Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = Saccharomyces cerevisiae var. boulardii

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2979 KiB  
Article
Probiotic Supplementation Improves Hematological Indices and Morphology of Red Blood Cells and Platelets in Obese Women: A Double-Blind, Controlled Pilot Study
by Nina Okuka, Nevena Dj. Ivanovic, Neda Milinkovic, Snezana Polovina, Mirjana Sumarac-Dumanovic, Rajna Minic, Brizita Djordjevic and Ksenija Velickovic
Metabolites 2025, 15(5), 310; https://doi.org/10.3390/metabo15050310 - 6 May 2025
Cited by 1 | Viewed by 742
Abstract
Background/Objectives: The prevalence of obesity worldwide has rapidly increased. Numerous studies showed a beneficial effect of probiotics in obese individuals, and changes in hematological parameters are observed in obesity. Therefore, the aim of this study was to investigate the effect of a novel [...] Read more.
Background/Objectives: The prevalence of obesity worldwide has rapidly increased. Numerous studies showed a beneficial effect of probiotics in obese individuals, and changes in hematological parameters are observed in obesity. Therefore, the aim of this study was to investigate the effect of a novel probiotic approach on the red blood cells (RBCs) and platelets. Methods: Twenty-five obese women participated in a randomized, placebo-controlled study and were divided into the experimental group (one capsule daily containing Lactiplantibacillus plantarum 299v (DSM9843), Saccharomyces cerevisiae var. boulardii, and 40 mg octacosanol; n = 13) and the placebo group (n = 12). Blood samples were collected for light microscopic examination, morphometric analysis, and an automated hematology analyzer. A possible relationship between hematological parameters and body mass index (BMI), a common indicator of obesity, was investigated using Spearman correlation. The plasma concentration of soluble P-selectin and fibrinogen were determined using an ELISA assay. All measurements were performed before (T0) and after 12 weeks of supplementation (T1). Results: The three-month supplementation of probiotics improved hemoglobin levels, chromic status, and red blood cell morphology. The mean platelet volume (MPV), a measure of platelet size, was restored to normal levels, platelet morphology was improved, and the number of activated platelets was significantly reduced (p < 0.05). A strong negative correlation (r = −0.5904, p < 0.05) was found between BMI and platelet distribution width (PDW), a measure of variation in platelet size and shape. Conclusions: The results show that the probiotic approach improves morphology and normalizes the values of disturbed hematological parameters of RBCs and platelets in obese women. Full article
(This article belongs to the Special Issue Dysbiosis and Metabolic Disorders of the Microbiota)
Show Figures

Figure 1

14 pages, 1970 KiB  
Article
Production of “Melomel” from Cupuaçu (Theobroma grandiflorum) Using the Probiotic Yeast Saccharomyces cerevisiae var. boulardii
by Karina Nascimento Pereira, Handray Fernandes de Souza, Amanda Cristina Dias de Oliveira, Marcela Aparecida Deziderio, Victor Dédalo Di Próspero Gonçalves, Marina Vieira de Carvalho and Eliana Setsuko Kamimura
Fermentation 2025, 11(5), 253; https://doi.org/10.3390/fermentation11050253 - 2 May 2025
Viewed by 581
Abstract
Mead is a fermented alcoholic beverage obtained by diluting honey in water and adding yeast. However, the addition of fruit to this beverage gives rise to melomel. In this study we are proposing an interesting novelty which consists of developing cupuaçu (Theobroma [...] Read more.
Mead is a fermented alcoholic beverage obtained by diluting honey in water and adding yeast. However, the addition of fruit to this beverage gives rise to melomel. In this study we are proposing an interesting novelty which consists of developing cupuaçu (Theobroma grandiflorum) melomel by fermenting Saccharomyces cerevisiae var. boulardii. The aim of this study was to develop cupuaçu (Theobroma grandiflorum) melomel produced by S. boulardii and to evaluate its physicochemical and microbiological characteristics after refrigerated storage at 4 °C. To do this, a central composite design (CCD) was employed, with two independent variables, i.e., the initial soluble solids content of the honey must (°Brix) and the concentration of the cupuaçu pulp (%). A standardized amount of 1 g/L of S. boulardii yeast was used at a temperature of 25 °C and a fermentation time of 30 days. Using the results of the central composite design (CCD), the best conditions for producing the beverage were defined according to the objectives of the study. Thus, the experimental comparison was carried out under the conditions of 25 °Brix of initial soluble solids in the honey must, 10% cupuaçu pulp, and 10 days of fermentation at 25 °C. The cupuaçu melomel exhibited a cell viability of the probiotic yeast S. boulardii above 107 log CFU/mL, with an alcohol content of 8.22% (v/v), a pH of 3.43, a total acidity of 54.8 of (mEq/L), and soluble solids of 12.42°Brix. In addition, the beverage was subjected to simulated gastric and intestinal juices in vitro to evaluate the survival of the microorganisms under these conditions, and a concentration of 106 log CFU/mL of S. boulardii was obtained. In this way, it was possible to produce a probiotic fermented alcoholic beverage made from honey and cupuaçu. Full article
Show Figures

