 10 km radius around a random subset of point counts and described forest cover and species occurrence within each buffer. I assessed the likelihood of occurrence of each species at each scale of analysis using logistic regression and identified forest cover thresholds below which the occurrence of each species becomes unlikely using fitted regression curves and ROC plots. Species varied in their response to both landscape scale and forest cover, based on relative growth rate, clutch size, and site fidelity. The mean response to forest cover was 30.8%, with landscape scale ranging from 200 m to 9 km. Despite this range, pragmatic approaches to conservation planning are still possible. Full article
Show Figures

Figure 1

23 pages, 3078 KiB  
Article
Non-Targeted PFAS Suspect Screening and Quantification of Drinking Water Samples Collected through Community Engaged Research in North Carolina’s Cape Fear River Basin
by Rebecca A. Weed, Grace Campbell, Lacey Brown, Katlyn May, Dana Sargent, Emily Sutton, Kemp Burdette, Wayne Rider, Erin S. Baker and Jeffrey R. Enders
Toxics 2024, 12(6), 403; https://doi.org/10.3390/toxics12060403 - 31 May 2024
Cited by 5 | Viewed by 3271
Abstract
A community engaged research (CER) approach was used to provide an exposure assessment of poly- and perfluorinated (PFAS) compounds in North Carolina residential drinking water. Working in concert with community partners, who acted as liaisons to local residents, samples were collected by North [...] Read more.
A community engaged research (CER) approach was used to provide an exposure assessment of poly- and perfluorinated (PFAS) compounds in North Carolina residential drinking water. Working in concert with community partners, who acted as liaisons to local residents, samples were collected by North Carolina residents from three different locations along the Cape Fear River basin: upper, middle, and lower areas of the river. Residents collected either drinking water samples from their homes or recreational water samples from near their residence that were then submitted by the community partners for PFAS analysis. All samples were processed using weak anion exchange (WAX) solid phase extraction and analyzed using a non-targeted suspect screening approach as well as a quantitative approach that included a panel of 45 PFAS analytes, several of which are specific to chemical industries near the collection site locations. The non-targeted approach, which utilized a suspect screening list (obtained from EPA CompTox database) identified several PFAS compounds at a level two confidence rating (Schymanski scale); compounds identified included a fluorinated insecticide, a fluorinated herbicide, a PFAS used in polymer chemistry, and another that is used in battery production. Notably, at several locations, PFOA (39.8 ng/L) and PFOS (205.3 ng/L) were at levels that exceeded the mandatory EPA maximum contaminant level (MCL) of 4 ng/L. Additionally, several sites had detectable levels of PFAS that are unique to a local chemical manufacturer. These findings were communicated back to the community partners who then disseminated this information to the local residents to help empower and aid in making decisions for reducing their PFAS exposure. Full article
Show Figures

