Molecular Characterization of the Gorgonzola Cheese Mycobiota and Selection of a Putative Probiotic Saccharomyces cerevisiae var. boulardii for Evaluation as a Veterinary Feed Additive
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection, and Morphological Identification of Fungal Isolates
2.2. DNA Extraction, PCR Amplification, and DNA Sequencing
2.3. Evaluation of S. cerevisiae var. boulardii Growth Performance under Different Temperature Conditions
2.4. S. cerevisiae var. boulardii Inoculum Preparation
2.5. Time Course Evaluation of S. cerevisiae var. boulardii Growth Performances in Feed
2.6. Statistical Analysis
3. Results
3.1. Isolation of Different Fungal and Yeast Strains from Gorgonzola Cheese and Ripening Stores
3.2. Studies on the Putative Probiotic S. cerevisiae var. boulardii
3.2.1. Growth at Different Temperatures
3.2.2. Cell Viability at 35 °C in Standard Conditions
3.2.3. Time-Course Stability of S. cerevisiae var. boulardii in the Feed Matrix
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pieri, R.; Pretolani, R. Il Sistema Agro-Alimentare della Lombardia: Rapporto 2016; Franco Angeli: Milan, Italy, 2017. [Google Scholar]
- MacGibbon, A.K.H. Milk lipids—General characteristics. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 649–654. [Google Scholar]
- Cantor, M.D.; van den Tempel, T.; Hansen, T.K.; Ardö, Y. Blue Cheese. In Cheese: Chemistry, Physics and Microbiology, 4th ed.; McSweeney, P.L.H., Fox, P.F., Cotter, P.D., Everett, D.W., Eds.; Academic Press: Cambridge, MA, USA, 2017; Volume 2, pp. 929–954. [Google Scholar] [CrossRef]
- Abbas, A.; Dobson, A.D.W. Yeasts and Molds: Penicillium roqueforti. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 772–775. [Google Scholar]
- Gillot, G.; Jany, J.L.; Coton, M.; Le Floch, G.; Debaets, S.; Ropars, J.; Coton, E. Insights into Penicillium roqueforti morphological and genetic diversity. PLoS ONE 2015, 10, e0129849. [Google Scholar] [CrossRef] [PubMed]
- Gillot, G.; Jany, J.L.; Poirier, E.; Maillard, M.B.; Debaets, S.; Thierry, A.; Coton, M. Functional diversity within the Penicillium roqueforti species. Int. J. Food Microbiol. 2017, 241, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Irlinger, F.; Mounier, J. Microbial interactions in cheese: Implications for cheese quality and safety. Curr. Opin. Biotechnol. 2009, 20, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Buehler, A.J.; Evanowski, R.L.; Martin, N.H.; Boor, K.J.; Wiedmann, M. Internal transcribed spacer (ITS) sequencing reveals considerable fungal diversity in dairy products. J. Dairy Sci. 2017, 100, 8814–8825. [Google Scholar] [CrossRef] [PubMed]
- Keshri, G.; Magan, N. Detection and differentiation between mycotoxigenic and non-mycotoxigenic strains of two Fusarium spp. using volatile production profiles and hydrolytic enzymes. J. Appl. Microbiol. 2000, 89, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Boutrou, R.; Aziza, M.; Amrane, A. Enhanced proteolytic activities of Geotrichum candidum and Penicillium camembertii in mixed culture. Enzym. Microb. 2006, 39, 325–331. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Rodrigues, F.C.; Stojanovic-Radic, Z.; Dimitrijevic, M.; Aleksic, A.; Neffe-Skocinska, K.; Zielinska, D.; Kolozyn-Krajewska, D.; Salehi, B.; Prabu, M.S.; et al. Probiotics: Versatile Bioactive Components in Promoting Human Health. Medicina 2020, 56, 433. [Google Scholar] [CrossRef] [PubMed]
