Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = SVOC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 994 KB  
Article
Integrated Absorption Spectroscopic Measurement of 2-Nitrophenol and Naphthalene
by Zhongmei Yang, Meng Wang, Dean S. Venables and Jun Chen
Int. J. Mol. Sci. 2025, 26(20), 9904; https://doi.org/10.3390/ijms26209904 - 11 Oct 2025
Viewed by 810
Abstract
This study presents a generalized, high-precision measurement system based on Integrated Absorption Spectroscopy (IAS) for determining gas-phase absorption cross sections of low-volatility organic compounds (LVOCs), particularly semi-volatile organic compounds (SVOCs) in the atmosphere. Accurate cross sections and their temperature dependence are essential for [...] Read more.
This study presents a generalized, high-precision measurement system based on Integrated Absorption Spectroscopy (IAS) for determining gas-phase absorption cross sections of low-volatility organic compounds (LVOCs), particularly semi-volatile organic compounds (SVOCs) in the atmosphere. Accurate cross sections and their temperature dependence are essential for modeling atmospheric and high-temperature processes. We coupled a temperature-controlled inlet and cell (473 K) with a nitrogen carrier gas to measure the cross sections of 2-nitrophenol (2-NP) and naphthalene from 250 to 400 nm. At 473 K, peak cross sections for 2-NP were 2.31 × 10−17 cm2/molecule at 260 nm and 1.16 × 10−17 cm2/molecule at 335 nm. For naphthalene, values between 258 and 280 nm decreased from 1.62 × 10−17 to 1.28 × 10−17 cm2/molecule. Thermally induced spectral broadening and reduced peak cross sections align with thermodynamic theory. These high-temperature data resolve discrepancies among low-temperature datasets. For example, our maximum cross section for 2-NP (300–400 nm) is 29% lower than that reported by Chen et al. (293 K), whereas the value from Sangwan and Zhu (295 K) is 86.8% lower than Chen’s, supporting the higher reliability of Chen’s data. The IAS method thus offers a robust approach for quantifying absorption cross sections under atmospherically relevant conditions. Full article
(This article belongs to the Special Issue Thermodynamic and Spectral Studies of Complexes)
Show Figures

Figure 1

17 pages, 918 KB  
Article
Building the I/SVOC Emission Inventory for Ocean-Going Ships: A Case Study on the Southeast Coast of China
by Xing Chang, Yue Li, Yonglin Zhang, Mingjun Li, Xiaowen Yang, Quansheng Huang, Yuanyuan Song, Rui Wu, Jie Liu and Youkai Xing
Sustainability 2025, 17(18), 8310; https://doi.org/10.3390/su17188310 - 16 Sep 2025
Viewed by 746
Abstract
Controlling air pollution from sea-going vessels is crucial to the sustainable development of maritime transportation. However, emissions of intermediate volatility organic compounds (IVOCs), an emerging aerosol precursor, remain poorly understood. This study developed a ship-type-, fuel-, and operating-mode-specific IVOC emission factor dataset based [...] Read more.
Controlling air pollution from sea-going vessels is crucial to the sustainable development of maritime transportation. However, emissions of intermediate volatility organic compounds (IVOCs), an emerging aerosol precursor, remain poorly understood. This study developed a ship-type-, fuel-, and operating-mode-specific IVOC emission factor dataset based on existing real-world vessel measurements, and a ship-call-based IVOC inventory methodology tailored for regulatory applications. We quantified IVOC emissions from sea-going ships (excluding fishing and military vessels) entering or departing from the ports in the Economic Zone on the West Coast of the Taiwan Straits in 2014. The total IVOC emissions were 481.4 ± 220.0 t, with Xiamen Port contributing the highest share. Cargo and passenger ships accounted for 65% and 21% of emissions, respectively. While switching to low-sulfur and ultra-low-sulfur fuels increased IVOC emissions by 87% and 49% compared to high-sulfur fuels, the greater reductions in particulate matter and SO2 emissions still yielded net environmental benefits. The ship IVOC emissions might have become more important in recent years due to enhanced port activity and fuel switching. Uncertainty analysis emphasizes the urgent need for IVOC emission testing on more vessel types. By providing a high-resolution profile of IVOC emissions from selected ports, this study underscores the urgency of adopting shore power and zero-emission vessels to mitigate organic aerosol pollution and offers a foundation for refining environmental impact assessments and efficient emission control policies to achieve sustainability in maritime transportation. Full article
(This article belongs to the Special Issue Sustainable Maritime Logistics and Low-Carbon Transportation)
Show Figures