Graphical abstract

31 pages, 3838 KiB  
Article
Pyrogeography of the Western Great Plains: A 40-Year History of Fire in Semi-Arid Rangelands
by Devan Allen McGranahan and Carissa L. Wonkka
Fire 2024, 7(1), 32; https://doi.org/10.3390/fire7010032 - 17 Jan 2024
Cited by 5 | Viewed by 3504
Abstract
This study describes spatial and temporal patterns in fire across the US Western Great Plains over the last 40 years. Although pyrogeographic studies have explored the nexus of fire patterns in relation to the bio-physical environment and socio-ecological trends, most of this research [...] Read more.
This study describes spatial and temporal patterns in fire across the US Western Great Plains over the last 40 years. Although pyrogeographic studies have explored the nexus of fire patterns in relation to the bio-physical environment and socio-ecological trends, most of this research has focused on forested ecosystems and regions long known for conflict between wildfires and human development, especially at the wildland–urban interface. But evidence suggests large wildfire activity is increasing in the US Great Plains, and the Western Great Plains—a Land Resource Region comprised of four ecoregions, Northwestern Plains, High Plains, Nebraska Sandhills, and Southwestern Tablelands—not only contains some of the largest areas of rangeland in the US but also the highest concentration of public land in the Great Plains. As such, the Western Great Plains provides an opportunity to explore fire activity in primarily rural landscapes with a combination of public and private ownership, all dominated by rangeland vegetation. We combined several publicly-available datasets containing fire records between 1992 and 2020 to create two databases, one with georeferenced point data on 60,575 wildfire events in the region, and another with georeferenced perimeter data for 2665 fires. Ignition by humans was the dominant cause of fires. No ecoregion showed a statistically significant trend towards either increasing or decreasing the annual burned area. The Northwestern Plains had the most burned area and the greatest number of incidents—consistently around or above 1000 incidents per year since 1992—with the majority in July. The High Plains showed the greatest increase in annual fire incidence, never reaching more than 200–300 per year 1992–2009, and averaging above 1000 incidents per year since 2010. Few long-term trends in human population, weather, or fuel metrics appear strongly associated with fire patterns in any ecoregion, although the years 2006, 2012, and 2017 stood out for their levels of fire activity, and these years often frequently logged extreme values in wildland fuel metrics. These relationships merit much closer examination in the Western Great Plains, because like other rangeland-dominated landscapes, the fine fuels that comprise these wildland fuelbeds are much more responsive to fine-scale changes in moisture conditions. Rural Western Great Plains landscapes are a mosaic of public and private land ownership, and an increasing impact of wildfires on public grazing lands—which are often situated within other jurisdictions or ownership—will likely have an impact on rural livelihoods. Full article
Show Figures

Figure 1

14 pages, 1072 KiB  
Article
The Influence of Grazing Systems on Bird Species Richness and Density in the Nebraska Sandhills
by Silka L. F. Kempema, Walter H. Schacht and Larkin A. Powell
Diversity 2023, 15(12), 1160; https://doi.org/10.3390/d15121160 - 22 Nov 2023
Cited by 2 | Viewed by 1649
Abstract
Grazing is the de facto method of habitat management used in much of the Nebraska Sandhills. Ranchers use a variety of grazing systems, and our goal was to evaluate the effects of systems on grassland birds. We estimated the species richness and density [...] Read more.
Grazing is the de facto method of habitat management used in much of the Nebraska Sandhills. Ranchers use a variety of grazing systems, and our goal was to evaluate the effects of systems on grassland birds. We estimated the species richness and density of grassland birds for three grazing systems used on private ranches: long, medium, and short duration grazing systems. We observed sixty species, and the grazing system with pastures utilizing long duration grazing periods had the highest estimates of species richness as well as the most heterogeneous habitat structure. Differences in species richness among systems were most pronounced in years of limited precipitation. Together, grasshopper sparrows (Ammodramus savannarum), western meadowlarks (Sturnella neglecta), and brown-headed cowbirds (Molothrus ater) accounted for 72% of our observations. We used a model comparison approach to determine the effects of habitat on the densities of six species. Densities of grasshopper sparrows and mourning doves showed effects of the grazing system. More species had higher densities in short duration, rotational systems than other grazing systems. However, species of grassland birds showed responses to a variety of cover types and habitat structures depending on life history needs. Regardless of the grazing system used, managers can use grazing and other tools such as prescribed burning to maintain habitat heterogeneity to support diverse bird communities. Full article
Show Figures

