Secondary Organic Aerosol Formation from Semi-Volatile and Intermediate Volatility Organic Compounds in the Fall in Beijing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement Location
2.2. Measurement of VOCs and S/IVOCs
2.3. Quantification of S/IVOCs
2.4. Estimated SOA Formation
2.5. Diagnostic Parameters and Gas-Particle Partitioning
3. Results
3.1. Molecular Composition and Volatility of Ambient Organic Compounds
3.1.1. Total S/IVOCs
3.1.2. Speciated S/IVOCs
3.2. Correlations with Traffic Source
3.3. Diagnostic Parameters and Gas-Particle Partitioning of S/IVOCs
3.4. SOA Estimation from the Oxidation of VOCs and S/IVOCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, R.; Zhang, Y.; Bozzetti, C.; Ho, K.; Cao, J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Hu, M.; Zamora, M.L.; Peng, J.; Shang, D.; Zheng, J.; Du, Z.; Wu, Z.; Shao, M.; Zeng, L.; et al. Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. USA 2014, 111, 17373–17378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanakidou, M.; Seinfeld, J.H.; Pandis, S.N.; Barnes, I.; Dentener, F.J.; Facchini, M.C.; van Dingenen, R.; Ervens, B.; Nenes, A.; Nielsen, C.J.; et al. Organic aerosol and global climate modelling: A review. Atmos. Chem. Phys. 2005, 5, 1053–2005. [Google Scholar] [CrossRef] [Green Version]
- Fuzzi, S.; Baltensperger, U.; Carslaw, K.; Decesari, S.; Denier Van Der Gon, H.; Facchini, M.C.; Fowler, D.; Koren, I.; Langford, B.; Lohmann, U.; et al. Particulate matter, air quality and climate: Lessons learned and future needs. Atmos. Chem. Phys. 2015, 15, 8217–8299. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Jimenez, J.L.; Canagaratna, M.R.; Allan, J.D.; Coe, H.; Ulbrich, I.; Alfarra, M.R.; Takami, A.; Middlebrook, A.M.; Sun, Y.L.; et al. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Presto, A.A.; Miracolo, M.A.; Donahue, N.M.; Robinson, A.L. Secondary organic aerosol formation from high-NO(x) photo-oxidation of low volatility precursors: N-alkanes. Environ. Sci. Technol. 2010, 44, 2029–2034. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Li, Y.; Gao, J.; Fung, J.C.H.; Wang, S.; Li, Y.; Chan, C.K.; Lau, A.K.H. Source apportionment of secondary organic aerosols in the Pearl River Delta region: Contribution from the oxidation of semi-volatile and intermediate volatility primary organic aerosols. Atmos. Environ. 2020, 222, 117111. [Google Scholar] [CrossRef]
- Robinson, A.L.; Donahue, N.M.; Shrivastava, M.K.; Weitkamp, E.A.; Sage, A.M.; Grieshop, A.P.; Lane, T.E.; Pierce, J.R.; Pandis, S.N. Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging. Science 2007, 315, 1259–1262. [Google Scholar] [CrossRef]
- Wan, Z.; Song, K.; Zhu, W.; Yu, Y.; Wang, H.; Shen, R.; Tan, R.; Lv, D.; Gong, Y.; Yu, X.; et al. A Closure Study of Secondary Organic Aerosol Estimation at an Urban Site of Yangtze River Delta, China. Atmosphere 2022, 13, 1679. [Google Scholar] [CrossRef]
- Hu, W.; Huaishan, Z.; Wei, C.; Yuqing, Y.; Tianle, P.; Yingkun, W.; Wei, S.; Huina, Z.; Wei, D.; Ming, Z.; et al. Oxidation Flow Reactor Results in a Chinese Megacity Emphasize the Important Contribution of S/IVOCs to Ambient SOA Formation. Environ. Sci. Technol. 2021, 56, 6880–6893. [Google Scholar] [CrossRef]
- Presto, A.A.; Miracolo, M.A.; Kroll, J.H.; Worsnop, D.R.; Robinson, A.L.; Donahue, N.M. Intermediate-Volatility Organic Compounds: A Potential Source of Ambient Oxidized Organic Aerosol. Environ. Sci. Technol. 2009, 43, 4744–4749. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Y.; Yuan, Z.; Wang, H.; Sha, Q.E.; Lou, S.; Liu, Y.; Hao, Y.; Duan, L.; Ye, P.; et al. Identification of two main origins of intermediate-volatility organic compound emissions from vehicles in China through two-phase simultaneous characterization. Environ. Pollut. 2021, 281, 117020. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Hennigan, C.J.; May, A.A.; Tkacik, D.S.; de Gouw, J.A.; Gilman, J.B.; Kuster, W.C.; Borbon, A.; Robinson, A.L. Intermediate-Volatility Organic Compounds: A Large Source of Secondary Organic Aerosol. Environ. Sci. Technol. 2014, 48, 13743–13750. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Guo, S.; Gong, Y.; Lv, D.; Zhang, Y.; Wan, Z.; Li, T.; Zhu, W.; Wang, H.; Yu, Y.; et al. Impact of cooking style and oil on semi-volatile and intermediate volatility organic compound emissions from Chinese domestic cooking. Atmos. Chem. Phys. 2022, 22, 9827–9841. [Google Scholar] [CrossRef]
- Huang, L.; Wang, Q.; Wang, Y.; Emery, C.; Zhu, A.; Zhu, Y.; Yin, S.; Yarwood, G.; Zhang, K.; Li, L. Simulation of secondary organic aerosol over the Yangtze River Delta region: The impacts from the emissions of intermediate volatility organic compounds and the SOA modeling framework. Atmos. Environ. 2021, 246, 118079. [Google Scholar] [CrossRef]