Figure 1

17 pages, 3083 KB  
Article
Investigation of Influences on Indoor and Outdoor SVOC Exposure
by Brianna N. Rivera, Lisa M. Bramer, Christine C. Ghetu, Diana Rohlman, Kaley Adams, Katrina M. Waters and Kim A. Anderson
Int. J. Environ. Res. Public Health 2025, 22(4), 556; https://doi.org/10.3390/ijerph22040556 - 3 Apr 2025
Cited by 2 | Viewed by 2112
Abstract
Americans spend approximately 90% of their time indoors, with more than 66% of that time spent in residential buildings. Factors pertaining to household behavior or environmental factors may influence types of semi-volatile organic compounds (SVOC) found indoors. Paired indoor and outdoor passive samplers [...] Read more.
Americans spend approximately 90% of their time indoors, with more than 66% of that time spent in residential buildings. Factors pertaining to household behavior or environmental factors may influence types of semi-volatile organic compounds (SVOC) found indoors. Paired indoor and outdoor passive samplers were deployed at twenty-four locations across the United States. Samples were analyzed for >1500 SVOCs to identify common patterns in exposure profiles and investigate influences of household behavior and environmental factors. Unique differences between indoor and outdoor profiles were identified, with indoor air typically having greater frequency and concentration of SVOCs relative to outdoor air. A significant relationship between fragrance chemicals and scented consumer products was identified. When considering a multifactorial approach, chemical exposures were most influenced by environmental and demographic factors. Our data highlights specific groups of chemicals identified at higher concentrations indoors and their potential influences, as well as the complexity of identifying specific sources of chemical exposures. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

16 pages, 10963 KB  
Article
Electron Beam Irradiation-Induced Defects Enhance Pt-TiO2 Photothermal Catalytic Degradation in PAEs: A Performance and Mechanism Study
by Fukun Bi, Yaofei Zhang, Zhuoxuan Zhou, Lei Guo, Ziqiao Zhu, Baolin Liu and Xiaodong Zhang
Molecules 2025, 30(3), 697; https://doi.org/10.3390/molecules30030697 - 5 Feb 2025
Cited by 19 | Viewed by 1683
Abstract
Phthalic acid esters (PAEs), ubiquitous semi-volatile organic compounds (SVOCs) in indoor environments, pose adverse effects on human health. However, their degradation mechanisms and pathways remain unclear. Herein, we developed an efficient photothermal catalyst by introducing defects (oxygen vacancies, OVs) on TiO [...] Read more.
Phthalic acid esters (PAEs), ubiquitous semi-volatile organic compounds (SVOCs) in indoor environments, pose adverse effects on human health. However, their degradation mechanisms and pathways remain unclear. Herein, we developed an efficient photothermal catalyst by introducing defects (oxygen vacancies, OVs) on TiO2 (P25) surfaces via electron beam irradiation technology with different irradiation doses (100, 300, 500, and 700 kGy). The TiO2 with defects was employed as a support to prepare Pt-TiO2 catalysts for the photothermal degradation of di (2-ethylhexyl) phthalate (DEMP) and dimethyl phthalate (DMP), two representative PAEs. TiO2 pre-treated with a 300 kGy irradiation dose supported the Pt catalyst (Pt-Ti-P-300) and presented the optimal catalytic performance for DEMP and DMP degradation. Characterization results confirmed that OVs were successfully introduced to the catalysts. Meanwhile, OVs induced by electron beam irradiation expanded the light absorption range and improved the generation and separation of photogenerated carriers, which significantly enhanced the catalytic activity of the catalysts for PAE degradation. Importantly, the degradation mechanism and pathway of DMP were further explored by using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and gas chromatography–mass spectrometry (GC-MS). These findings provide important insights into the electron beam irradiation-mediated regulation of catalysts and the photothermal catalytic removal of PAEs in indoor environments. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

