Soil Chemistry and Clay Mineralogy of an Alluvial Chronosequence from the North Carolina Sandhills of the Upper Coastal Plain, USA
Abstract
:1. Introduction
- Assess the utility of soil chemical and mineralogical properties as indicators of terrace age;
- Characterize temporal trends in the total chemistry and mineralogy of subsoils, including clay mineral transformations; identify pedogenic processes responsible for such changes; and relate these properties and processes to argillic horizon formation;
- Compare soil developmental trends along the Little River with those from elsewhere in the Coastal Plain.
2. Materials and Methods
2.1. Study Location
2.1.1. Physiography and Terrace Ages
2.1.2. Soil Classification and Climate
2.2. Field Sampling
Landform | Mapped Series and Subgroup a | Field-Verified Series and Subgroup b | OSL Sample No. c | Mean OSL Age (ka) c,d ± 2-Sigma | OSL Sample Depth (cm) c | Average HARL (m) c,e | Proportion of Study Area (%) c,f |
---|---|---|---|---|---|---|---|
Floodplain | Chewacla (Fluvaquentic Dystrudepts) | Pactolus taxadjunct (Typic Quartzipsamments) | LR@200 | 1.3 ± 0.3 | 200 | 1.2 | 1.4 |
Terrace 1 | Kenansville (Arenic Hapludults) | Tarboro taxadjunct (Typic Udipsamments) | 31CD475-T2 | 9.9 ± 2.0 | 90–120 | 3.0 | 9.1 |
Terrace 2 | Lakeland (Typic Quartzipsamments) | Kenansville (Arenic Hapludults) | 31CD475-110 | 17.4 ± 4.2 | 110 | 4.7 | 19.1 |
Terrace 3a | Kalmia (Typic Hapludults) | nd | nr | nr | nr | 7.3 | 6.4 |
Terrace 3b | Blaney (Arenic Hapludults) | Wagram—site 1 (Arenic Kandiudults) Wagram taxadjunct—site 2 (Grossarenic Kandiudults) | TU5@90 TU5@190 T32A160 T32A180 | 40.0 ± 9.9 (site 1) 55.2 ± 15.2 (site 1) 72.7 ± 13.1 (site 2) 51.3 ± 12.2 (site 2) | 90 190 160 180 | 9.6 | 16.0 |
Terrace 4 | Dothan (Plinthic Kandiudults) | Candor (Grossarenic Kandiudults) | T4-161 | 74.6 ± 10.4 | 161 | 15.6 | 23.2 |
Terrace 5a | Candor (Grossarenic Kandiudults) | nd | nr | nr | nr | 20.3 | 9.0 |
Terrace 5b | Candor (Grossarenic Kandiudults) | Candor (Grossarenic Kandiudults) | T5-135 | 94.0 ± 15.9 | 135 | 29.0 | 15.9 |
Landform | Horizon or Sample | Depth (cm) | Moist Matrix Color a | Texture Class b | Structure c | Bulk Density (g/cm3) |
---|---|---|---|---|---|---|
CB | 1 d | na | 2.5Y 5/4 | grxcos | na | na |
2 | na | 10YR 6/4 | cos | na | na | |
3 | na | 10YR 6/4 | s | na | na | |
4 | na | 10YR 4/3 | cos | na | na | |
5 | na | 2.5Y 5/4 | s | na | na | |
FP | A | 0–7 | 10YR 4/2 | ls | wk med gr | 1.00 |
C1 | 7–24 | 10YR 6/4 | s | wk med gr | 1.31 | |
C2 | 24–37 | 10YR 5/4 | ls | wk med gr | 1.35 | |
A′b | 37–47 | 10YR 4.5/4 | fs | wk med gr | 1.38 | |
C′1 | 47–58 | 10YR 7/3 | s | sg | 1.38 | |
C′2 | 58–78 | 10YR 6/6 | s | wk fn gr | 1.42 | |
C′3 | 78–100 | 10YR 5.5/6 | s | wk med gr | 1.44 | |
A″b | 100–114 | 10YR 5/4 | s | wk fn gr | nd | |
C″1 | 114–130 | 2.5Y 6/4 | s | wk fn gr | nd | |
C″2 | 130–170 | 10YR 5/4 | s | wk fn gr | nd | |
A‴b | 170–187 | 10YR 4/3 | ls | mod fn gr | nd | |
C‴ | 187–220+ | 10YR 4/4 | ls | mod fn gr | nd | |
T1 | Ap | 0–8 | 10YR 3/2 | s | wk fn gr | nd |
E1 | 8–19 | 2.5Y 5/4 | s | wk fn gr | 1.41 | |
E2 | 19–62 | 10YR 6/4 | s | wk fn gr | 1.50 | |
Bw | 62–81 | 10YR 6/6 | s | wk med sbk | 1.54 | |
BC | 81–88 | 10YR 5/8 | cos | wk med gr | 1.45 | |
C1 | 88–109 | 10YR 6/6 | grcos | sg | 1.73 | |
C2 | 109–128 | 10YR 6/4 | grs | sg | 1.42 | |