Figure 1

15 pages, 1572 KiB  
Article
Development of a High-Cell-Density Production Process for a Biotherapeutic Yeast, Saccharomyces cerevisiae var. boulardii, for Use as a Human Probiotic
by Ghaneshree Moonsamy, Sarisha Singh, Yrielle Roets-Dlamini, Koketso Kenneth Baikgaki and Santosh Omrajah Ramchuran
Fermentation 2025, 11(4), 186; https://doi.org/10.3390/fermentation11040186 - 1 Apr 2025
Viewed by 1581
Abstract
Saccharomyces cerevisiae var. boulardii is a probiotic yeast widely recognized for its ability to enhance gut health and modulate a host’s microbiome. However, there are limited data on its large-scale cultivation in stirred tank bioreactors and subsequent downstream processing into a functional probiotic [...] Read more.
Saccharomyces cerevisiae var. boulardii is a probiotic yeast widely recognized for its ability to enhance gut health and modulate a host’s microbiome. However, there are limited data on its large-scale cultivation in stirred tank bioreactors and subsequent downstream processing into a functional probiotic product. Different recipe formulations were evaluated and the recipe with the highest biomass yield and lowest process time was selected. Once the optimised batch was validated in the replicate batches, the statistical analysis indicated a high level of reproducibility, with low variability across key performance indicators such as biomass concentration (unit), CFU production (CFU.mL−1), and substrate utilization efficiency (g.g−1). The mean growth age in the bioreactor was 25.33 ± 1.16 h, with a CV of 4.56%, indicating minimal deviation between batches. Similarly, the final viable concentration exhibited a mean of 1.46 × 108 CFU.mL−1 with a CV of 11.68%, remaining within an acceptable range for biological processes, while the final biomass concentration had the lowest variability (CV of 3.94%) and a 95% CI of 12.134–13.266 g.L−1, highlighting the accuracy and consistency of the process. Productivity indicators, including cell productivity (growth time—biomass) and YPP (biomass), maintained low CV values (3.933% and 3.389%, respectively), reinforcing process efficiency and stability. The overlapping 95% confidence intervals across batches further confirmed that no statistically significant deviations existed, ensuring minimal batch-to-batch variability, and validating the scalability and robustness of the fermentation process. These findings provide strong evidence for the feasibility of large-scale probiotic yeast production that meets industrial production standards. The final freeze-dried product retained an 81% viability post-exposure to simulated gastrointestinal conditions, meeting WHO probiotic viability standards. These findings establish a scalable, optimized process for probiotic yeast production, with potential applications in biopharmaceutical manufacturing and functional food development, as confirmed by the techno-economic evaluations performed using SuperPro Designer®. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