46 pages, 1183 KB  
Review
Chemicals in European Residences—Part II: A Review of Emissions, Concentrations, and Health Effects of Semi-Volatile Organic Compounds (SVOCs)
by Charlotte Landeg-Cox, Alice Middleton, Christos Halios, Tim Marczylo and Sani Dimitroulopoulou
Environments 2025, 12(2), 40; https://doi.org/10.3390/environments12020040 - 30 Jan 2025
Cited by 4 | Viewed by 3844
Abstract
This comprehensive review reports on concentrations, sources, emissions, and potential health effects from Semi-Volatile Organic Compounds (SVOCs) identified in the internal home environment in European residences. A total of 84 studies were identified, and concentrations were collated for inhalation exposure from dust, air [...] Read more.
This comprehensive review reports on concentrations, sources, emissions, and potential health effects from Semi-Volatile Organic Compounds (SVOCs) identified in the internal home environment in European residences. A total of 84 studies were identified, and concentrations were collated for inhalation exposure from dust, air and aerosol. A total of 298 individual SVOCs were identified and 67 compounds belonging to eight chemical classes: phthalates, flame retardants, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), per- and polyfluorinated alkyl substances (PFAS), biocides, bisphenols and musks were prioritised. Phthalates are the most abundant SVOCs with DEHP being the most abundant in both the dust and aerosol phases (WAGMs 426.4 μg g−1 and 52.2 ng m−3, respectively) followed by DBP for dust (WAGMs are 95.9 μg g−1). In the air, the most abundant SVOCs are DiBP (284.1 ng m−3), DBP (179.5 ng m−3), DEHP (106.2 ng m−3) and DMP (27.79 ng m−3). Chemicals from all SVOC categories are emitted from building and construction materials, furnishings and consumer products, especially phthalates. Both legacy chemicals and their alternatives were detected. Complexities of reporting on SVOCs included differing sampling methodologies, multiple standards in their definition, lack of industry data, and toxicological data focused primarily on ingestion not inhalation exposures. Further research is recommended to develop the evidence base for potential health effects including via inhalation, reporting of emission rates and undertaking future monitoring studies. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Figure 1

16 pages, 3375 KB  
Article
Mastering Snow Analysis: Enhancing Sampling Techniques and Introducing ACF Extraction Method with Applications in Svalbard
by Marina Cerasa, Catia Balducci, Benedetta Giannelli Moneta, Ettore Guerriero, Maria Luisa Feo, Alessandro Bacaloni and Silvia Mosca
Molecules 2024, 29(21), 5111; https://doi.org/10.3390/molecules29215111 - 29 Oct 2024
Cited by 1 | Viewed by 1671
Abstract
Semi-volatile organic contaminants (SVOCs) are known for their tendency to evaporate from source regions and undergo atmospheric transport to distant areas. Cold condensation intensifies dry deposition, particle deposition, and scavenging by snow and rain, allowing SVOCs to move from the atmosphere into terrestrial [...] Read more.
Semi-volatile organic contaminants (SVOCs) are known for their tendency to evaporate from source regions and undergo atmospheric transport to distant areas. Cold condensation intensifies dry deposition, particle deposition, and scavenging by snow and rain, allowing SVOCs to move from the atmosphere into terrestrial and aquatic ecosystems in alpine and polar regions. However, no standardized methods exist for the sampling, laboratory processing, and instrumental analysis of persistent organic pollutants (POPs) in snow. The lack of reference methods makes these steps highly variable and prone to errors. This study critically reviews the existing literature to highlight the key challenges in the sampling phase, aiming to develop a reliable, consistent, and easily reproducible technique. The goal is to simplify this crucial step of the analysis, allowing data to be shared more effectively through standardized methods, minimizing errors. Additionally, an innovative method for laboratory processing is introduced, which uses activated carbon fibers (ACFs) as adsorbents, streamlining the analysis process. The extraction method is applied to analyze polychlorobiphenyls (PCBs) and chlorinated pesticides (α-HCH, γ-HCH, p,p′-DDE, o,p′-DDT, HCB, and PeCB). The entire procedure, from sampling to instrumental analysis, is subsequently tested on snow samples collected on the Svalbard Islands. To validate the efficiency of the new extraction system, quality control measures based on the EPA methods 1668B and 1699 for aqueous methods are employed. This study presents a new, reliable method that covers both sampling and lab analysis, tailored for detecting POPs in snow. Full article
(This article belongs to the Special Issue Novel Analytical Methods to Evaluate and Monitor the Pollutants)
Show Figures