C3 | 128–166 | 10YR 7/6 | grcos | sg | 1.44 | |
C4 | 166–211+ | 10YR 7/6 | vgrcos | sg | 1.71 | |
T2 | A | 0–10 | 10YR 4/3 | ls | wk fn gr | 1.28 |
EA | 10–20 | 2.5Y 5/4 | s | wk fn gr | 1.46 | |
E | 20–60 | 2.5Y 6/4 | ls | wk fn gr | 1.56 | |
Bt | 60–100 | 7.5YR 5/7 | sl | mod med sbk | 1.53 | |
C | 100–125 | 10YR 6/6 | cos | sg | 1.71 | |
Csm | 125–140 | 5YR 5/8 | grcos | sg—cemented | nd | |
C′ | 140–160+ | 2.5Y 6/3 | vgrcos | sg | nd | |
T3b e (site 1) | Ap | 0–18 | 2.5Y 3/1 | s | wk med gr | 1.40 |
E1 | 18–39 | 2.5Y 6/4 | s | wk fn sbk | 1.64 | |
E2 | 39–67 | 2.5Y 7/4 | s | wk fn sbk | 1.58 | |
Bt | 67–98 | 10YR 5/6 | sl | mod fn sbk | 1.67 | |
C | 98–103 | 2.5Y 7/3 & 2.5Y 7/4 | s | sg | nd | |
Btb1 | 103–116 | 10YR 5/6 | sl | mod fn sbk | 1.60 | |
Btb2 | 116–140 | 10YR 7/4 (dep) | sl | mod fn sbk | 1.75 | |
Btb3 | 140–166 | 10YR 7/4 (con, dep) | sl | mod fn sbk | 1.71 | |
C′ | 166–210 | 2.5Y 7/4 (con, dep) | cos | sg | 1.55 | |
2C | 210–230+ | 2.5Y 7/1 & 5YR 6/4 | sic | ma | nd | |
T3b (site 2) | Ap | 0–6 | 10YR 3/2 | s | wk fn gr | 1.43 |
E1 | 6–42 | 2.5Y 5/4 | s | sg | 1.46 | |
E2 | 42–73 | 2.5Y 6/4 | s | sg | 1.51 | |
Bt1 | 73–100 | 10YR 5/8 (con) | s | wk med sbk | 1.62 | |
Bt2 | 100–147 | 10YR 5/8 | s | wk fn sbk | 1.54 | |
C & Bt | 147–170 | 2.5Y 7/3 (C) 10YR 5/8 (Bt) | s to cos s to cos | sg (C) wk med sbk (Bt) | 1.38 nd | |
C1 | 170–190 | 10YR 7/8 (con, dep) | cos | sg | 1.37 | |
C2 | 190–227 | 10YR 7/6 (con, dep) | cos | sg | 1.33 | |
C3 | 227–235+ | 10YR 7/1 | cos | sg | nd | |
T4 f | Ap | 0–11 | 2.5Y 3/1 | s | wk fn gr | 1.42 |
E | 11–54 | 2.5Y 6/4 | s | wk fn gr | 1.62 | |
Bt | 54–90 | 10YR 5/8 | ls | wk med sbk | 1.66 | |
BE | 90–130 | 10YR 6/6 & 10YR 6/8 | s | wk med gr | 1.59 | |
E′ | 130–166 | 10YR 7/6 & 2.5Y 7/4 | s | sg | 1.55 | |
B′t1 | 166–204 | 7.5YR 5/8 (dep) | grls | wk med sbk | 1.66 | |
B′t2 | 204–252 | 7.5YR 5/8 (con) | ls | wk to mod med sbk | 1.66 | |
B′t3 | 252–287 | 10YR 7/6 (con, dep) | sl | mod med sbk | nd | |
B′t4 | 287–307 | 10YR 6/8 | sl | mod med sbk | nd | |
B′t5 | 307–347 | 10YR 7/1 & 10YR 7/2 | scl | nd | nd | |
T5b g | A | 0–15 | 2.5Y 3/2 | s | wk fn gr | 1.44 |
Ap | 15–40 | 2.5Y 4/2 | s | wk med gr | 1.58 | |
E | 40–63 | 2.5Y 5/4 | ls | wk fn gr | 1.63 | |
Bt | 63–87 | 10YR 5/8 | ls | wk med sbk | 1.63 | |
E′1 | 87–113 | 10YR 6/6 (con, dep) | s | wk med sbk | 1.56 | |
E′2 | 113–134 | 10YR 6/6 (con, dep) | s | wk fn gr to sg | 1.52 | |
B′t | 134–145 | 10YR 5/6 (con) | ls | wk med sbk | 1.75 | |
Btx1 | 145–180 | 10YR 5/8, 2.5Y 6/3, 2.5Y 6/2 (con, dep) | sl | wk med sbk | 1.85 | |
Btx2 | 180–256 | 2.5YR 4/8, 10YR 5/8, 10YR 6.5/1 (con, dep) | scl | wk med sbk to ma | nd | |
Btx3 | 256–274 | 2.5YR 4/8, 5YR 5/8, 10YR 6/2, 10YR 6/1 (con, dep) | sl | wk med sbk to ma | nd | |
Btx4 | 274–288 | 7.5YR 6/6 (con) | sl | wk med sbk to ma | nd | |
Btx5 | 288–300 | 2.5Y 4/8, 7.5YR 6/8, 10YR 7/1, 10YR 7/2 (con, dep) | sl | wk med sbk to ma | nd | |
Btx6 | 300–318 | 10YR 7/2 (con) | grscl | wk cs abk to ma | nd | |
318–360 | 10YR 7/2 (con) | scl |
2.3. Chemical and Mineralogical Analyses
2.4. Chronosequence Variables, Soil Ages, and Statistical Analysis
3. Results
3.1. Soil Chemistry
3.2. Clay Mineralogy
3.2.1. Gibbsite Determination
3.2.2. Age-Related Trends
Landform | Fe Oxides Removed? a | Pedon | Depth | Horizon | Gibbsite (%) b | Kaolinite (%) b | FeD of <2 mm (mg kg−1) b |