- Dawood, M.A.; Eweedah, N.M.; Moustafa, E.M.; Farahat, E.M. Probiotic effects of Aspergillus oryzae on the oxidative status, heat shock protein, and immune related gene expression of Nile tilapia (Oreochromis niloticus) under hypoxia challenge. Aquaculture 2020, 520, 734669. [Google Scholar] [CrossRef]
- Konishi, H.; Isozaki, S.; Kashima, S.; Moriichi, K.; Ichikawa, S.; Yamamoto, K.; Fujiya, M. Probiotic Aspergillus oryzae produces anti-tumor mediator and exerts anti-tumor effects in pancreatic cancer through the p38 MAPK signaling pathway. Sci. Rep. 2021, 11, 11070. [Google Scholar] [CrossRef]
- Bovill, R.; Bew, J.; Robinson, S. Comparison of selective media for the recovery and enumeration of probiotic yeasts from animal feed. Int. J. Food Microbiol. 2001, 67, 55–61. [Google Scholar] [CrossRef]
- Kaźmierczak-Siedlecka, K.; Ruszkowski, J.; Fic, M.; Folwarski, M.; Makarewicz, W. Saccharomyces boulardii CNCM I-745: A Non-bacterial Microorganism Used as Probiotic Agent in Supporting Treatment of Selected Diseases. Curr. Microbiol. 2020, 77, 1987–1996. [Google Scholar] [CrossRef] [PubMed]
- Pais, P.; Almeida, V.; Yılmaz, M.; Teixeira, M.C. Saccharomyces boulardii: What Makes It Tick as Successful Probiotic? J. Fungi 2020, 6, 78. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, A.; Aziz, T.; Al-Dalali, S.; Zhao, X.; Zhang, J.; ud Din, J.; Chen, C.; Cao, Y.; Yang, Z. Physicochemical and Microbiological Properties of Synbiotic Yogurt Made with Probiotic Yeast Saccharomyces boulardii in Combination with Inulin. Foods 2019, 8, 468. [Google Scholar] [CrossRef] [PubMed]
- Cavaglieri, L.; Montenegro, M.; Escobar, F.; Vergara, D.L.; Bainotti, M.B.; Poloni, V.L. Influence of technological procedures on viability, probiotic and anti-mycotoxin properties of Saccharomyces boulardii RC009 and biological safety studies. Curr. Res. Food Sci. 2021, 4, 132–140. [Google Scholar] [CrossRef]
- Alvarez-Olmos, M.I.; Oberhelman, R.A. Probiotic agents and infectious diseases: A modern perspective on a traditional therapy. Clin. Infect. Dis. 2001, 32, 1567–1576. [Google Scholar] [CrossRef]
- Pessione, E.; Garcia-Contreras, R. Non-conventional antimicrobial agents. In Encyclopedia of Infection and Immunity; Elsevier: Amsterdam, The Netherlands, 2021; pp. 586–607. [Google Scholar]
- Herstad, H.K.; Nesheim, B.B.; L’Abée-Lund, T.; Larsen, S.; Skancke, E. Effects of a probiotic intervention in acute canine gastroenteritis—A controlled clinical trial. J. Small Anim. Pract. 2010, 51, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Ducatelle, R.; Eeckhaut, V.; Haesebrouck, F.; Van Immerseel, F. A review on prebiotics and probiotics for the control of dysbiosis: Present status and future perspectives. Animal 2015, 9, 43–48. [Google Scholar] [CrossRef]
- Arsène, M.M.; Davares, A.K.; Andreevna, S.L.; Vladimirovich, E.A.; Carime, B.Z.; Marouf, R.; Khelifi, I. The use of probiotics in animal feeding for safe pro-duction and as potential alternatives to antibiotics. Vet. World 2021, 14, 319. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.A.; Nicoli, J.R.; Dos Santos Martins, F.; Cardoso, V.N.; Andrade, M.E.R.; Cara Machado, D.C.; Caliari, M.V.; Oliveira, D.R.; Ribeiro, M.R.S. Saccharomyces boulardii as therapeutic alternative in experimental giardiasis. J. Appl. Microbiol. 2021, 131, 460–469. [Google Scholar] [CrossRef]