Graphical abstract

12 pages, 1863 KB  
Article
Emissions of Semi-Volatile Organic Compounds from Architectural Coatings and Polyvinyl Chloride Floorings: Microchamber Method
by Hongyan Guan, Qi Jia, Zhongbao Guo, Xu Han, Huiyu Zhang, Liteng Hao, Chuandong Wu and Jiemin Liu
Molecules 2024, 29(18), 4445; https://doi.org/10.3390/molecules29184445 - 19 Sep 2024
Cited by 4 | Viewed by 2044
Abstract
Semi-volatile organic compounds (SVOCs) are modern chemical substances that are present in large quantities in indoor environments. Understanding the emission of SVOCs from building materials is essential to identify the main sources of indoor SVOCs and to improve indoor air quality. In this [...] Read more.
Semi-volatile organic compounds (SVOCs) are modern chemical substances that are present in large quantities in indoor environments. Understanding the emission of SVOCs from building materials is essential to identify the main sources of indoor SVOCs and to improve indoor air quality. In this study, a reference method employing custom-designed microchambers (630 mL) was optimized by improving the structure of the gas path and adding polytetrafluoroethylene inner coating to the chamber. After optimization, the recoveries of the microchamber method were significantly improved (75.4–96.7%), and the background in the microchamber was greatly reduced (<0.02 μg/h). By using the microchamber method, 33 SVOCs (including two alkanes, one aromatic, one nitrogen compound, and twenty-nine oxygenated compounds) and 32 SVOCs (including seven alkanes, eight aromatics, and seventeen oxygenated compounds) were detected in the emissions of the architectural coating and the PVC flooring samples, respectively. The area-specific emission rates (SERa) of total SVOCs emitted from architectural coatings and PVC floorings were in the range of 4.09–1309 μg/m2/h) (median: 10.3 μg/m2/h) and 0.508–345 μg/m2/h (median: 11.9 μg/m2/h), respectively. Propanoic acid had the highest SERa (3143 μg/m2/h) in architectural coatings, while methylbenzene (345 μg/m2/h), 2-methylnaphthalene (65.2 μg/m2/h), and naphthalene (60.3 μg/m2/h) were main SVOCs emitted from PVC floorings. Meanwhile, the average second-stage (adsorbed phase) emission mass of the total SVOCs accounts for 66.3% and 47.3% in architectural coatings and PVC floorings, respectively, suggesting that the SVOCs emitted from building materials have a strong tendency to be absorbed on the surface of the room, e.g., the interior wall, the desk or even the skin. Full article
Show Figures

Figure 1

17 pages, 1661 KB  
Article
Recycled Concrete Aggregate for Oyster Aquaculture
by Dong-Hee Kang, James G. Hunter and Anastasia Chirnside
Waste 2024, 2(3), 201-217; https://doi.org/10.3390/waste2030012 - 27 Jun 2024
Viewed by 2314
Abstract
Recycled Concrete Aggregate (RCA) of the chemical and biological effects must be understood to avoid potential adverse impacts to the bay’s aquatic ecosystem. RCA application as a base material for oyster reefs did not adversely affect oyster spat growth and survival, or the [...] Read more.
Recycled Concrete Aggregate (RCA) of the chemical and biological effects must be understood to avoid potential adverse impacts to the bay’s aquatic ecosystem. RCA application as a base material for oyster reefs did not adversely affect oyster spat growth and survival, or the surrounding environment. Evaluated RCA leaching for petroleum byproducts showed that RCA as a base material for oyster reefs did not leach any hydrocarbon chemicals, and no water extractable SVOC were detected. The research found potential RCA application to the Chesapeake Bay watershed as a bottom conditioning material for oyster aquaculture. Overall, the findings support the use of RCA for oyster aquaculture. Full article
Show Figures