---|---|---|---|---|---|---|---|
CB | no | 1, 2, 3, 5 c | na | na | <<1 | 57 | 622.3 |
CB | no | 4 | na | na | <<1 | 66 | 1091.8 |
FP | no | 1 | 25–35 | C2 | <<1 | 66 | 3065.5 |
FP | no | 1 | 210–220 | C‴ | nd | nd | nd |
T1 | no | 1 | 62–76 | Bw | <1 | 62 | 3752.2 |
T2 | no | 1 | 60–70 | Bt | nd | nd | 9694.8 |
T3b-1 | no | 1 | 126–140 | Btb2 | 4 | 86 | 5307.2 |
T3b-2 | no | 1 | 73–83 | Bt1 | 10 | 39 | 6510.4 |
T4 | no | 1 | 214–220 | B′t2 | 10 | 48 | nd |
T4 | no | 2 | 200–215 | B′t2 | 9 | 62 | 18,163.1 |
T5b | yes | 1 | 180–200 | Btx2 | 44 | 46 | na |
T5b | no | 1 | 180–200 | Btx2 | 22 | 22 | 14,317.1 d |
T5b | yes | 2 | 225–235 | Btx2 | 44 | 45 | na |
T5b | no | 2 | 225–235 | Btx2 | 24 | 33 | 24,946.3 |
Landform | Pedon | Depth | Horizon | Smectite a | HIV | Mica | Kaolinite | Gibbsite | Quartz |
---|---|---|---|---|---|---|---|---|---|
CB b | 1, 2, 3, 5 | na | na | XX- | X | T | XXX- | --- | X+ |
CB b | 4 | na | na | XX+ | X | T | XXX | --- | X+ |
FP | 1 | 25–35 c | C2 | XX- | XX- | T | XXX | --- | X+ |
FP | 1 | 210–220 c | C‴ | XX | XX | T | XXX | --- | X+ |
T1 | 1 | 62–76 | Bw | --- | XX | T | XXX | --- | XX- |
T2 | 1 | 60–70 | Bt | --- | X | T | XXX+ | T | X |
T3b-1 | 1 | 126–140 | Btb2 | --- | X- | --- | XXX+ | X- | X- |
T3b-2 | 1 | 73–83 | Bt1 | --- | X+ | --- | XX+ | X+ | XX- |
T4 | 1 | 214–220 | B′t2 | --- | X+ | --- | XX+ | X+ | X |
T4 | 2 | 200–215 | B′t2 | --- | X+ | --- | XXX | X+ | X |
T5b | 1 | 180–200 | Btx2 | --- | X | --- | XX+ | XX+ | T |
T5b | 2 | 225–235 | Btx2 | --- | X | --- | XX+ | XX+ | T |
4. Discussion
4.1. Utility of Soil Properties as Indicators of Age
4.1.1. Whole Soil Chemistry
4.1.2. Fine Sand Chemistry
4.1.3. Clay Mineralogy
4.2. Within-Surface Variation in Soil Chemistry
4.3. Pedogenesis Trends
4.3.1. Soil Chemistry
4.3.2. Clay Mineralogy
4.3.3. Argillic Horizon Development
4.4. Regional Variation in US Coastal Plain Chronosequences
4.5. Geomorphic Mapping Applications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References and Note
- Stephens, P.R.; Walker, T.W. The chronosequence concept and soil formation. Q. Rev. Biol. 1970, 45, 333–350. [Google Scholar] [CrossRef]
- Schaetzl, R.J.; Thompson, M.L. Soils: Genesis and Geomorphology, 2nd ed.; Cambridge University Press: Cambridge, UK, 2015; p. 778. [Google Scholar]
- Huggett, R.J. Soil chronosequences, soil development, and soil evolution: A critical review. Catena 1998, 32, 155–172. [Google Scholar] [CrossRef]
- Smith, B.R.; Granger, M.A.; Buol, S.W. Sand and coarse silt mineralogy of selected soils on the Lower Coastal Plain of North Carolina. Soil Sci. Soc. Am. J. 1976, 40, 928–932. [Google Scholar] [CrossRef]
- Muhs, D.R. Evolution of Soils on Quaternary Reef Terraces of Barbados, West Indies. Quat. Res. 2001, 56, 66–78. [Google Scholar] [CrossRef]
- Nieuwenhyse, A.; Verburg, P.S.J.; Jongmans, A.G. Mineralogy of a soil chronosequence on andesitic lava in humid tropical Costa Rica. Geoderma 2000, 98, 61–82. [Google Scholar] [CrossRef]
- Ryan, P.C.; Huertas, F.J. The temporal evolution of pedogenic Fe–smectite to Fe–kaolin via interstratified kaolin–smectite in a moist tropical soil chronosequence. Geoderma 2009, 151, 1–15. [Google Scholar] [CrossRef]
- Dethier, D.P. The Soil Chronosequence along the Cowlitz River, Washington (U.S. Geol. Surv. Bull. 1590-F); U.S. Government Printing Office: Washington, DC, USA, 1988; p. 47.