9 pages, 232 KiB  
Article
How Does Saccharomyces cerevisiae DSM 34246 (Canobios-BL) var. boulardii Supplementation Impact the Fecal Parameters of Healthy Adult Dogs?
by Nicolò Lonigro, Francesca Perondi, Natascia Bruni, Mauro Bigliati, Annalisa Costale, Elena Pagani, Ilaria Lippi, Alice Melocchi, Lucia Zema, Giorgia Meineri and Elisa Martello
Vet. Sci. 2025, 12(1), 45; https://doi.org/10.3390/vetsci12010045 - 10 Jan 2025
Cited by 2 | Viewed by 2192
Abstract
The gastrointestinal (GI) tract is populated by a variety of microbes, which were recently demonstrated to play a major role in both human and animal health [...] Full article
(This article belongs to the Special Issue Advanced Therapy in Companion Animals)
9 pages, 233 KiB  
Article
Impact of Saccharomyces cerevisiae DSM 34246 (Canobios-BL) var. boulardii Supplementation on Nutritional Status and Fecal Parameters in Healthy Breeding Adult Cats
by Nicolò Lonigro, Elisa Martello, Natascia Bruni, Mauro Bigliati, Annalisa Costale, Ilaria Lippi, Giorgia Meineri and Francesca Perondi
Vet. Sci. 2025, 12(1), 44; https://doi.org/10.3390/vetsci12010044 - 10 Jan 2025
Cited by 1 | Viewed by 2082
Abstract
Recent studies in veterinary science highlight the close relationship between pet health and gastrointestinal health [...] Full article
12 pages, 2269 KiB  
Article
Immunomodulatory Properties of Multi-Strain Postbiotics on Human CD14+ Monocytes
by Kyle D. Roberts, Sadia Ahmed, Erin San Valentin, Luca Di Martino, Thomas S. McCormick and Mahmoud A. Ghannoum
Life 2024, 14(12), 1673; https://doi.org/10.3390/life14121673 - 17 Dec 2024
Cited by 2 | Viewed by 1652
Abstract
The ability of probiotics, comprising live microbiota, to modulate the composition of intestinal microbiomes has been connected to modulation of the central nervous system (Gut–Brain axis), neuroendocrine system (Gut–Skin axis), and immune response (Gut–Immune axis). Less information is known regarding the ability of [...] Read more.
The ability of probiotics, comprising live microbiota, to modulate the composition of intestinal microbiomes has been connected to modulation of the central nervous system (Gut–Brain axis), neuroendocrine system (Gut–Skin axis), and immune response (Gut–Immune axis). Less information is known regarding the ability of postbiotics (cell wall components and secreted metabolites derived from live organisms) to regulate host immunity. In the present study, we tested postbiotics comprising single strains of bacteria and yeast (Lactobacillus acidophilus 16axg, Lacticaseibacillus rhamnosus 18fx, Saccharomyces cerevisiae var. boulardii 16mxg) as well as combinations of multiple strains for their ability to stimulate cytokine production by human CD14+ monocytes. We quantified cytokine gene and protein expression levels in monocytes following stimulation with postbiotics. Both heat-killed L. acidophilus and L. rhamnosus stimulated naïve monocytes without significant differences between them. Heat-killed S. boulardii stimulated less cytokine production compared to postbiotic bacteria at the same concentration. Interestingly, the addition of heat-killed yeast to heat-killed L. acidophilus and L. rhamnosus resulted in an enhancement of immune stimulation. Thus, heat-killed postbiotics have immune-modulating potential, particularly when bacteria and yeast are combined. This approach may hold promise for developing targeted interventions that can be fine-tuned to modulate host immune response with beneficial health impact. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

16 pages, 2975 KiB  
Article
High-Resolution Melting Analysis Potential for Saccharomyces cerevisiae var. boulardii Authentication in Probiotic-Enriched Food Matrices
by Monika Borkowska, Michał Kułakowski and Kamila Myszka
BioTech 2024, 13(4), 48; https://doi.org/10.3390/biotech13040048 - 14 Nov 2024
Cited by 1 | Viewed by 1478
Abstract
To date, the only probiotic yeast with evidence of health-promoting effects is Saccharomyces cerevisiae var. boulardii. The expanded market including dietary supplements and functional foods supplemented with Saccharomyces cerevisiae var. boulardii creates an environment conductive to food adulterations, necessitating rapid testing to verify [...] Read more.
To date, the only probiotic yeast with evidence of health-promoting effects is Saccharomyces cerevisiae var. boulardii. The expanded market including dietary supplements and functional foods supplemented with Saccharomyces cerevisiae var. boulardii creates an environment conductive to food adulterations, necessitating rapid testing to verify product probiotic status. Herein, qPCR-HRM analysis was tested for probiotic yeast identification. The effectiveness of the primer pairs’ set was examined, designed to amplify heterogeneous regions in (a) rDNA sequences previously designed to identify food-derived yeast and (b) genes associated with physiological and genotypic divergence of Saccharomyces cerevisiae var. boulardii. Preliminary tests of amplicons’ differentiation power enabled the selection of interspecies sequences for 18SrRNA and ITS and genus-specific sequences HO, RPB2, HXT9 and MAL11. The multi-fragment qPCR-HRM analysis was sufficient for culture-dependent Saccharomyces cerevisiae var. boulardii identification and proved effective in the authentication of dietary supplements’ probiotic composition. The identification of S. cerevisiae var. boulardii in complex microbial mixtures of kefir succeeded with more specific intragenus sequences HO and RPB2. The predominance of S. cerevisiae var. boulardii in the tested matrices, quantitatively corresponded to the probiotic-enriched food, was crucial for identification with qPCR–HRM analysis. Considering the reported assumptions, qPCR-HRM analysis is an appropriate tool for verifying probiotic-enriched food. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Figure 1