Figure 1

14 pages, 1971 KB  
Article
Permeable Pavement in the Northwestern United States: Pollution Source or Treatment Option?
by Cara Poor, Jackson Kaye, Rodney Struck and Ruben Gonzalez
Sustainability 2023, 15(17), 12926; https://doi.org/10.3390/su151712926 - 27 Aug 2023
Cited by 8 | Viewed by 4942
Abstract
Permeable pavements can be an effective stormwater mitigation technique, but there are concerns that polluted stormwater may contaminate groundwater as stormwater infiltrates through the soil beneath the pavement. This research evaluates the pollutant removal capabilities of pervious pavements using pervious cement concrete (PC) [...] Read more.
Permeable pavements can be an effective stormwater mitigation technique, but there are concerns that polluted stormwater may contaminate groundwater as stormwater infiltrates through the soil beneath the pavement. This research evaluates the pollutant removal capabilities of pervious pavements using pervious cement concrete (PC) and porous asphalt concrete (PA) cylinders. Stormwater collected from an outfall was used to perform three tests. The influent and effluent were analyzed for metals, semi-volatile organic compounds (SVOCs), phosphorus, and turbidity. Average percent removal for metals were 37–63% except for zinc, which had an average export of 21% for pervious cement concrete and 52% for porous asphalt concrete. Only 10 of the SVOCs tested had an influent concentration above detection levels. Complete removal (below detection levels) was observed for benzo(a)anthracene, benzo(a)pyrene, chrysene, and indeno(1,2,3-cd) pyrene. Average removals for benzo(b)fluoranthene, benzo(g,h,i)perlyne, fluoranthene, phenanthrene, pyrene, and bis(2-ethylhexyl)phthalate were 63–96%. No significant removal was observed for total phosphorus and reactive phosphate. All contaminant concentrations were below drinking water limits except lead, which would likely be removed in the soil layer below the pavement. This study indicates permeable pavements can effectively remove stormwater contaminants and protect groundwater as a drinking water source. Full article
(This article belongs to the Special Issue Sustainable Water Resources and Stormwater Management)
Show Figures

Figure 1

16 pages, 3237 KB  
Article
Comparative Study of α- and β-MnO2 on Methyl Mercaptan Decomposition: The Role of Oxygen Vacancies
by Hong Su, Jiangping Liu, Yanan Hu, Tianhao Ai, Chenhao Gong, Jichang Lu and Yongming Luo
Nanomaterials 2023, 13(4), 775; https://doi.org/10.3390/nano13040775 - 19 Feb 2023
Cited by 23 | Viewed by 4006
Abstract
As a representative sulfur-containing volatile organic compounds (S-VOCs), CH3SH has attracted widespread attention due to its adverse environmental and health risks. The performance of Mn-based catalysts and the effect of their crystal structure on the CH3SH catalytic reaction have [...] Read more.
As a representative sulfur-containing volatile organic compounds (S-VOCs), CH3SH has attracted widespread attention due to its adverse environmental and health risks. The performance of Mn-based catalysts and the effect of their crystal structure on the CH3SH catalytic reaction have yet to be systematically investigated. In this paper, two different crystalline phases of tunneled MnO2 (α-MnO2 and β-MnO2) with the similar nanorod morphology were used to remove CH3SH, and their physicochemical properties were comprehensively studied using high-resolution transmission electron microscope (HRTEM) and electron paramagnetic resonance (EPR), H2-TPR, O2-TPD, Raman, and X-ray photoelectron spectroscopy (XPS) analysis. For the first time, we report that the specific reaction rate for α-MnO2 (0.029 mol g−1 h−1) was approximately 4.1 times higher than that of β-MnO2 (0.007 mol g−1 h−1). The as-synthesized α-MnO2 exhibited higher CH3SH catalytic activity towards CH3SH than that of β-MnO2, which can be ascribed to the additional oxygen vacancies, stronger surface oxygen migration ability, and better redox properties from α-MnO2. The oxygen vacancies on the catalyst surface provided the main active sites for the chemisorption of CH3SH, and the subsequent electron transfer led to the decomposition of CH3SH. The lattice oxygen on catalysts could be released during the reaction and thus participated in the further oxidation of sulfur-containing species. CH3SSCH3, S0, SO32−, and SO42− were identified as the main products of CH3SH conversion. This work offers a new understanding of the interface interaction mechanism between Mn-based catalysts and S-VOCs. Full article
(This article belongs to the Special Issue Nanocatalysts for Air Purification)
Show Figures