- Burkins, D.L.; Blum, J.D.; Brown, K.; Reynolds, R.C.; Erel, Y. Chemistry and mineralogy of a granitic, glacial soil chronosequence, Sierra Nevada Mountains, California. Chem. Geol. 1999, 162, 114. [Google Scholar] [CrossRef]
- Howard, J.L.; Clawson, C.R.; Daniels, W.L. A comparison of mineralogical techniques and potassium adsorption isotherm analysis for relative dating and correlation of Late Quaternary soil chronosequences. Geoderma 2012, 179–180, 81–95. [Google Scholar] [CrossRef]
- Jacobson, R.B.; O’Connor, J.E.; Oguchi, T. Surficial geological tools in fluvial geomorphology. In Tools in Fluvial Geomorphology, 2nd ed.; Kondolf, G.M., Piégay, H., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2016; pp. 24–57. [Google Scholar]
- Leigh, D.S. Soil chronosequence of Brasstown Creek, Blue Ridge Mountains, USA. Catena 1996, 26, 99–114. [Google Scholar] [CrossRef]
- Bettis, E.A.; Benn, D.W.; Hajic, E.R. Landscape evolution, alluvial architecture, environmental history, and the archaeological record of the Upper Mississippi River Valley. Geomorphology 2008, 101, 362–377. [Google Scholar] [CrossRef]
- Koch, A.; McBratney, A.; Field, D.; Hill, R.; Crawford, J.; Minasy, B.; Lal, R.; Abbott, L.; O’Donnell, A.; Angers, D.; et al. Soil security: Solving the global soil crisis. Glob. Policy 2013, 4, 434–441. [Google Scholar] [CrossRef] [Green Version]
- Borelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and human security in the 21st century. Science 2015, 348, 1261071-1–1261071-6. [Google Scholar] [CrossRef] [Green Version]
- Sauer, D.; Schülli-Maurer, I.; Wagner, S.; Scarciglia, F.; Sperstad, R.; Svendgård-Stokke, S.; Sørensen, R.; Schellmann, G. Soil development over millennial timescales—A comparison of soil chronosequences of different climates and lithologies. IOP Conf. Ser. Earth Environ. Sci. 2015, 25, 012009. [Google Scholar] [CrossRef] [Green Version]
- Markewich, H.W.; Pavich, M.J. Soil chronosequence studies in temperate to subtropical, low-latitude, low-relief terrain with data from the eastern United States. Geoderma 1991, 51, 213–239. [Google Scholar] [CrossRef]
- Howard, J.L.; Amos, D.F.; Daniels, W.L. Alluvial soil chronosequence in the inner Coastal Plain, central Virginia. Quat. Res. 1993, 39, 201–213. [Google Scholar] [CrossRef]
- Bockheim, J.G. Solution and use of chronofunctions in studying soil development. Geoderma 1980, 24, 71–85. [Google Scholar] [CrossRef]
- Markewich, H.W.; Pavich, M.J.; Mausbach, M.J.; Hall, R.L.; Johnston, R.G.; Hearn, R.P. Age Relationships between Soil and Geology on the Coastal Plain of Maryland and Virginia (U.S. Geol. Surv. Bull. 1589-A); U.S. Government Printing Office: Washington, DC, USA, 1987; pp. A1–A34.
- Markewich, H.W.; Lynn, W.C.; Pavich, M.J.; Johnston, R.G.; Meetz, J.C. Analysis of Four Inceptisols of Holocene Age, East-Central Alabama (U.S. Geol. Surv. Bull. 1589-C); U.S. Government Printing Office: Washington, DC, USA, 1988; pp. C1–C29.
- Markewich, H.W.; Pavich, M.J.; Mausbach, M.J.; Johnson, R.G.; Gonzalez, V.M. A Guide for Using Soil and Weathering Profile Data in Chronosequence Studies of the Coastal Plain of the Eastern United States (U.S. Geol. Surv. Bull. 1589-D); U.S. Government Printing Office: Washington, DC, USA, 1989; pp. D1–D39.