Figure 1

8 pages, 7514 KiB  
Case Report
Intrahepatic Cholangiocarcinoma Identified in a Zoo-Housed Sandhill Crane (Grus canadensis): An Anatomopathological and Metagenomic Study
by Hye-Ryoung Kim, Hyeon-Su Kim and Yong-Kuk Kwon
Animals 2023, 13(22), 3469; https://doi.org/10.3390/ani13223469 - 10 Nov 2023
Cited by 3 | Viewed by 1446
Abstract
Tumors in birds can be caused by a variety of factors such as species, age, sex, virus, chemicals, and environment. In particular, tumors are a major cause of death in long-lived birds such as parrots and zoo birds. A male sandhill crane that [...] Read more.
Tumors in birds can be caused by a variety of factors such as species, age, sex, virus, chemicals, and environment. In particular, tumors are a major cause of death in long-lived birds such as parrots and zoo birds. A male sandhill crane that was bred for 8 years in a zoo was diagnosed with intrahepatic cholangiocarcinoma (ICC). At necropsy, the liver revealed a multinodular mass of variable colors, and severe cirrhosis and hemorrhages were present. Histologically, ICC was characterized by the presence of both types of ICC: small-duct type and large-duct type. Large-duct-type ICC was distinguished by the presence of multifocal biliary neoplasia, characterized by the diffuse papillary proliferation of columnar cells resembling large cholangiocytes. Small-duct-type ICC was characterized by the presence of non-mucin-producing cuboidal cells such as bile duct cells. In this case, no viral cause was identified from the metagenomic analysis and PCR of ICC; however, a contributing role of Cutibacterium sp. and E. coli identified from the metagenomics could not be excluded. This study is the first to describe the anatomopathological characteristics of ICC in the studied sandhill crane and attempts to determine its potential infectious etiology using metagenomics. Full article
(This article belongs to the Section Zoo Animals)
Show Figures

Figure 1

43 pages, 3208 KiB  
Article
Simulation of the Impact of Rangeland Management Strategies on Soil Health, Environmental Footprint, Economic Impact, and Human-Edible Nutrient Conversion from Grasslands in the Central and Northern Great Plains of the United States
by Merri E. Day, Minfeng Tang, Phillip A. Lancaster, Deann Presley, Dustin L. Pendell, Walter H. Fick, Luca Doro, Adam Ahlers and Andrew Ricketts
Sustainability 2023, 15(16), 12456; https://doi.org/10.3390/su151612456 - 16 Aug 2023
Cited by 3 | Viewed by 2050
Abstract
The objective of this study was to determine the impact of combinations of management practices on the sustainability of rangelands in different ecoregions across the Great Plains. Six study sites were selected in Kansas, Nebraska, Wyoming, Montana, and South Dakota, encompassing the Flint [...] Read more.
The objective of this study was to determine the impact of combinations of management practices on the sustainability of rangelands in different ecoregions across the Great Plains. Six study sites were selected in Kansas, Nebraska, Wyoming, Montana, and South Dakota, encompassing the Flint Hills, High Plains, and Sandhills ecoregions. Twelve rangeland management scenarios were developed from combinations of stocking density (light, moderate, heavy), grazing management (continuous, rotational), and fire regime (no burn, spring burn) along with a no-management scenario. Each scenario was simulated at each site using established computer models: Agricultural Policy/Environmental eXtender model, Integrated Farm System Model, and Impact Analysis for Planning. Additionally, human-edible nutrient conversion was computed. A sustainability index was developed to encompass the three sustainability pillars (i.e., environmental, economic, and social) into a single value. Unmanaged rangelands generally had less soil (20%), nitrogen (30%), and phosphorus (50%) losses, although this was not consistent across ecoregions, and similar or greater soil carbon deposition than grazed rangelands. There was an interaction among stocking density, grazing management, fire regime, and ecoregion for many indicators of soil health, greenhouse gas emissions, economic activity, and human-edible nutrient conversion. The scenarios with the greatest overall sustainability index value had moderate to high index values for each of the three pillars (people, planet, profit). In conclusion, the ranking of rangeland management practices based on sustainability indicators was inconsistent across ecoregions, indicating that the optimal management system to improve sustainability of rangelands is not the same for all ecoregions. Full article
(This article belongs to the Special Issue Grazing Management, Conservation and Climate Mitigation on Rangelands)
Show Figures