Graphical abstract

11 pages, 2159 KB  
Article
Detailed Speciation of Semi-Volatile and Intermediate-Volatility Organic Compounds (S/IVOCs) in Marine Fuel Oils Using GC × GC-MS
by Rongzhi Tang, Kai Song, Yuanzheng Gong, Dezun Sheng, Yuan Zhang, Ang Li, Shuyuan Yan, Shichao Yan, Jingshun Zhang, Yu Tan and Song Guo
Int. J. Environ. Res. Public Health 2023, 20(3), 2508; https://doi.org/10.3390/ijerph20032508 - 31 Jan 2023
Cited by 4 | Viewed by 3084
Abstract
Ship emissions contribute substantial air pollutants when at berth. However, the complexity and diversity of the marine fuels utilized hinder our understanding and mapping of the characteristics of ship emissions. Herein, we applied GC × GC-MS to analyze the components of marine fuel [...] Read more.
Ship emissions contribute substantial air pollutants when at berth. However, the complexity and diversity of the marine fuels utilized hinder our understanding and mapping of the characteristics of ship emissions. Herein, we applied GC × GC-MS to analyze the components of marine fuel oils. Owing to the high separation capacity of GC × GC-MS, 11 classes of organic compounds, including b-alkanes, alkenes, and cyclo-alkanes, which can hardly be resolved by traditional one-dimensional GC-MS, were detected. Significant differences are observed between light (-10# and 0#) and heavy (120# and 180#) fuels. Notably, -10# and 0# diesel fuels are more abundant in b-alkanes (44~49%), while in 120# and 180#, heavy fuels b-alkanes only account for 8%. Significant enhancement of naphthalene proportions is observed in heavy fuels (20%) compared to diesel fuels (2~3%). Hopanes are detected in all marine fuels and are especially abundant in heavy marine fuels. The volatility bins, one-dimensional volatility-based set (VBS), and two-dimensional VBS (volatility-polarity distributions) of marine fuel oils are investigated. Although IVOCs still take dominance (62–66%), the proportion of SVOCs in heavy marine fuels is largely enhanced, accounting for ~30% compared to 6~12% in diesel fuels. Furthermore, the SVOC/IVOC ratio could be applied to distinguish light and heavy marine fuel oils. The SVOC/IVOC ratios for -10# diesel fuel, 0# diesel fuel, 120# heavy marine fuel, and 180# heavy marine fuel are 0.085 ± 0.046, 0.168 ± 0.159, 0.504, and 0.439 ± 0.021, respectively. Our work provides detailed information on marine fuel compositions and could be further implemented in estimating organic emissions and secondary organic aerosol (SOA) formation from marine fuel storage and evaporation processes. Full article
Show Figures