- Shaw, J.N.; Odom, J.W.; Hajeck, B.F. Soils on Quaternary terraces of the Tallapoosa River, Central Alabama. Soil Sci. 2003, 168, 707–717. [Google Scholar] [CrossRef]
- Shaw, J.N.; Hajek, B.F.; Beck, J.M. Highly weathered mineralogy of select soils from Southeastern U.S. Coastal Plain and Piedmont landscapes. Geoderma 2010, 154, 447–456. [Google Scholar] [CrossRef]
- Layzell, A.L.; Eppes, M.C.; Lewis, R.Q. A soil chronosequence study on terraces of the Catawba River near Charlotte, NC: Insights into the long-term evolution of a major Atlantic Piedmont drainage basin. Southeast. Geol. 2012, 49, 13–24. [Google Scholar]
- Harris, W.G.; Iyengar, S.S.; Zelazny, L.W.; Parker, J.C.; Lietzke, D.A.; Edmonds, W.J. Mineralogy of a chronosequence formed in New River alluvium. Soil Sci. Soc. Am. J. 1980, 44, 862–868. [Google Scholar] [CrossRef]
- Daniels, R.B.; Buol, S.W.; Kleiss, H.J.; Ditzler, C.A. Soil Systems in North Carolina; North Carolina State University Soil Science Department: Raleigh, NC, USA, 1999; p. 118. [Google Scholar]
- Suther, B.E.; Leigh, D.S.; Brook, G.A. Fluvial terraces of the Little River valley, Atlantic Coastal Plain, North Carolina. Southeast. Geol. 2011, 48, 73–93. [Google Scholar]
- Stokes, S.; Walling, D.E. Radiogenic and Isotopic Methods for the Direct Dating of Fluvial Sediments. In Tools in Fluvial Geomorphology; Kondolf, M., Piegay, H., Eds.; John Wiley and Sons, Ltd.: West Sussex, England, 2003; pp. 233–267. [Google Scholar]
- Forman, S.L.; Pierson, J.; Lepper, K. Luminescence Geochronology. In Quaternary Geochronology: Methods and Applications; Noller, J.S., Sowers, J.M., Lettis, W.R., Eds.; American Geophysical Union: Washington, DC, USA, 2000; pp. 157–176. [Google Scholar]
- Horton, J.W., Jr.; Zullo, V.A. An Introduction to the Geology of the Carolinas. In The Geology of the Carolinas; Horton, J.W., Zullo, V.A., Eds.; University of Tennessee Press: Knoxville, TN, USA, 1991; pp. 1–10. [Google Scholar]
- Suther, B.E.; Leigh, D.S. Soil morphology of an alluvial chronosequence from the Little River, North Carolina Coastal Plain, USA. Geomorphology 2020, 351, 106921. [Google Scholar] [CrossRef]
- Conley, J.F. Geologic Map of Moore County, North Carolina; North Carolina Department of Conservation and Development, Division of Mineral Resources: Raleigh, NC, USA, 1962.
- Conley, J.F. Division of Mineral Resources Bulletin 76: Geology and Mineral Resources of Moore County, North Carolina; North Carolina Department of Conservation and Development, Division of Mineral Resources: Raleigh, NC, USA, 1962; p. 40.
- Leigh, D.S. Late Quaternary climates and river channels of the Atlantic Coastal Plain, Southeastern USA. Geomorphology 2008, 101, 90–108. [Google Scholar] [CrossRef]
- Swezey, C.S.; Fitzwater, B.A.; Whittecar, G.R.; Mahan, S.A.; Garrity, C.P.; Aleman Gonzalez, W.B.; Dobbs, K.M. The Carolina Sandhills: Quaternary eolian sand sheets and dunes along the updip margin of the Atlantic Coastal Plain province, southeastern United States. Quat. Res. 2016, 86, 271–286. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014; p. 359. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Arguez, A.; Durre, I.; Applequist, S.; Squires, M.; Vose, R.; Yin, X.; Bilotta, R. 2020. NOAA’s U.S. Climate Normals (1981-2010). Annual/Seasonal and Monthly Normals (Fayetteville Pope AFB, NC, US). NOAA National Centers for Environmental Information. Available online: https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00824 (accessed on 8 April 2019).
- Ruiz, M.O.; Leigh, D.S. Landscape characterization and spatial model development for improved cultural resources management at Fort Bragg, NC, 2005. (Technical report to the US Army Corps of Engineers for contract/purchase order no. DACA88-99-D-0002-0025).
- Hudson, B.D. Soil Survey of Cumberland and Hoke Counties, North Carolina; U.S. Department of Agriculture, Soil Conservation Service, U.S. Government Printing Office: Washington, DC, USA, 1984; p. 155.
- Wyatt, P.W. Soil Survey of Moore County, North Carolina; U.S. Department of Agriculture, Natural Resources Conservation Service, U.S. Government Printing Office: Washington, DC, USA, 1995; p. 146.