Figure 1

11 pages, 3696 KiB  
Article
Seed Source for Restoration: Little Bluestem (Schizachyrium scoparium (Michx.) Nash) and the Carolina Sandhills
by Elizabeth Johnson, Althea Hotaling Hagan and Patrick Hiesl
Ecologies 2023, 4(2), 344-354; https://doi.org/10.3390/ecologies4020022 - 26 May 2023
Viewed by 2249
Abstract
Prairie and savanna ecosystems have declined dramatically worldwide. In the Southeastern United States, longleaf pine savannas have been reduced to less than 3% of their pre-European range. Restoring longleaf pine across the area has become a regional goal. Little bluestem (Schizachyrium scoparium [...] Read more.
Prairie and savanna ecosystems have declined dramatically worldwide. In the Southeastern United States, longleaf pine savannas have been reduced to less than 3% of their pre-European range. Restoring longleaf pine across the area has become a regional goal. Little bluestem (Schizachyrium scoparium (Michx.) Nash) is critical to carrying the ecologically important fire through this ecosystem in some longleaf pine savannas. Little bluestem has a range that spans most of north America and is thought to display ecotypic variation. As a part of a longleaf pine restoration project in Camden, SC, we investigated whether the seed source of little bluestem and the site preparation techniques impacted the survival and growth of broadcasted seeds. In the field and greenhouse, we compared locally and commercially sourced seeds and field site preparation techniques including discing, raking, or no treatment. At the end of the growing season, there were significantly more plants grown from seeds collected locally compared to plants from seeds available commercially. Plants grown from locally collected seeds also invested more heavily in roots than plants grown from commercial seeds. Site preparation techniques did not appear to significantly impact plant survival. Collecting seed locally will help to ensure long-term restoration success by establishing populations of plants that are adapted to the local environmental conditions. Full article
Show Figures

Figure 1

12 pages, 2638 KiB  
Article
Characterizing the Change of Annual Cone Production in Longleaf Pine Forests
by Xiongwen Chen and John L. Willis
Seeds 2023, 2(2), 220-231; https://doi.org/10.3390/seeds2020017 - 24 Apr 2023
Viewed by 1983
Abstract
Sporadic cone (or seed) production challenges longleaf pine forest restoration. Characterizing annual cone production change from long-term monitored data provides functional information on the foundational species of this imperiled ecosystem. In this study, permutation entropy (PE) and phase change were used to analyze [...] Read more.
Sporadic cone (or seed) production challenges longleaf pine forest restoration. Characterizing annual cone production change from long-term monitored data provides functional information on the foundational species of this imperiled ecosystem. In this study, permutation entropy (PE) and phase change were used to analyze longleaf pine annual cone production based on cone counts from four sites (Escambia Experimental Forest, Blackwater River State Forest, The Jones Center at Ichauway, and Sandhills State Forest). PE is an analytical tool to measure the complexity of a dynamic system while phase change characterizes the stage of self-organization. Results indicate that PE at each site was close to 1.0 (largely random changes in annual cone production) and generally increased with time. The positive association between the permutation entropy of cone production and average air temperature at different times was significant at two sites (Blackwater River State Forest and The Jones Center at Ichauway). The frequency distribution of phases (e.g., Poor (P), Fair (F), Good (G), Bumper (B)) in cone production followed negative power laws. Phase P could transition to any stage, but more than 50% remained in P across sites. For phase G, it would revert to P more than 50% of the time. Phase B would shift to P, except at Sandhills State Forest. The average lasting time of phase P was approximately 3.7 years. The overall relationship between the interval time of phase B and cone production was not statistically significant. Similarly, the overall relationship between cone production in phase B and the phase change times between consecutive B phases was not statistically significant. These results provide information on the ecological complexity of cone (or seed) production. Our methods can be helpful for estimating the occurrence of bumper cone (or seed) production, the lasting period between phase changes, and providing a tool for predicting natural regeneration potential over time for longleaf pine and other tree species (e.g., masting species). Full article
Show Figures