- Aktas, M.; Borku, M.; Ozkanlar, Y. Efficacy of Saccharomyces boulardii as a probiotic in dogs with lincomycin induced diarrhea. Bull. Vet. Inst. Pulawy 2007, 51, 365–369. [Google Scholar]
- Oswald, I.P.; Castex, M.; Combes, S.; Lippi, Y.; Neves, M.; Hupè, J.; Pinton, P.; Alassane-Kpembi, I. Saccharomyces cerevisiae boulardii reduces the Deoxynivalenol-Induced alteration of the intestinal transcriptome. Toxins 2018, 10, 199. [Google Scholar] [CrossRef] [PubMed]
- Keshri, G.; Magan, N.; Voysey, P. Use of an electronic nose for the early detection and differentiation between spoilage fungi. Lett. Appl. Microbiol. 1998, 27, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Banjara, N.; Suhr, M.J.; Hallen-Adams, H.E. Diversity of yeast and mold species from a variety of cheese types. Curr. Microbiol. 2015, 70, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Garnier, L.; Valence, F.; Pawtowski, A.; Auhustsinava-Galerne, L.; Frotté, N.; Baroncelli, R.; Mounier, J. Diversity of spoilage fungi associated with various French dairy products. Int. J. Food Microbiol. 2017, 241, 191–197. [Google Scholar] [CrossRef]
- Hospodsky, D.; Yamamoto, N.; Peccia, J. Accuracy, precision, and method detection limits of quantitative PCR for airborne bacteria and fungi. Appl. Environ. Microbiol. 2010, 76, 7004–7012. [Google Scholar] [CrossRef] [PubMed]
- Pitkäranta, M.; Meklin, T.; Hyvärinen, A.; Paulin, L.; Auvinen, P.; Nevalainen, A.; Rintala, H. Analysis of fungal flora in indoor dust by ribosomal DNA sequence analysis, quantitative PCR, and culture. Appl. Environ. Microbiol. 2008, 74, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Pitt, J.I. The Genus Penicillium and Its Teleomorphic States Eupenicilliumand Talaromyces; Academic Press Inc.: London, UK, 1979; 634p. [Google Scholar] [CrossRef]
- Domsch, K.H.; Gams, W.; Anderson, T.H. Compendium of Soil Fungi, 2nd ed.; Taxonomically Revised; IHW-Verlag: Eching, Germany, 2007; 672p, ISBN 9783930167692/3930167697. [Google Scholar]
- von Arx, J.A. The Genera of Fungi Sporulating in Pure Culture; Cramer, J., Ed.; J. Cramer.: Vaduz, Germany, 1981; p. 424. [Google Scholar] [CrossRef]
- von Arx, J.A.; Rodrigues De Miranda, M.; Smith, T.H.; Yarrow, D. The genera of yeasts and the yeast-like fungi. Stud. Mycol. 1977, 14, 1–72. [Google Scholar]
- Samson, R.; Horkstra, E.S.; Frisvad, J.C. Introduction to Food and Airborne Fungi, 7th ed.; Centraalbureau Voor Schimmelcultures: Utrecht, The Netherlands, 2004; 389p. [Google Scholar]
- Schipper, M.A.A. Study on variability in Mucor hiemalis and related species. Stud. Mycol. 1973, 4, 1–40. [Google Scholar]
- Schipper, M.A.A. On Mucor circinelloides, Mucor racemosus and related species. Stud. Mycol. 1976, 12, 1–40. [Google Scholar]
- Schipper, M.A.A. (1). On certain species of Mucor with a key to all accepted species. (2). On the genera Rhizomucor and Parasitella. Stud. Mycol. 1978, 17, 1–70. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef]
- Stucky, B.J. SeqTrace: A Graphical Tool for Rapidly Processing DNA Sequencing Chromatograms. J. Biomol. Tech. 2012, 23, 90–93. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Westerdijk Fungal Biodiversity Institute. Available online: http://www.westerdijkinstitute.nl (accessed on 30 March 2023).