- Murray, A.S.; Wintle, A.G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas. 2000, 32, 57–73. [Google Scholar] [CrossRef]
- Soil Science Division Staff. Examination and description of soil profiles. In Soil Survey Manual, USDA Handbook 18; Ditzler, C., Scheffe, K., Monger, H.C., Eds.; Government Printing Office: Washington, DC, USA, 2017; pp. 83–233. [Google Scholar]
- Suther, B.E. Soil Chronosequence of the Little River valley, Atlantic Coastal Plain, North Carolina. Master’s Thesis, University of Georgia, Athens, GA, USA, 2006. [Google Scholar]
- US Environmental Protection Agency. USEPA Method 3052: Microwave assisted acid digestion of siliceous and organically based matrices. In Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW 846); 1996. Available online: https://www.epa.gov/hw-sw846/sw-846-compendium (accessed on 25 May 2005).
- USDA Natural Resources Conservation Service. Dithionite-Citrate Extraction (4G1) and Ammonium oxalate extraction (4G2). In Soil Survey Laboratory Methods Manual; Soil Survey Investigations Report No. 42 (Version 4.0); Burt, R., Ed.; 2004; p. 700. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd1026807.pdf (accessed on 25 May 2005).
- Gee, G.W.; Bauder, J.W. Particle size analysis. In Methods of Soil Analysis: Part I, Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; Agronomy Monograph No. 9; American Society of Agronomy–Soil Science Society of America: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Drever, J.E. The preparation of oriented clay mineral specimens for X-ray diffraction analysis by a filter-membrane technique. Am. Mineral. 1973, 58, 553–554. [Google Scholar]
- Tan, K.H.; Hajek, B.F.; Barshad, I. Thermal analysis techniques. In Methods of Soil Analysis, Part I. Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; Agronomy Monograph No. 9; American Society of Agronomy–Soil Science Society of America: Madison, WI, USA, 1986. [Google Scholar]
- Schaetzl, R.J.; Barrett, L.R.; Winkler, J.A. Choosing models for soil chronofunctions and fitting them to data. Eur. J. Soil Sci. 1994, 45, 219–232. [Google Scholar] [CrossRef]
- Mills, H.H. Relative-age dating of transported regolith and application to study of landform evolution in the Appalachians. Geomorphology 2005, 67, 63–96. [Google Scholar] [CrossRef]
- Schwertmann, U.; Taylor, R.M. Iron oxides. In Minerals in Soil Environments, 2nd ed.; Dixon, J.B., Weed, S.B., Eds.; Soil Science Society of America: Madison, WI, USA, 1989; pp. 379–438. [Google Scholar]
- Daniels, R.B.; Gamble, E.E. The edge effect in some Ultisols in the North Carolina Coastal Plain. Geoderma 1967, 1, 117–124. [Google Scholar] [CrossRef]
- Daniels, R.B.; Gamble, E.E.; Nelson, L.A. Relation between A2 horizon characteristics and drainage in some fine-loamy Ultisols. Soil Sci. 1967, 104, 364–369. [Google Scholar] [CrossRef]
- Daniels, R.B.; Gamble, E.E.; Bartelli, L.J. Eluvial bodies in B horizons of some Ultisols. Soil Sci. 1968, 106, 200–206. [Google Scholar] [CrossRef]
- Daniels, R.B.; Gamble, E.E.; Nelson, L.A. Relations between soil morphology and water-table levels on a dissected North Carolina coastal plain surface. Soil Sci. Soc. Am. Proc. 1971, 35, 781–784. [Google Scholar] [CrossRef]
- Phillips, J.D. Chaotic evolution of some Coastal Plain soils. Phys. Geograph. 1993, 14, 566–580. [Google Scholar] [CrossRef]
- Phillips, J.D.; Gosweiler, J.; Tollinger, M.; Gordon, R.; Mayeux, S.; Altieri, T.; Wittmeyer, M.; Altieri, T. Edge effects and spatial variability in coastal plain Ultisols. Southeast. Geograph. 1994, 34, 125–137. [Google Scholar] [CrossRef]
- Shaw, J.N. Iron and aluminum oxide characterization for highly weathered Alabama Ultisols. Commun. Soil Sci. Plant Anal. 2001, 32, 49–64. [Google Scholar] [CrossRef]
- Nichols, G. Sedimentology and Stratigraphy; Blackwell: Malden, MA, USA, 2008; p. 355. [Google Scholar]
- Daniels, R.B.; Gamble, E.E.; Buol, S.W.; Bailey, H.H. Free iron sources in an Aquult-Udult sequence from North Carolina. Soil Sci. Soc. Am. Proc. 1975, 39, 335–340. [Google Scholar] [CrossRef]
- Schaetzl, R.J.; Anderson, S.N. Soils: Genesis and Geomorphology; Cambridge University Press: Cambridge, UK, 2005; p. 817. [Google Scholar]
- Phillips, J.D. Divergent evolution and the spatial structure of soil landscape variability. Catena 2001, 43, 101–113. [Google Scholar] [CrossRef]
- Gamble, E.E.; Daniels, R.B. Parent material of Upper and Middle Coastal Plain soils in North Carolina. Soil Sci. Soc. Am. Proc. 1974, 38, 633–637. [Google Scholar] [CrossRef]