Figure 1

18 pages, 4726 KiB  
Article
Exploring Old Data with New Tricks: Long-Term Monitoring Indicates Spatial and Temporal Changes in Populations of Sympatric Prairie Grouse in the Nebraska Sandhills
by Danielle J. Berger, Jeffrey J. Lusk, Larkin A. Powell and John P. Carroll
Diversity 2023, 15(1), 114; https://doi.org/10.3390/d15010114 - 13 Jan 2023
Cited by 2 | Viewed by 3215
Abstract
The contiguous grasslands of the Sandhills region in Nebraska, USA, provide habitat for two sympatric, grassland-obligate species of grouse, the greater prairie-chicken (Tympanuchus cupido pinnatus) and the plains sharp-tailed grouse (Tympanuchus phasianellus jamesi). Collectively referred to as prairie grouse, [...] Read more.
The contiguous grasslands of the Sandhills region in Nebraska, USA, provide habitat for two sympatric, grassland-obligate species of grouse, the greater prairie-chicken (Tympanuchus cupido pinnatus) and the plains sharp-tailed grouse (Tympanuchus phasianellus jamesi). Collectively referred to as prairie grouse, these birds are monitored and managed jointly by wildlife practitioners who face the novel challenge of conserving historically allopatric species in shared range. We reconstructed region-wide and route-specific prairie grouse population trends in the Sandhills, using a 63-year timeseries of breeding ground counts aggregated from old reports and paper archives. Our objective was to repurpose historical data collected for harvest management to address questions pertinent to the conservation of prairie grouse, species whose populations have declined precipitously throughout their respective ranges. Because we cannot change the sampling protocol of historical data to answer new questions, we applied 3 different methods of data analysis—traditional regional mean counts used to adjust harvest regulations, spatially implicit, site-specific counts, and spatially explicit trends. Prairie-chicken populations have increased since the 1950s, whereas sharp-tailed grouse populations have remained stable or slightly declined. However, each species exhibited unique shifts in abundance and distribution over time, and regional indices masked important aspects of population change. Our findings indicate that legacy data have the capacity to tell new stories apart from the questions they were collected to answer. By integrating concepts from landscape ecology—a discipline that emerged decades after the collection of our count data began—we demonstrate the potential of historical data to address questions of modern-day conservation concern, using prairie grouse as a case study. Full article
Show Figures

Figure 1

20 pages, 2295 KiB  
Article
Diversity and Resilience of Seed-Removing Ant Species in Longleaf Sandhill to Frequent Fire
by Rachel A. Atchison and Andrea Lucky
Diversity 2022, 14(12), 1012; https://doi.org/10.3390/d14121012 - 22 Nov 2022
Viewed by 2538
Abstract
Prescribed fire is used globally as a habitat restoration tool and is widely accepted as supporting biotic diversity. However, in fire-prone ecosystems, research has sometimes documented post-fire reduction in ant diversity and accompanying changes in seed removal behavior. This is concerning because ants [...] Read more.
Prescribed fire is used globally as a habitat restoration tool and is widely accepted as supporting biotic diversity. However, in fire-prone ecosystems, research has sometimes documented post-fire reduction in ant diversity and accompanying changes in seed removal behavior. This is concerning because ants provide important ecosystem services that can aid in restoration efforts, including seed dispersal. In this study, we examined the immediate impacts of fire in the well-studied ant community of longleaf pine forests (LLP) in the SE USA. We surveyed seed-removing ant species in a LLP sandhill ecosystem to investigate the effects of prescribed fire and coarse woody debris (CWD), a nesting and foraging resource, on ant community composition and ant–seed interactions. Seed-removing ants comprised a significant portion of detected ant species (20 of 45); eight of these species are documented removing seeds for the first time. Following an experimentally applied low-intensity summer burn, decreases in seed remover detection were observed, along with reductions in the number of seeds removed, across both burned and unburned areas; neither prescribed fire nor proximity to CWD significantly influenced these factors. Together, these results show that seed-removing ant species constitute a substantial proportion of the LLP sandhill ant community and are relatively robust to habitat changes mediated by low-intensity prescribed burning during the growing season. Considering ant community resiliency to fire, we can infer that using prescribed fire aligns with the goals of restoring and maintaining biotic diversity in this fire-prone ecosystem. Full article
(This article belongs to the Special Issue Diversity, Biogeography and Community Ecology of Ants II)
Show Figures