- Lazo-Vélez, M.A.; Serna-Saldìvar, S.O.; Rosales-Medina, M.F.; Tinoco-Alvear, M.; Briones-Garcia, M. Application of Saccharomyces cerevisiae var. boulardii in food processing: A review. J. Appl. Microbiol. 2018, 125, 943–951. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; Bastos, M.L.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G.; et al. Guidance on the identity, characterisation and conditions of use of feed additives. EFSA J. 2017, 15, e05023. [Google Scholar] [CrossRef] [PubMed]
- EN15789:2022; Animal Feeding Stuffs: Methods of Sampling and Analysis—Detection and Enumeration of Saccharomyces Cerevisiae Used as Feed Additive. European Committee for Standardization: Brussels, Belgium, 2022.
- Hammer, O.; Harper, D.; Ryan, P. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Leuschner, R.G.; Bew, J.; Bertin, G. Validation of an official control method for enumeration of authorized probiotic yeast in animal feed. Syst. Appl. Microbiol. 2003, 26, 147–153. [Google Scholar] [CrossRef]
- COMMISSION IMPLEMENTING REGULATION (EU) 2015/502 of 24 March 2015 Concerning the Authorisation of the Preparation of Saccharomyces cerevisiae NCYC R404 as a Feed Additive for Dairy Cows (Holder of the Authorisation Micro Bio-System Ltd.) L 79/57 25.03.2015. Off. J. Eur. Union, 2015.
- COMMISSION IMPLEMENTING REGULATION (EU) 2019/899 of 29 May 2019 Concerning the Renewal of the Authorisation of Saccharomyces cerevisiae CNCM I-4407 as a Feed Additive for Lambs for Fattening, Dairy Goats, Dairy Sheep, Dairy Buffaloes, Horses and Pigs for Fattening and Repealing Regulations (EC) No 1447/2006, (EC) No 188/2007, (EC) No 232/2009, (EC) No 186/2007 and (EC) No 209/2008 (Holder of Authorisation S.I. Lesaffre) L144/32 3.6.2019. Off. J. Eur. Union, 2019.
- Swearingen, P.A.; O’Sullivan, D.J.; Warthesen, J.J. Isolation, characterization, and influence of native, nonstarter lactic acid bacteria on Cheddar cheese quality. J. Dairy Sci. 2001, 84, 50–59. [Google Scholar] [CrossRef]
- Ledenbach, L.H.; Marshall, R.T. Microbiological Spoilage of Dairy Products. In Compendium of the Microbiological Spoilage of Foods and Beverages. Food Microbiology and Food Safety; Sperber, W., Doyle, M., Eds.; Springer: New York, NY, USA, 2009; pp. 41–67. [Google Scholar]
- Mounier, J.; Goerges, S.; Gelsomino, R.; Vancanneyt, M.; Vandemeulebroecke, K.; Hoste, B.; Cogan, T.M. Sources of the adventitious microflora of a smear ripened cheese. J. Appl. Microbiol. 2006, 101, 668–681. [Google Scholar] [CrossRef]
- Serra, R.; Abrunhosa, L.; Kozakiewicz, Z.; Venâncio, A.; Lima, N. Use of ozone to reduce molds in a cheese ripening room. J. Food Prot. 2003, 66, 2355–2358. [Google Scholar] [CrossRef] [PubMed]
- Palma, M.L.; Zamith-Miranda, D.; Martins, F.S.; Bozza, F.A.; Nimrichter, L.; Montero-Lomeli, M.; Douradinha, B. Probiotic Saccharomyces cerevisiae strains as biotherapeutic tools: Is there room for improvement? Appl. Microbiol. Biotechnol. 2015, 99, 6563–6570. [Google Scholar] [CrossRef] [PubMed]
- Menezes, A.G.T.; Ramos, C.L.; Cenzi, G.; Melo, D.S.; Dias, D.R.; Schwan, R.F. Probiotic potential, antioxidant activity, and phytase production of indigenous yeasts isolated from indigenous fermented foods. Probiotics Antimicro. Prot. 2020, 12, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Syal, P.; Vohra, A. Probiotic potential of yeasts isolated from traditional Indian fermented foods. Int. J. Microbiol. Res. 2013, 5, 390. [Google Scholar] [CrossRef]