Figure 1

22 pages, 10114 KB  
Article
On the Utilization of Modified Red Mud in Dimethyl Disulfide and Methyl Mercaptan Emission Abatement
by Sanna Päivärinta-Antikainen, Satu Ojala, Satu Pitkäaho, Lenka Matějová and Riitta L. Keiski
Resources 2023, 12(1), 9; https://doi.org/10.3390/resources12010009 - 3 Jan 2023
Cited by 4 | Viewed by 3079
Abstract
In this paper, a novel application of industrial waste, namely red mud (RM), in the abatement of two malodorous and harmful sulfur compounds, dimethyl disulfide (DMDS) and methyl mercaptan (MM), is presented. The effects of calcination and activations with hydrochloric acid or a [...] Read more.
In this paper, a novel application of industrial waste, namely red mud (RM), in the abatement of two malodorous and harmful sulfur compounds, dimethyl disulfide (DMDS) and methyl mercaptan (MM), is presented. The effects of calcination and activations with hydrochloric acid or a mixture of hydrochloric and orthophosphoric acid on the properties and performance of RM are compared using laboratory-scale experiments. The RM-based materials were characterized by XRF, XRD, FE-SEM, N2-physisorption, TGA/DTA, and FTIR analyses. RM exhibits very promising catalytic properties in the abatement of both DMDS and MM. The hydrochloric acid-activated RM was the most active in both cases, which was explained by its rather high specific surface area (144 m2 g−1), higher contents of Fe2O3 and TiO2, as well as lower content of phosphorus. For both DMDS and MM, the main oxidation products were sulfur dioxide, carbon monoxide, and carbon dioxide. DMDS was observed as a reaction intermediate in MM oxidation. While the final conversions of DMDS and MM were high, the oxidation was not complete, indicated by the formation of carbon monoxide. Nevertheless, the modified RM appears as a very interesting alternative to the existing DMDS and MM abatement catalysts. Full article
(This article belongs to the Special Issue Women's Special Issue Series: Sustainable Resource Management)
Show Figures

Graphical abstract

11 pages, 1554 KB  
Article
Secondary Organic Aerosol Formation from Semi-Volatile and Intermediate Volatility Organic Compounds in the Fall in Beijing
by Yuan Zhang, Jingsen Fan, Kai Song, Yuanzheng Gong, Daqi Lv, Zichao Wan, Tianyu Li, Chaoyi Zhang, Sihua Lu, Shiyi Chen, Limin Zeng and Song Guo
Atmosphere 2023, 14(1), 94; https://doi.org/10.3390/atmos14010094 - 31 Dec 2022
Cited by 6 | Viewed by 3869
Abstract
Intermediate volatility organic compounds (IVOCs) and semi-volatile organic compounds (SVOCs) have recently been proposed as important precursors of secondary organic aerosol (SOA). In the present work, 97 volatile organic compounds (VOCs) and 80 intermediate volatility and semi-volatile organic compounds (IVOCs and SVOCs) were [...] Read more.
Intermediate volatility organic compounds (IVOCs) and semi-volatile organic compounds (SVOCs) have recently been proposed as important precursors of secondary organic aerosol (SOA). In the present work, 97 volatile organic compounds (VOCs) and 80 intermediate volatility and semi-volatile organic compounds (IVOCs and SVOCs) were measured by online gas chromatography-mass spectrometer/flame ionization detection (GC-MS/FID), and offline thermal desorption gas chromatography-mass spectrometer (TD-GC-MS), respectively. The average concentration of speciated VOCs, IVOCs, and SVOCs were 22.36 ± 9.02 μg m−3, 1.01 ± 0.32 μg m−3, and 0.10 ± 0.17 μg m−3. Alkanes and polycyclic aromatic hydrocarbons (PAHs) are the main compounds of total S/IVOCs. With the increase in molecular weight, the concentrations decreased in the gas phase, while increasing in the particle phase. Vehicular emission is the most significant source according to the carbon preference index (CPI) and the carbon of the most abundant alkane (Cmax). The yield method was used to estimate SOA from the oxidation of VOCs and S/IVOCs. The estimated SOA mass from IVOCs and SVOCs (0.70 ± 0.57 μg m−3) was comparable to that of VOCs (0.62 ± 0.61 μg m−3), and the oxidation of PAHs and alkanes took up 28.70 ± 8.26% and 51.97 ± 20.77% of the total SOA estimation, respectively. Compared to previous work, our study provided detailed molecular information of ambient S/IVOC species and elucidated their importance on SOA formation. Despite their low concentration, S/IVOCs species are important SOA precursors which shared comparable contribution compared with VOCs. Full article
(This article belongs to the Special Issue Chemical Composition and Sources of Particles in the Atmosphere)
Show Figures