Figure 1

18 pages, 3531 KiB  
Article
The Influence of Slash Management Practices on Water and Nutrient Dynamics in Longleaf Pine Forests
by Jacob Murray, Donald Hagan, Patrick Hiesl and Robert Baldwin
Forests 2022, 13(9), 1449; https://doi.org/10.3390/f13091449 - 9 Sep 2022
Cited by 3 | Viewed by 2250
Abstract
(1) Silvicultural applications that manipulate woody debris loading and the structural composition of a forest can have both short and long-term effects on biogeochemical cycling. Longleaf pine forests have been the historically dominant community types throughout much of the Southeastern United States. Fire [...] Read more.
(1) Silvicultural applications that manipulate woody debris loading and the structural composition of a forest can have both short and long-term effects on biogeochemical cycling. Longleaf pine forests have been the historically dominant community types throughout much of the Southeastern United States. Fire exclusion, hardwood encroachment, and resource exploitation have severely reduced the amount of remaining longleaf pine habitats, making ecological restoration necessary. The silvicultural treatments used to reestablish these communities have been widespread, leading to some skepticism regarding the sustainability of certain restoration practices. (2) This study aimed to understand how overstory manipulation and woody debris management affected soil water retention rates and nutrient availability. Using a randomized complete block design, abiotic responses to biomass harvesting, conventional harvesting, and mastication treatments were measured across a soil moisture gradient in the South Carolina sandhills. (3) Our findings indicate that mastication increased soil moisture retention rates by 37% and 41%, on average, compared to conventional harvesting and biomass harvesting, respectively. (4) Additionally, soil nutrient stocks did not decline following any management practice, indicating that both biomass harvesting and mastication treatments may not necessarily impact site productivity in a negative manner. These findings imply that mastication treatments keep moisture retention high and do not immediately change soil nutrient availability in longleaf pine forests. Long-term vegetation response studies should continue to document successional trends in conjunction with moisture retention rates and long-term nutrient pulsing. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

20 pages, 3110 KiB  
Article
Reclaiming Wetlands after Oil Sands Mining in Alberta, Canada: The Changing Vegetation Regime at an Experimental Wetland
by Melissa House, Dale H. Vitt, Lilyan C. Glaeser and Jeremy A. Hartsock
Land 2022, 11(6), 844; https://doi.org/10.3390/land11060844 - 4 Jun 2022
Cited by 2 | Viewed by 2987
Abstract
Surface mining for oil sand results in the formation of large pits that must be reclaimed. Some of these pits are backfilled with a myriad of substrates, including tailings rich in cations and anions, to form a solid surface. Experimental reclamation of the [...] Read more.
Surface mining for oil sand results in the formation of large pits that must be reclaimed. Some of these pits are backfilled with a myriad of substrates, including tailings rich in cations and anions, to form a solid surface. Experimental reclamation of the East in-pit located on the Syncrude Canada Ltd. mine lease was initiated in 2011 with Sandhill Wetland. Here, we report on monitoring (between 2015 and 2021) of Sandhill Wetland plant communities and significant environmental features, including base cations and water tables. Multivariate analyses demonstrated that the three dominant plant communities established in 2013 have continued to be dominated by the same species nine years after reclamation was initiated, but with reduced species richness. Plant communities have shifted across the wetland in response to water table changes and increases in sodium concentrations. The stoichiometry of base cations is unlike the natural wetlands of the region, and the surficial water chemistry of the wetland is unique. In response to variability in precipitation events coupled with wetland design, water tables have been highly variable, creating shifting water regimes across the wetland. Plant community responses to these shifting conditions, along with increases in base cation concentrations, especially sodium, provide background data for future in-pit reclamation designs. The plant responses underscore the need to develop reclamation designs for landscapes disturbed by mining that alleviate extreme water table fluctuation events and decrease cation concentrations to levels that approach natural wetlands. Full article
(This article belongs to the Special Issue Wetland Construction and Restoration: Design and Performance)
Show Figures