- Oliveira, T.; Ramalhosa, E.; Nunes, L.; Pereira, J.A.; Colla, E.; Pereira, E.L. Probiotic potential of indigenous yeasts isolated during the fermentation of table olives from Northeast of Portugal. Innov. Food Sci. Emerg. Technol. 2017, 44, 167–172. [Google Scholar] [CrossRef]
- Lara-Hidalgo, C.E.; Hernández-Sánchez, H.; Hernández-Rodríguez, C.; Dorantes-Álvarez, L. Yeasts in fermented foods and their probiotic potential. Austin J. Nutr. Metab. 2017, 4, 1045. [Google Scholar]
- Liu, S.Q.; Tsao, M. Enhancing stability of lactic acid bacteria and probiotics by Williopsis saturnus var. saturnusin fermented milks. Nutr. Food Sci. 2010, 40, 314–322. [Google Scholar] [CrossRef]
- Suharja, A.; Henriksson, A.; Liu, S.Q. Impact of Saccharomyces cerevisiae on viability of probiotic Lactobacillus rhamnosus in fermented milk under ambient conditions. J. Food Process. Preserv. 2014, 38, 326–337. [Google Scholar] [CrossRef]
- Xie, N.; Zhou, T.; Li, B. Kefir yeasts enhance probiotic potentials of Lactobacillus paracasei H9: The positive effects of co-aggregation between the two strains. Food Res. Int. 2012, 45, 394–401. [Google Scholar] [CrossRef]
- Kot, A.M.; Kieliszek, M.; Piwowarek, K.; Błażejak, S.; Mussagy, C.U. Sporobolomyces and Sporidiobolus–non-conventional yeasts for use in industries. Fungal Biol. Rev. 2021, 37, 41–58. [Google Scholar] [CrossRef]
- Patel, A.; Karageorgou, D.; Rova, E.; Katapodis, P.; Rova, U.; Christakopoulos, P.; Matsakas, L. An Overview of Potential Oleaginous Microorganisms and Their Role in Biodiesel and Omega-3 Fatty Acid-Based Industries. Microorganisms 2020, 8, 434. [Google Scholar] [CrossRef] [PubMed]
- Mussagy, C.U.; Khan, S.; Kot, A.M. Current developments on the application of microbial carotenoids as an alternative to synthetic pigments. Crit. Rev. Food Sci. Nutr. 2021, 62, 6932–6946. [Google Scholar] [CrossRef] [PubMed]
- Gientka, I.; B1azejak, S.; Stasiak-Rozanska, L.; Chlebowska-Smigiel, A. Exopolysaccharides from yeast: Insight into optimal conditions for biosynthesis, chemical composition and functional properties. Acta Sci. Pol. Technol. Aliment. 2015, 14, 283–292. [Google Scholar] [CrossRef]
- Han, S.M.; Lee, J.S. Production and its anti-hyperglycemic effects of γ-aminobutyric acid from the wild yeast strain Pichia silvicola UL6-1 and Sporobolomyces carnicolor 402-JB-1. Mycobiology 2017, 45, 199–203. [Google Scholar] [CrossRef]
- Viana, P.A.; de Rezende, S.T.; Passos, F.M.L.; Machado, S.G.; Maitan, G.P.; Coelho, V.T.D. Alpha-Galactosidases production by Debaryomyces hansenii UFV-1. Food Sci. Biotechnol. 2011, 20, 601–606. [Google Scholar] [CrossRef]
- Ochangco, H.S.; Gamero, A.; Smith, I.M.; Christensen, J.E.; Jespersen, L.; Arneborg, N. In vitro investigation of Debaryomyces hansenii strains for potential probiotic properties. World J. Microbiol. Biotechnol. 2016, 32, 141. [Google Scholar] [CrossRef]