Figure 1

14 pages, 752 KB  
Review
Health Effects of Exposure to Indoor Semi-Volatile Organic Compounds in Chinese Building Environment: A Systematic Review
by Yeganeh Ataei, Yuexia Sun, Wei Liu, Agnes S. Ellie, Hui Dong and Umme Marium Ahmad
Int. J. Environ. Res. Public Health 2023, 20(1), 678; https://doi.org/10.3390/ijerph20010678 - 30 Dec 2022
Cited by 24 | Viewed by 4720
Abstract
People spend a considerable portion of their lives indoors; thus, the quality of the indoor environment is crucial. Semi-volatile organic compounds (SVOCs) are among the primary indoor pollutants responsible for various health risks. This paper systematically reviews the impact of SVOC exposure on [...] Read more.
People spend a considerable portion of their lives indoors; thus, the quality of the indoor environment is crucial. Semi-volatile organic compounds (SVOCs) are among the primary indoor pollutants responsible for various health risks. This paper systematically reviews the impact of SVOC exposure on human health in Chinese built environments. Based on a set of criteria, we judged 12 publications as providing sufficient information on both SVOC exposure and health effects to inform the relationship. Out of six studies on polycyclic aromatic hydrocarbons (PAHs), three observed a positive association between PAH exposure and lung cancer. Out of six studies of phthalate exposure, two studies reported a significant positive association between DEP and DiBP and asthma, between DEP and DEHP and dry cough among children, and between DBP and rhinitis among younger adults. The results of this review suggest that there might be a link between phthalate exposure and asthma and allergies, as well as a link between PAH exposure and lung cancer. However, due to the limited number of studies conducted, more evidence is necessary to definitively guide the establishment of standards for SVOC control in China. Full article
(This article belongs to the Special Issue Environmental Chemical Exposure and Human Health in the Modern Era)
Show Figures

Figure 1

16 pages, 1943 KB  
Article
Identification and Assessment of Groundwater and Soil Contamination from an Informal Landfill Site
by Xinyang Liu and Yu Wang
Sustainability 2022, 14(24), 16948; https://doi.org/10.3390/su142416948 - 17 Dec 2022
Cited by 12 | Viewed by 4336
Abstract
Landfills are a potential source of local environmental pollution of all kinds, and the gradual destruction of seepage-proof structures in informal landfills will lead to contamination of the surrounding soil and groundwater environment. In this study, an informal landfill site in eastern China [...] Read more.
Landfills are a potential source of local environmental pollution of all kinds, and the gradual destruction of seepage-proof structures in informal landfills will lead to contamination of the surrounding soil and groundwater environment. In this study, an informal landfill site in eastern China is used as the research object. Using technologies such as unmanned vessels and monitoring well imaging to delineate the amount and distribution of polluting media, sampling of the surrounding soil, sediment, groundwater, and surface water for testing, analysis, and evaluation is carried out visually and finely for heavy metals, petroleum hydrocarbons, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and other indicators. The test results show that volatile phenols are the main contaminant species in the shallow groundwater, chlorinated hydrocarbons and benzene were prevalent in the deep groundwater, hexachlorobenzene and lead in the surface soil, and di(2-Ethylhexyl) phthalate in the deep soil (5.5 m), with a maximum exceedance of 1.24 times. Nearly 10 years have passed since the waste dumping incident at the landfill, but characteristic contaminants are still detected in the topsoil of the dumping area, which shows the long-term nature of the environmental impact of illegal dumping on the site. The study recommends that when developing a comprehensive remediation plan, the persistence of the environmental impact of the waste should be considered and appropriate remediation measures should be screened. Full article
Show Figures

Figure 1

Back to TopTop