Figure 1

19 pages, 7571 KiB  
Article
Recruitment Patterns and Potential Climate Change Impacts on Three Florida Hylids with Different Life Histories
by Sky T. Button, Cathryn H. Greenberg and James D. Austin
Diversity 2022, 14(2), 129; https://doi.org/10.3390/d14020129 - 10 Feb 2022
Cited by 2 | Viewed by 3177
Abstract
Altered weather patterns associated with climate change are likely to adversely affect amphibian recruitment, especially for species dependent on ephemeral, geographically isolated wetlands for breeding. Future changes in temperature and rainfall patterns could affect hydroregimes (periodicity, depth, duration, and timing of water in [...] Read more.
Altered weather patterns associated with climate change are likely to adversely affect amphibian recruitment, especially for species dependent on ephemeral, geographically isolated wetlands for breeding. Future changes in temperature and rainfall patterns could affect hydroregimes (periodicity, depth, duration, and timing of water in wetlands) or adult breeding effort. We used 24 years of continuous amphibian trapping, weather, and hydroregime data to identify breeding-to-metamorphosis periods (BMPs) and environmental factors affecting annual recruitment by three hylid species at eight isolated ephemeral limesink ponds in Florida longleaf-wiregrass sandhills. We used standardized climate metrics (Bioclim variables) to predict future precipitation, temperature and hydroregime variables, then used them to predict future recruitment in 2050 and 2070 under two emissions scenarios. We hypothesized that Hyla gratiosa would be more sensitive to short-term pond drying than H. femoralis or H. squirella due to its lower abundance and more specific habitat requirements. Hyla gratiosa recruitment was not explained by adult breeding effort and was more dependent on higher water levels during BMPs than for H. femoralis or H. squirella, independent of rainfall. In contrast, H. femoralis and H. squirella recruitment depended heavily on rainfall independent of pond depth and was positively associated with adult breeding effort. Models predicted moderate decreases in H. gratiosa and H. squirella recruitment by 2050 but projections were highly uncertain for all three species by 2070. Our findings highlight the importance of maintaining wetlands with diverse hydroregimes to accommodate species with different BMPs and hydroregime requirements. Proactive monitoring and conservation measures such as headstarting and creating artificial ponds may be necessary for these and other amphibian species that may suffer reduced recruitment under future climate change. Full article
(This article belongs to the Special Issue Amphibian Ecology in Geographically Isolated Wetlands)
Show Figures