- Reyes-Becerril, M.; Salinas, I.; Cuesta, A.; Meseguer, J.; Tovar-Ramirez, D.; Ascencio-Valle, F.; Esteban, M.Á. Oral delivery of live yeast Debaryomyces hansenii modulates the main innate immune parameters and the expression of immune-relevant genes in the gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2008, 25, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Angulo, M.; Reyes-Becerril, M.; Medina-Córdova, N.; Tovar-Ramírez, D.; Angulo, C. Probiotic and nutritional effects of Debaryomyces hansenii on animals. Appl. Microbiol. Biotechnol. 2020, 104, 7689–7699. [Google Scholar] [CrossRef] [PubMed]
- Celińska, E.; Kubiak, P.; Białas, W.; Dziadas, M.; Grajek, W. Yarrowia lipolytica: The novel and promising 2-phenylethanol producer. J. Ind. Microbiol. Biotechnol. 2013, 40, 389–392. [Google Scholar] [CrossRef]
- Fei, H.; Lin, G.D.; Zheng, C.C.; Huang, M.M.; Qian, S.C.; Wu, Z.J.; Han, B.N. Effects of Bacillus amyloliquefaciens and Yarrowia lipolytica lipase 2 on immunology and growth performance of Hybrid sturgeon. Fish Shellfish Immunol. 2018, 82, 250–257. [Google Scholar] [CrossRef]
- Licona-Jain, A.; Campa-Córdova, Á.; Luna-González, A.; Racotta, I.S.; Tello, M.; Angulo, C. Dietary supplementation of marine yeast Yarrowia lipolytica modulates immune response in Litopenaeus vannamei. Fish Shellfish Immunol. 2020, 105, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Neuls, L.; de Souza, V.J.; Romão, S.; Bitencourt, T.B.; Ramos, C.J.R.; Parra, J.E.G.; Cazarolli, L.H. Immunomodulatory effects of Yarrowia lipolytica as a food additive in the diet of Nile tilapia. Fish Shellfish Immunol. 2021, 119, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Becerril, M.; Alamillo, E.; Angulo, C. Probiotic and immunomodulatory activity of marine yeast Yarrowia lipolytica strains and response against Vibrio parahaemolyticus in fish. Probiotics Antimicro. Prot. 2021, 13, 1292–1305. [Google Scholar] [CrossRef] [PubMed]
- Czech, A.; Sembratowicz, I.; Zieba, G. Effect of the use of Yarrowia lipolytica and Saccharomyces cerevisiae yeast with a probiotic in the diet of turkeys on their gut microbiota and immunity. Vet. Med. 2020, 65, 174–182. [Google Scholar] [CrossRef]
- Guardiola, F.A.; Esteban, M.Á.; Angulo, C. Yarrowia lipolytica, health benefits for animals. Appl. Microbiol. Biotechnol. 2021, 105, 7577–7592. [Google Scholar] [CrossRef] [PubMed]
- Turck, D.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Scientific opinion on the safety of Yarrowia lipolytica yeast biomass as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2019, 17, 5594. [Google Scholar] [CrossRef]
- Desnos-Ollivier, M.; Letscher-Bru, V.; Neuvéglise, C.; Dromer, F. Yarrowia lipolytica causes sporadic cases and local outbreaks of infection and colonisation. Mycoses 2020, 63, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Groenewald, M.; Boekhout, T.; Neuveglise, C.; Gaillardin, C.; Van Dijck, P.W.M.; Wyss, M. Yarrowia lipolytica: Safety assessment of an oleaginous yeast with a great industrial potential. Crit. Rev. Microbiol. 2014, 40, 187–206. [Google Scholar] [CrossRef]
- McFarland, L.V. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J. Gastroenterol. 2010, 16, 2202–2222. [Google Scholar] [CrossRef]
- Edwards-Ingram, L.; Gitsham, P.; Burton, N.; Warhurst, G.; Clarke, I.; Hoyle, D.; Oliver, G.S.; Stateva, L. Genotypic and Physiological Characterization of Saccharomyces boulardii, the probiotic strain of Saccharomyces Cerevisiae. Appl. Environ. Microbiol. 2007, 73, 2458–2467. [Google Scholar] [CrossRef]