13 pages, 302 KiB  
Review
Beer with Probiotics: Benefits and Challenges of Their Incorporation
by Diana Santos, Luisa Barreiros, Ângelo Jesus, Ana Luísa Silva, João Paulo Martins, Ana Isabel Oliveira and Cláudia Pinho
Beverages 2024, 10(4), 109; https://doi.org/10.3390/beverages10040109 - 14 Nov 2024
Cited by 5 | Viewed by 4447
Abstract
Beer is considered one of the most consumed beverages worldwide and a potential vehicle for probiotics. However, there are several technical challenges to overcome during the production and storage of beers, as probiotics must remain viable until the moment of consumption. Therefore, this [...] Read more.
Beer is considered one of the most consumed beverages worldwide and a potential vehicle for probiotics. However, there are several technical challenges to overcome during the production and storage of beers, as probiotics must remain viable until the moment of consumption. Therefore, this work aims to discuss how the incorporation of probiotics improves or adds value to beer and which variables influence the viability of the process. This is a narrative review of the literature with research in the PubMed, Web of Science, and b-on databases for articles related to the incorporation of probiotics in beer and the variables that influence the process. The results demonstrated that the incorporation of probiotics into beer faces technical challenges such as probiotic selection, pH, the presence of alcohol, and beer’s production and storage temperatures. However, strategies such as immobilizing probiotics in alginate, alginate–silica, and durian husk powder, fermentation with the yeast Saccharomyces cerevisiae var. boulardii, and co-fermentation with probiotics permit us to overcome these barriers. Thus, incorporating probiotics into beer brings added value, potentially increasing antioxidant activity and phenolic compound content and providing unique flavors and aromas. Nevertheless, strict control of the technical conditions involved is necessary to ensure probiotic viability and the health benefits they confer. Full article
Show Figures

Graphical abstract

15 pages, 1585 KiB  
Article
Development of Potentially Probiotic Mead from Co-Fermentation by Saccharomyces cerevisiae var. boulardii and Kombucha Microorganisms
by Handray Fernandes de Souza, Eduardo Novais Souza Freire, Giovana Felício Monteiro, Lorena Teixeira Bogáz, Ricardo Donizete Teixeira, Fabiano Vaquero Silva Junior, Felipe Donizete Teixeira, João Vitor dos Santos, Marina Vieira de Carvalho, Ramon da Silva Rocha, Adriano Gomes da Cruz, Juliana Maria Leite Nobrega de Moura Bell, Igor Viana Brandi and Eliana Setsuko Kamimura
Fermentation 2024, 10(9), 482; https://doi.org/10.3390/fermentation10090482 - 17 Sep 2024
Cited by 3 | Viewed by 2907
Abstract
Mead is a fermented alcoholic beverage produced from a diluted solution of honey and yeast activity. The objectives of this study were to produce a potentially probiotic mead through mixed fermentation by Saccharomyces cerevisiae var. boulardii and kombucha microorganisms and to evaluate fermentation [...] Read more.
Mead is a fermented alcoholic beverage produced from a diluted solution of honey and yeast activity. The objectives of this study were to produce a potentially probiotic mead through mixed fermentation by Saccharomyces cerevisiae var. boulardii and kombucha microorganisms and to evaluate fermentation kinetics, microbial cell survival and their in vitro resistance to simulated gastrointestinal transit, color parameters and the phenolic and antioxidant potential of the product. The main results of this study show that in order to develop a potentially probiotic mead utilizing the mixed fermentation of S. boulardii and kombucha microorganisms, the best condition was a concentration of 25 mL/L (v/v) of kombucha and 0.75 g/L (w/v) of S. boulardii with fermentation for 9 days at a temperature of 25 °C. In addition, at the end of fermentation, mead with kombucha and S. boulardii presented physicochemical characteristics with a pH of 3.48, 0.67% total acidity, 18.76 °Brix soluble solids and 4.77% alcohol content. The S. boulardii and lactic acid bacteria (LAB) present in the mead survived conditions reproducing those of the gastrointestinal tract, with counts of more than 6 Log10 CFU/mL for both microorganisms after the intestinal phase. In the color analysis, the mead with kombucha and S. boulardii had a yellow color with the b* parameter corresponding to 35.93, luminosity (L*) equal to 76.09 and 1.82 for a*. In addition, the mead we produced contains quantities of phenolics and antioxidants. In conclusion, kombucha and S. boulardii are presented as alternative microbial sources for obtaining potentially probiotic mead. Full article
Show Figures