- Sohl, N.F.; Owens, J.P. Cretaceous stratigraphy of the Carolina Coastal Plain. In The Geology of the Carolinas; Horton, J.W., Jr., Zullo, V.A., Eds.; The University of Tennessee Press: Knoxville, TN, USA, 1991; p. 406. [Google Scholar]
- Watts, W.A. Postglacial and interglacial vegetation history of southern Georgia and central Florida. Ecology 1971, 52, 676–690. [Google Scholar] [CrossRef]
- Litwin, R.J.; Smoot, J.P.; Pavich, M.J.; Markewich, H.W.; Brook, G.A.; Durika, N.J. 100,000-year-long terrestrial record of millennial-scale linkage between eastern North American midlatitude paleovegetation shifts and Greenland ice-core oxygen isotope trends. Quat. Res. 2013, 80, 291–315. [Google Scholar] [CrossRef]
- Borchardt, G. Smectites. In Minerals in Soil Environments; Dixon, J.B., Weed, S.B., Eds.; Soil Science Society of America: Madison, WI, USA, 1989; p. 1244. [Google Scholar]
- Barnhisel, R.I.; Bertsch, P.M. Chlorites and hydroxy-interlayered vermiculite and smectite. In Minerals in Soil Environments; Dixon, J.B., Weed, S.B., Eds.; Soil Science Society of America: Madison, WI, USA, 1989; p. 1244. [Google Scholar]
- Harris, W.G.; Hollien, K.A.; Carlisle, V.W. Pedon distribution of minerals in coastal plain Paleudults. Soil Sci. Soc. Am. J. 1989, 53, 1901–1906. [Google Scholar] [CrossRef]
- Smith, B.R.; Callahan, L.L. Soils with Bx horizons in the Upper Coastal Plains of South Carolina. Soil Sci. Soc. Am. J. 1987, 51, 158–164. [Google Scholar] [CrossRef]
- Carlisle, V.W.; Zelazny, L.W. Mineralogy of selected Florida Paleudults. Soil Sci. Soc. Fla. Proc. 1974, 33, 136–139. [Google Scholar]
- Cabrera-Martinez, F.; Harris, W.G.; Carlisle, V.W.; Collins, M.E. Partitioning of clay sized minerals in coastal plain soils with sandy/loamy boundaries. Soil Sci. Soc. Am. J. 1989, 53, 1584–1587. [Google Scholar] [CrossRef]
- Harris, W.G.; Morrone, A.A.; Coleman, S.E. Occluded mica in hydroxy-interlayered vermiculite grains from a highly weathered soil. Clays Clay Miner. 1992, 40, 32–39. [Google Scholar] [CrossRef]
- Karathanasis, A.D.; Adams, F.; Hajek, B.F. Stability relationships in kaolinite, gibbsite, and Al-hydroxy-interlayered vermiculite soil systems. Soil Sci. Soc. Am. J. 1983, 47, 1247–1251. [Google Scholar] [CrossRef]
- Dixon, J.B. Kaolin and serpentine group minerals. In Minerals in Soil Environments; Dixon, J.B., Weed, S.B., Eds.; Soil Science Society of America: Madison, WI, USA, 1989; p. 1244. [Google Scholar]
- Norfleet, M.L.; Smith, B.R. Weathering and mineralogical classification of selected soils in the Blue Ridge Mountains of South Carolina. Soil Sci. Soc. Am. J. 1989, 53, 1771–1778. [Google Scholar] [CrossRef]
- Daniels, R.B.; Gamble, E.E.; Cady, J.G. Some relations among Coastal Plain soils and geomorphic surfaces in North Carolina. Soil Sci. Soc. Am. J. 1970, 34, 648–653. [Google Scholar] [CrossRef]
- Shaw, J.N.; West, L.T.; Bosch, D.D.; Truman, C.C.; Leigh, D.L. Parent material influence on soil distribution and genesis in a Paleudult and Kandiudult complex, southeastern USA. Catena 2004, 57, 157–174. [Google Scholar] [CrossRef]
- Phillips, J.D. Development of texture contrast soils by a combination of bioturbation and translocation. Catena 2007, 70, 92–104. [Google Scholar] [CrossRef]
- Prospero, J.M.; Olmez, I.; Ames, M. Al and Fe in PM 2.5 and PM 10 suspended particles in south–central Florida, the impact of the long range transport of African mineral dust. Water Air Soil Pollut. 2001, 125, 291–317. [Google Scholar] [CrossRef]
- Muhs, D.R.; Budahn, J.R.; Prospero, J.M.; Carey, S.N. Geochemical evidence for African dust inputs to soils of western Atlantic Islands: Barbados, the Bahamas, and Florida. J. Geophys. Res. 2009, 112, F02009. [Google Scholar] [CrossRef] [Green Version]
- Ivester, A.H.; Leigh, D.S.; Godfrey-Smith, D.I. Chronology of inland eolian dunes on the Coastal Plain of Georgia, USA. Quat. Res. 2001, 55, 293–302. [Google Scholar] [CrossRef]
- Swezey, C.S.; Schultz, A.P.; Alemán-González, W.; Bernhardt, C.E.; Doar III, W.R.; Garrity, C.P.; Mahan, S.A.; McGeehin, J.P. Quaternary aeolian dunes in the Savannah River valley, Jasper County, South Carolina, USA. Quat. Res. 2013, 80, 250–264. [Google Scholar] [CrossRef]
- Markewich, H.W.; Markewich, W. An Overview of Pleistocene and Holocene Inland Dunes in Georgia and the Carolinas—Morphology, Distribution, Age, and Paleoclimate (U.S. Geol. Surv. Bull. 2069); U.S. Government Printing Office: Washington, DC, USA, 1994; p. 32.