- Fietto, J.L.; Araújo, R.S.; Valadão, F.N.; Fietto, L.G.; Brandão, R.L.; Neves, M.J.; Castro, I.M. Molecular and physiological comparisons between Saccharomyces cerevisiae and Saccharomyces boulardii. Can. J. Microbiol. 2004, 50, 615–621. [Google Scholar] [CrossRef]
- Rodrigues, A.C.; Cara, D.C.; Fretez, S.H.; Cunha, F.Q.; Vieira, E.C.; Nicoli, J.R.; Vieira, L.Q. Saccharomyces boulardii stimulates sIgA production and the phagocytic system of gnotobiotic mice. J. Appl. Microbiol. 2000, 89, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Thevelein, M.J.; Foulquié-Moreno, R.M.; De Graeve, S.; Vandercruys, P.; Offei, B. Unique genetic basis of the distinct antibiotic potency of high acetic acid production in the probiotic yeast Saccharomyces cerevisiae var. boulardii. Genome Res. 2019, 29, 1478–1494. [Google Scholar] [CrossRef]
- Rampal, P.; Czerucka, D. Diversity of Saccharomyces boulardii CNCM I-745 mechanisms of action against intestinal infections. World J. Gastroenterol. 2019, 25, 2188–2203. [Google Scholar] [CrossRef]
- Kelesidis, T. Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders. Ther. Adv. Gastroenterol. 2012, 5, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Soares, R.L. Irritable bowel syndrome: A clinical review. World J. Gastroenterol. 2014, 20, 12144–12160. [Google Scholar] [CrossRef] [PubMed]
- Dinkçi, N.; Akdeniz, V.; Akalin, A.S. Survival of probiotics in functional foods during shelf life. In Food Quality and Shelf Life; Charis, M.G., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 201–233. [Google Scholar]
- D’angelo, S.; Fracassi, F.; Bresciani, F.; Galuppi, R.; Diana, A.; Linta, N.; Bettini, G.; Morini, M.; Pietra, M. Effect of Saccharomyces boulardii in dog with chronic enteropathies: Double-blinded, placebo-controlled study. Vet. Rec. 2018, 182, 258. [Google Scholar] [CrossRef]
- Blehaut, H.; Massot, J.; Elmer, G.; Levy, R.H. Disposition kinetics of Saccharomyces boulardii in man and rat. Drug Dispos. 1989, 10, 353–364. [Google Scholar] [CrossRef]
Isolation Source | ||||
---|---|---|---|---|
Species | Number of Isolates | Number of Isolates from the Air of the Maturing Stores | Number of Isolates from Gorgonzola Blue Cheese | NCBI Accession Number |
Aspergillus flavus Link | 1 | 1 | / | MN509030 |
Cladosporium cladosporioides (Fresen.) G.A. de Vries | 2 | 2 | / | MN503474 |
Cordyceps farinosa (Holmsk.) Kepler, B. Shrestha and Spatafora | 2 | 2 | / | MN543649 |
Debaryomyces hansenii (Zopf) Lodder and Kreger | 30 | 9 | 21 | MN503472 |
Fusicolla aquaeductuum (Radlk. and Rabenh.) Gräfenhan, Seifert and Schroers | 2 | 2 | / | MN508476 |
Mucor circinelloides Tiegh. | 1 | / | 1 | MN508478 |
Mucor fuscus Berl. and De Toni | 7 | 4 | 3 | MN508479 |
Mucor lanceolatus Hermet | 3 | 1 | 2 | MN503473 |
Mucor sp. | 1 | 1 | MN503523 | |
Penicillium atrosanguineum B.X. Dong | 1 | 1 | / | MN543644 |
Penicillim camemberti Thom | 1 | 1 | / | MN543646 |
Penicillium commune Thom | 31 | 11 | 20 | MN543647 |
Penicillium roqueforti Thom | 32 | 8 | 24 | MN543645 |
Penicillium sp. | 3 | / | 3 | MN543648 |