Figure 1

12 pages, 1271 KiB  
Review
Novel Insights in the Application of Probiotic Yeast Saccharomyces boulardii in Dairy Products and Health Promotion
by Zorica Tomičić, Ljubiša Šarić and Ružica Tomičić
Foods 2024, 13(18), 2866; https://doi.org/10.3390/foods13182866 - 10 Sep 2024
Cited by 11 | Viewed by 5589
Abstract
Probiotic organisms are increasingly being incorporated into foods in order to develop products to prevent and reduce many diseases. Saccharomyces boulardii, a probiotic yeast with unique properties, such as viability over a wide pH range, antibiotic resistance, and the ability to reach [...] Read more.
Probiotic organisms are increasingly being incorporated into foods in order to develop products to prevent and reduce many diseases. Saccharomyces boulardii, a probiotic yeast with unique properties, such as viability over a wide pH range, antibiotic resistance, and the ability to reach a steady state, has an advantage over bacterial probiotics. The present review highlights the potential application of S. boulardii in functional fermented dairy products and the genetic engineering of this probiotic microorganism as a therapeutic agent for the treatment of various infectious diseases. It was found that probiotic yeast stimulates the growth of lactic acid bacteria in dairy products, creating favorable conditions and positively affecting the product’s sensory characteristics. Moreover, its viability of more than 106 cfu/mL at the end of the yogurt shelf life confirms its probiotic effect. On the other hand, there is a growing interest in the design of probiotic strains to improve their characteristics and fill existing gaps in their spectrum of action such as the inhibition of some bacterial toxins, as well as anti-inflammatory and immunomodulatory effects. The strengthening of immune functions and effective therapies against various diseases by S. boulardii was confirmed. However, considering this yeast species’ potential, further research is necessary to accurately determine the functional properties in terms of incorporation into food matrices and from the aspect of health and well-being claims. Full article
Show Figures

Figure 1

17 pages, 4747 KiB  
Article
Effect of Mutant and Engineered High-Acetate-Producing Saccharomyces cerevisiae var. boulardii Strains in Dextran Sodium Sulphate-Induced Colitis
by Sara Deleu, Inge Jacobs, Jorge F. Vazquez Castellanos, Sare Verstockt, Bruna Trindade de Carvalho, Ana Subotić, Bram Verstockt, Kaline Arnauts, Lowie Deprez, Eva Vissers, Matthias Lenfant, Greet Vandermeulen, Gert De Hertogh, Kristin Verbeke, Gianluca Matteoli, Geert R. B. Huys, Johan M. Thevelein, Jeroen Raes and Séverine Vermeire
Nutrients 2024, 16(16), 2668; https://doi.org/10.3390/nu16162668 - 13 Aug 2024
Cited by 4 | Viewed by 2532
Abstract
Acetate-producing Saccharomyces cerevisiae var. boulardii strains could exert improved effects on ulcerative colitis, which here, was preclinically evaluated in an acute dextran sodium sulphate induced model of colitis. Nine-week-old female mice were divided into 12 groups, receiving either drinking water or 2.75% dextran [...] Read more.
Acetate-producing Saccharomyces cerevisiae var. boulardii strains could exert improved effects on ulcerative colitis, which here, was preclinically evaluated in an acute dextran sodium sulphate induced model of colitis. Nine-week-old female mice were divided into 12 groups, receiving either drinking water or 2.75% dextran sodium sulphate for 7 days, combined with a daily gavage of various treatments with different levels of acetate accumulation: sham control (phosphate buffered saline, no acetate), non-probiotic control (Baker’s yeast, no acetate), probiotic control (Enterol®, transient acetate), and additionally several Saccharomyces cerevisiae var. boulardii strains with respectively no, high, and extra-high acetate accumulation. Disease activity was monitored daily, and feces samples were collected at different timepoints. On day 14, the mice were sacrificed, upon which blood and colonic tissue were collected for analysis. Disease activity in inflamed mice was lower when treated with the high-acetate-producing strain compared to sham and non-probiotic controls. The non-acetate-producing strain showed higher disease activity compared to the acetate-producing strains. Accordingly, higher histologic inflammation was observed in non- or transient-acetate-producing strains compared to the sham control, whereas this increase was not observed for high- and extra-high-acetate-producing strains upon induction of inflammation. These anti-inflammatory findings were confirmed by transcriptomic analysis of differentially expressed genes. Moreover, only the strain with the highest acetate production was superior in maintaining a stable gut microbial alpha-diversity upon inflammation. These findings support new possibilities for acetate-mediated management of inflammation in inflammatory bowel disease by administrating high-acetate-producing Saccharomyces cerevisae var. boulardii strains. Full article
Show Figures