- Ivester, A.H.; Leigh, D.S. Riverine dunes on the Coastal Plain of Georgia, USA. Geomorphology 2003, 51, 289–311. [Google Scholar] [CrossRef]
- Daniels, R.B.; Gamble, E.E.; Buol, S.W. Eolian sands associated with Coastal Plain river valleys, some problems in their age and source. Southeast. Geol. 1969, 11, 97–110. [Google Scholar]
- Phillips, J.D.; Perry, D.; Garbee, A.R.; Carey, K.; Stein, D.; Morde, M.B.; Sheehy, J.A. Deterministic uncertainty and complex pedogenesis in some Pleistocene dune soils. Geoderma 1996, 73, 147–164. [Google Scholar] [CrossRef]
- Leigh, D.S. Evaluating artifact burial by eolian versus bioturbation processes, South Carolina Sandhills, USA. Geoarchaeology 1998, 13, 309–330. [Google Scholar] [CrossRef]
- Leigh, D.S. Buried artifacts in sandy soils: Techniques for evaluating pedoturbation versus sedimentation. In Earth Sciences and Archaeology; Goldberg, P., Holliday, V.T., Ferring, C.R., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2001; pp. 269–293. [Google Scholar]
- Peacock, E.; Fant, D.W. Biomantle formation and artifact translocation in upland sandy soils, an example from the Holly Springs National Forest, North–Central Mississippi, U.S.A. Geoarchaeology 2002, 17, 91–114. [Google Scholar] [CrossRef]
- Bush, D.A.; Feathers, J.K. Application of OSL single-aliquot and single-grain dating to quartz from anthropogenic soil profiles in the SE United States. Quat. Sci. Rev. 2003, 22, 1153–1159. [Google Scholar] [CrossRef]
- Phillips, J.D. Geogenesis, pedogenesis, and multiple causality in the formation of texture-contrast soils. Catena 2004, 58, 275–295. [Google Scholar] [CrossRef]
- Rink, W.J.; Dunbar, J.S.; Tschinkel, W.R.; Kwapich, C.; Repp, A.; Stanton, W.; Thulman, D.K. Subterranean transport and deposition of quartz by ants in sandy sites relevant to age overestimation in optical luminescence dating. J. Archeol. Sci. 2013, 40, 2217–2226. [Google Scholar] [CrossRef] [Green Version]
- Tschinkel, W.R.; Seal, J.R. Bioturbation by the Fungus-Gardening Ant, Trachymyrmex septentrionalis. PLoS ONE 2016, 11, e0158920. [Google Scholar] [CrossRef]
- Tschinkel, W.R. Subterranean ant nests: Trace fossils past and future? Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 192, 321–333. [Google Scholar] [CrossRef] [Green Version]
- Tschinkel, W.R. Biomantling and bioturbation by colonies of the Florida harvester ant, Pogonomyrmex badius. PLoS ONE 2015, 10, e0120407. [Google Scholar] [CrossRef]
- Seal, J.N.; Tschinkel, W.R. Colony productivity of the fungus gardening ant Trachymyrmex septentrionalis (Hymenoptera: Formicidae) in a Florida pine forest. Ann. Entomol. Soc. Am. 2006, 99, 673–682. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, D.I.; Bertsch, P.M.; Adriano, D.C. Mineralogical and physiochemical differences between mobile and nonmobile colloidal phases in reconstructed pedons. Soil Sci. Soc. Am. J. 1997, 61, 641–649. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suther, B.E.; Leigh, D.S.; West, L.T. Soil Chemistry and Clay Mineralogy of an Alluvial Chronosequence from the North Carolina Sandhills of the Upper Coastal Plain, USA. Soil Syst. 2022, 6, 1. https://doi.org/10.3390/soilsystems6010001
Suther BE, Leigh DS, West LT. Soil Chemistry and Clay Mineralogy of an Alluvial Chronosequence from the North Carolina Sandhills of the Upper Coastal Plain, USA. Soil Systems. 2022; 6(1):1. https://doi.org/10.3390/soilsystems6010001
Chicago/Turabian StyleSuther, Bradley E., David S. Leigh, and Larry T. West. 2022. "Soil Chemistry and Clay Mineralogy of an Alluvial Chronosequence from the North Carolina Sandhills of the Upper Coastal Plain, USA" Soil Systems 6, no. 1: 1. https://doi.org/10.3390/soilsystems6010001
APA StyleSuther, B. E., Leigh, D. S., & West, L. T. (2022). Soil Chemistry and Clay Mineralogy of an Alluvial Chronosequence from the North Carolina Sandhills of the Upper Coastal Plain, USA. Soil Systems, 6(1), 1. https://doi.org/10.3390/soilsystems6010001