Sporobolomyces ruberrimus Yamasaki and H. Fujii ex Fell, Pinel, Scorzetti, Statzell and Yarrow | 3 | / | 3 | MN508477 |
Yarrowia deformans (Zach) M. Groenew and M.T. Sm | 1 | / | 1 | MN509050 |
Yarrowia lipolytica (Wick., Kurtzman and Herman) Van der Walt and Arx | 4 | / | 4 | MN509051 |
Saccharomyce cerevisiae var. boulardii | 1 | / | 1 | OQ619139 |
Tot | 126 | 42 | 84 |
Fresh and Dehydrated Lamb Meat | Choline Chloride |
---|---|
Rice | Vitamin C |
Potato protein | Inositol |
99.5% purified chicken oil | Thiamine mononitrate (vitamin. B1) |
Mais | Riboflavin (vitamin B2) |
Dried beet pulp | Pyridoxine hydrochloride (vitamin. B6) |
Brewer’s yeast | Cobalamin (vitamin. B12) |
Hydrolysed animal protein (liver) | d-pantothenic acid |
MOS (mannan-oligosaccharides) | Biotin (vitamin. H) |
X.O.S. (xylo-oligosaccharide) | Niacin (vitamin PP) |
Yucca schidigera | Folic acid |
spirulina algae flour | Iron (ferrous carbonate) |
Cystine | Zinc (zinc oxide) |
F.O.S. (fructo-oligosaccharides) | Manganese (manganous oxide) |
Sodium chloride | Potassium iodide |
Time | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Mean ± st. Deviation |
---|---|---|---|---|---|---|
W0 | 1.90 × 108 CFU/g | 1.91 × 108 CFU/g | 2.02 × 108 CFU/g | 1.84 × 108 CFU/g | 1.94 × 108 CFU/g | 1.92 (±0.07) × 108 CFU/g |
W2 | 1.69 × 108 CFU/g | 1.66 × 108 CFU/g | 1.76 × 108 CFU/g | 1.78 × 108 CFU/g | 1.80 × 108 CFU/g | 1.74 (±0.06) × 108 CFU/g |
W4 | 1.45 × 108 CFU/g | 1.35 × 108 CFU/g | 1.32 × 108 CFU/g | 1.44 × 108 CFU/g | 1.36 × 108 CFU/g | 1.38 (±0.06) × 108 CFU/g |
W8 | 1.21 × 108 CFU/g | 1.30 × 108 CFU/g | 1.27 × 108 CFU/g | 1.36 × 108 CFU/g | 1.30 × 108 CFU/g | 1.29 (±0.06) × 108 CFU/g |
W13 | 1.09 × 108 CFU/g | 1.10 × 108 CFU/g | 1.16 × 108 CFU/g | 1.09 × 108 CFU/g | 1.06 × 108 CFU/g | 1.10 (±0.04) × 108 CFU/g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voyron, S.; Bietto, F.; Fontana, M.; Martello, E.; Bruni, N.; Pessione, E. Molecular Characterization of the Gorgonzola Cheese Mycobiota and Selection of a Putative Probiotic Saccharomyces cerevisiae var. boulardii for Evaluation as a Veterinary Feed Additive. Appl. Microbiol. 2024, 4, 650-664. https://doi.org/10.3390/applmicrobiol4020045
Voyron S, Bietto F, Fontana M, Martello E, Bruni N, Pessione E. Molecular Characterization of the Gorgonzola Cheese Mycobiota and Selection of a Putative Probiotic Saccharomyces cerevisiae var. boulardii for Evaluation as a Veterinary Feed Additive. Applied Microbiology. 2024; 4(2):650-664. https://doi.org/10.3390/applmicrobiol4020045
Chicago/Turabian StyleVoyron, Samuele, Francesca Bietto, Mauro Fontana, Elisa Martello, Natascia Bruni, and Enrica Pessione. 2024. "Molecular Characterization of the Gorgonzola Cheese Mycobiota and Selection of a Putative Probiotic Saccharomyces cerevisiae var. boulardii for Evaluation as a Veterinary Feed Additive" Applied Microbiology 4, no. 2: 650-664. https://doi.org/10.3390/applmicrobiol4020045
APA StyleVoyron, S., Bietto, F., Fontana, M., Martello, E., Bruni, N., & Pessione, E. (2024). Molecular Characterization of the Gorgonzola Cheese Mycobiota and Selection of a Putative Probiotic Saccharomyces cerevisiae var. boulardii for Evaluation as a Veterinary Feed Additive. Applied Microbiology, 4(2), 650-664. https://doi.org/10.3390/applmicrobiol4020045