Graphical abstract

21 pages, 735 KiB  
Review
Microbial Contamination of Food: Probiotics and Postbiotics as Potential Biopreservatives
by Gordana Zavišić, Slavica Ristić, Saša Petričević, Drina Janković and Branka Petković
Foods 2024, 13(16), 2487; https://doi.org/10.3390/foods13162487 - 8 Aug 2024
Cited by 16 | Viewed by 6418
Abstract
Microbial contamination of food and alimentary toxoinfection/intoxication in humans are commonly caused by bacteria such as Salmonella spp., Escherichia coli, Yersinia spp., Campylobacter spp., Listeria monocytogenes, and fungi (Aspergillus, Fusarium). The addition of probiotic cultures (bacterial strains Lactobacillus [...] Read more.
Microbial contamination of food and alimentary toxoinfection/intoxication in humans are commonly caused by bacteria such as Salmonella spp., Escherichia coli, Yersinia spp., Campylobacter spp., Listeria monocytogenes, and fungi (Aspergillus, Fusarium). The addition of probiotic cultures (bacterial strains Lactobacillus and Bifidobacterium and the yeast Saccharomyces cerevisiae var. boulardii) to food contributes primarily to food enrichment and obtaining a functional product, but also to food preservation. Reducing the number of viable pathogenic microorganisms and eliminating or neutralizing their toxins in food is achieved by probiotic-produced antimicrobial substances such as organic acids (lactic acid, acetic acid, propionic acid, phenylacetic acid, and phenyllactic acid), fatty acids (linoleic acid, butyric acid, caproic acid, and caprylic acid), aromatic compounds (diacetyl, acetaldehyde, reuterin), hydrogen peroxide, cyclic dipeptides, bacteriocins, and salivabactin. This review summarizes the basic facts on microbial contamination and preservation of food and the potential of different probiotic strains and their metabolites (postbiotics), including the mechanisms of their antimicrobial action against various foodborne pathogens. Literature data on this topic over the last three decades was searched in the PubMed, Scopus, and Google Scholar databases, systematically presented, and critically discussed, with particular attention to the advantages and disadvantages of using probiotics and postbiotics as food biopreservatives. Full article
(This article belongs to the Special Issue Health Benefits of Probiotics and Prebiotics in Functional Foods)
Show Figures

Figure 1

15 pages, 1066 KiB  
Article
Molecular Characterization of the Gorgonzola Cheese Mycobiota and Selection of a Putative Probiotic Saccharomyces cerevisiae var. boulardii for Evaluation as a Veterinary Feed Additive
by Samuele Voyron, Francesca Bietto, Mauro Fontana, Elisa Martello, Natascia Bruni and Enrica Pessione
Appl. Microbiol. 2024, 4(2), 650-664; https://doi.org/10.3390/applmicrobiol4020045 - 3 Apr 2024
Viewed by 2318
Abstract
Gorgonzola is an Italian “erborinato” blue cheese from cow’s milk, bearing blue-green “parsley-like” spots due to the spread of Penicillium roqueforti mycelium. Due to its pH, water activity, and high nutrient content, as well as the environmental conditions required for its maturation, Gorgonzola [...] Read more.
Gorgonzola is an Italian “erborinato” blue cheese from cow’s milk, bearing blue-green “parsley-like” spots due to the spread of Penicillium roqueforti mycelium. Due to its pH, water activity, and high nutrient content, as well as the environmental conditions required for its maturation, Gorgonzola constitutes an optimal ecological niche supporting the growth of both yeasts and filamentous fungi. Therefore, exploring the abundant mycobiota present in this peculiar habitat is of great interest regarding the search for new probiotic strains. The present investigation aimed to characterize the Gorgonzola mycobiota using both phenotypic (macroscopic and microscopic morphological analyses) and genotypic (DNA barcoding) analyses to find possible putative probiotic strains to be used in veterinary medicine in feed supplements. Among the different isolated filamentous fungi (Mucor and Penicillium) and yeasts (Yarrowia, Debaryomyces, Saccharomyces, and Sporobolomyces), we selected a strain of Saccharomyces cerevisiae var. boulardii. We tested its adaptation to thermal stress and its stability in feed matrices. The overall results highlight that the selected strain is stable for three months and can be considered as a possible candidate for use as a probiotic in veterinary feed supplements. Full article
Show Figures