Figure 1

29 pages, 3976 KiB  
Article
Soil Chemistry and Clay Mineralogy of an Alluvial Chronosequence from the North Carolina Sandhills of the Upper Coastal Plain, USA
by Bradley E. Suther, David S. Leigh and Larry T. West
Soil Syst. 2022, 6(1), 1; https://doi.org/10.3390/soilsystems6010001 - 23 Dec 2021
Cited by 3 | Viewed by 3365
Abstract
Temporal changes in soil development were assessed on fluvial terraces of the Little River in the upper Coastal Plain of North Carolina. We examined five profiles from each of six surfaces spanning about 100,000 years. Soil-age relationships were evaluated with inter-surface clay mineral [...] Read more.
Temporal changes in soil development were assessed on fluvial terraces of the Little River in the upper Coastal Plain of North Carolina. We examined five profiles from each of six surfaces spanning about 100,000 years. Soil-age relationships were evaluated with inter-surface clay mineral comparisons and regression of chemical properties versus previously reported optically-stimulated luminescence ages using the most developed subsoil horizon per profile. Bases to alumina (Bases/Al2O3) ratios have negative correlations with age, whereas dithionite-Fe (FeD) concentrations are positively correlated with time and differentiate floodplain (<200 yr BP) from terrace (≥10 ± 2 ka) soils and T4 pedons (75 ± 10 ka) from younger (T1-T3b, 10 ± 2–55 ± 15 ka) and older (T5b, 94 ± 16 ka) profiles. Entisols develop into Ultisols with exponentially decreasing Bases/Al2O3 ratios, reflecting rapid weatherable mineral depletion and alumina enrichment during argillic horizon development in the first 13–21 kyr of pedogenesis. Increasing FeD represents transformation and illuviation of free Fe inherited from parent sediments. Within ~80–110 kyr, a mixed clay mineral assemblage becomes dominated by kaolinite and gibbsite. Argillic horizons form by illuviation, secondary mineral transformations, and potentially, a bioturbation-translocation mechanism, in which clays distributed within generally sandy deposits are transported to surface horizons by ants and termites and later illuviated to subsoils. T5b profiles have FeD concentrations similar to, and gibbsite abundances greater than, those of pedons on 0.6–1.6 Ma terraces along Coastal Plain rivers that also drain the Appalachian Piedmont. This is likely because the greater permeability and lower weatherable mineral contents of sandy, Coastal Plain-sourced Little River alluvium favor more rapid weathering, gibbsite formation, and Fe translocation than the finer-grained, mineralogically mixed sediments of Piedmont-draining rivers. Therefore, recognizing provenance-related textural and mineralogical distinctions is crucial for evaluating regional chronosequences. Full article
Show Figures

Figure 1

27 pages, 10155 KiB  
Article
Monitoring Climate Impacts on Annual Forage Production across U.S. Semi-Arid Grasslands
by Markéta Poděbradská, Bruce K. Wylie, Deborah J. Bathke, Yared A. Bayissa, Devendra Dahal, Justin D. Derner, Philip A. Fay, Michael J. Hayes, Walter H. Schacht, Jerry D. Volesky, Pradeep Wagle and Brian D. Wardlow
Remote Sens. 2022, 14(1), 4; https://doi.org/10.3390/rs14010004 - 21 Dec 2021
Cited by 16 | Viewed by 4887
Abstract
The ecosystem performance approach, used in a previously published case study focusing on the Nebraska Sandhills, proved to minimize impacts of non-climatic factors (e.g., overgrazing, fire, pests) on the remotely-sensed signal of seasonal vegetation greenness resulting in a better attribution of its changes [...] Read more.
The ecosystem performance approach, used in a previously published case study focusing on the Nebraska Sandhills, proved to minimize impacts of non-climatic factors (e.g., overgrazing, fire, pests) on the remotely-sensed signal of seasonal vegetation greenness resulting in a better attribution of its changes to climate variability. The current study validates the applicability of this approach for assessment of seasonal and interannual climate impacts on forage production in the western United States semi-arid grasslands. Using a piecewise regression tree model, we developed the Expected Ecosystem Performance (EEP), a proxy for annual forage production that reflects climatic influences while minimizing impacts of management and disturbances. The EEP model establishes relations between seasonal climate, site-specific growth potential, and long-term growth variability to capture changes in the growing season greenness measured via a time-integrated Normalized Difference Vegetation Index (NDVI) observed using a Moderate Resolution Imaging Spectroradiometer (MODIS). The resulting 19 years of EEP were converted to expected biomass (EB, kg ha−1 year−1) using a newly-developed relation with the Soil Survey Geographic Database range production data (R2 = 0.7). Results were compared to ground-observed biomass datasets collected by the U.S. Department of Agriculture and University of Nebraska-Lincoln (R2 = 0.67). This study illustrated that this approach is transferable to other semi-arid and arid grasslands and can be used for creating timely, post-season forage production assessments. When combined with seasonal climate predictions, it can provide within-season estimates of annual forage production that can serve as a basis for more informed adaptive decision making by livestock producers and land managers. Full article
Show Figures

Figure 1

Back to TopTop