Figure 1

11 pages, 1022 KiB  
Article
The Fermentation of Orange and Black Currant Juices by the Probiotic Yeast Saccharomyces cerevisiae var. boulardii
by Andrea Maria Patelski, Urszula Dziekońska-Kubczak and Maciej Ditrych
Appl. Sci. 2024, 14(7), 3009; https://doi.org/10.3390/app14073009 - 3 Apr 2024
Cited by 6 | Viewed by 3210
Abstract
Throughout history, the fermentation of fruit juices has served as a preservation method and has enhanced the retention of bioactive constituents crucial for human well-being. This study examined the possibility of orange and black currant juice fermentation with the probiotic yeast Saccharomyces cerevisiae [...] Read more.
Throughout history, the fermentation of fruit juices has served as a preservation method and has enhanced the retention of bioactive constituents crucial for human well-being. This study examined the possibility of orange and black currant juice fermentation with the probiotic yeast Saccharomyces cerevisiae var. boulardii. Saccharomyces bayanus was used as the reference. The ethanol concentration of the orange juices fermented without added glucose was close to 27 g/L. Adding glucose to the juice increased the alcohol produced by up to 65.58 ± 1.84 g/L (for the orange juice). For the same wort fermented by S. bayanus, the final ethanol concentration was 71.23 ± 1.62 g/L. Regardless of the type of yeast and additives used, the samples retained much of the color of the unfermented juice. The polyphenols content in the fermented samples was close to the initial polyphenols content in the juices. The sensory attributes of the juices fermented by the probiotic yeast did not differ from the samples fermented by S. bayanus. Fermenting fruit juices with probiotic yeasts offers a commercially viable and sensorially appealing method to enhance the product’s value by imparting it with probiotic properties. Full article
(This article belongs to the Special Issue Role of Microbes in Agriculture and Food, 2nd Edition)
Show Figures

Figure 1

16 pages, 545 KiB  
Review
Therapeutic Applications of Native and Engineered Saccharomyces Yeasts
by Suryang Kwak
Fermentation 2024, 10(1), 51; https://doi.org/10.3390/fermentation10010051 - 10 Jan 2024
Cited by 4 | Viewed by 4166
Abstract
Saccharomyces cerevisiae var. boulardii (Sb) is currently receiving significant attention as a synthetic probiotic platform due to its ease of manipulation and inherent effectiveness in promoting digestive health. A comprehensive exploration of Sb and other S. cerevisiae strains (Sc) [...] Read more.
Saccharomyces cerevisiae var. boulardii (Sb) is currently receiving significant attention as a synthetic probiotic platform due to its ease of manipulation and inherent effectiveness in promoting digestive health. A comprehensive exploration of Sb and other S. cerevisiae strains (Sc) would shed light on the refinement and expansion of their therapeutic applications. This review aims to provide a thorough overview of Saccharomyces yeasts from their native health benefits to recent breakthroughs in the engineering of Saccharomyces yeasts as synthetic therapeutic platforms. Molecular typing and phenotypic assessments have uncovered notable distinctions, including the superior thermotolerance and acid tolerance exhibited by Sb, which are crucial attributes for probiotic functions. Moreover, parabiotic and prebiotic functionalities originating from yeast cell wall oligosaccharides have emerged as pivotal factors influencing the health benefits associated with Sb and Sc. Consequently, it has become imperative to select an appropriate yeast strain based on a comprehensive understanding of its actual action in the gastrointestinal tract and the origins of the targeted advantages. Overall, this review underscores the significance of unbiased and detailed comparative studies for the judicious selection of strains. Full article
Show Figures

Figure 1

Back to TopTop