- Yang, W.; Li, J.; Wang, W.; Li, J.; Ge, M.; Sun, Y.; Chen, X.; Ge, B.; Tong, S.; Wang, Q.; et al. Investigating secondary organic aerosol formation pathways in China during 2014. Atmos. Environ. 2019, 213, 133–147. [Google Scholar] [CrossRef]
- Tang, R.; Wu, Z.; Li, X.; Wang, Y.; Shang, D.; Xiao, Y.; Li, M.; Zeng, L.; Wu, Z.; Hallquist, M.; et al. Primary and secondary organic aerosols in summer 2016 in Beijing. Atmos. Chem. Phys. 2018, 18, 4055–4068. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Hu, M.; Guo, Q.; Zhang, X.; Zheng, M.; Zheng, J.; Chang, C.C.; Schauer, J.J.; Zhang, R. Primary Sources and Secondary Formation of Organic Aerosols in Beijing, China. Environ. Sci. Technol. 2012, 46, 9846–9853. [Google Scholar] [CrossRef]
- Lv, D.; Lu, S.; He, S.; Song, K.; Shao, M.; Xie, S.; Gong, Y. Research on accounting and detection of volatile organic compounds from a typical petroleum refinery in Hebei, North China. Chemosphere 2021, 281, 130653. [Google Scholar] [CrossRef]
- Presto, A.A.; Hennigan, C.J.; Nguyen, N.T.; Robinson, A.L. Determination of Volatility Distributions of Primary Organic Aerosol Emissions from Internal Combustion Engines Using Thermal Desorption Gas Chromatography Mass Spectrometry. Aerosol Sci. Technol. 2012, 46, 1129–1139. [Google Scholar] [CrossRef]
- Ensberg, J.J.; Hayes, P.L.; Jimenez, J.L.; Gilman, J.B.; Kuster, W.C.; de Gouw, J.A.; Holloway, J.S.; Gordon, T.D.; Jathar, S.; Robinson, A.L.; et al. Emission factor ratios, SOA mass yields, and the impact of vehicular emissions on SOA formation. Atmos. Chem. Phys. 2014, 14, 2383–2397. [Google Scholar] [CrossRef] [Green Version]
- Chan, A.W.H.; Kautzman, K.E.; Chhabra, P.S.; Surratt, J.D.; Chan, M.N.; Crounse, J.D.; Kürten, A.; Wennberg, P.O.; Flagan, R.C.; Seinfeld, J.H. Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: Implications for oxidation of intermediate volatility organic compounds (IVOCs). Atmos. Chem. Phys. 2009, 9, 3049–3060. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Wang, H.; Wang, T.; Song, K.; Tan, T.; Wan, Z.; Gao, Y.; Dong, H.; Chen, S.; Zeng, L.; et al. Elucidating the importance of semi-volatile organic compounds to secondary organic aerosol formation at a regional site during the EXPLORE-YRD campaign. Atmos. Environ. 2021, 246, 118043. [Google Scholar] [CrossRef]
- Atkinson, R.; Arey, J. Atmospheric Degradation of Volatile Organic Compounds. Chem. Rev. 2003, 103, 4605–4638. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.W.H.; Chan, M.N.; Surratt, J.D.; Chhabra, P.S.; Loza, C.L.; Crounse, J.D.; Yee, L.D.; Flagan, R.C.; Wennberg, P.O.; Seinfeld, J.H. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation. Atmos. Chem. Phys. 2010, 10, 7169–7188. [Google Scholar] [CrossRef] [Green Version]
- Meylan, W.M.; Howard, P.H. Computer estimation of the Atmospheric gas-phase reaction rate of organic compounds with hydroxyl radicals and ozone. Chemosphere 1993, 26, 2293–2299. [Google Scholar] [CrossRef]
- Gentner, D.R.; Isaacman, G.; Worton, D.R.; Chan, A.W.H.; Dallmann, T.R.; Davis, L.; Liu, S.; Day, D.A.; Russell, L.M.; Wilson, K.R.; et al. Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions. Proc. Natl. Acad. Sci. USA 2012, 109, 18318–18323. [Google Scholar] [CrossRef] [Green Version]
- Fang, Z.; Deng, W.; Zhang, Y.; Ding, X.; Tang, M.; Liu, T.; Hu, Q.; Zhu, M.; Wang, Z.; Yang, W.; et al. Open burning of rice, corn and wheat straws: Primary emissions, photochemical aging, and secondary organic aerosol formation. Atmos. Chem. Phys. 2017, 17, 14821–14839. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.; Goldstein, A.H.; Keywood, M.D.; Gao, S.; Varutbangkul, V.; Bahreini, R.; Ng, N.L.; Flagan, R.C.; Seinfeld, J.H. Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes. J. Geophys. Res. 2006, 111, D07302. [Google Scholar] [CrossRef]
- Han, D.; Fu, Q.; Gao, S.; Li, L.; Ma, Y.; Qiao, L.; Xu, H.; Liang, S.; Cheng, P.; Chen, X.; et al. Non-polar organic compounds in autumn and winter aerosols in a typical city of eastern China: Size distribution and impact of gas–particle partitioning on PM2.5 source apportionment. Atmos. Chem. Phys. 2018, 18, 9375–9391. [Google Scholar] [CrossRef]
- Wang, P.; Li, Y.; Zhang, F.; Chen, Y.; Feng, Y.; Xu, J.; Ma, Y.; Huang, C.; Li, L.; Li, J.; et al. Concentration, composition and variation of ambient IVOCs in Shanghai Port during the G20 summit. GEOCHIMICA 2018, 47, 313–321. [Google Scholar]
- Li, Y.; Ren, B.; Qiao, Z.; Zhu, J.; Wang, H.; Zhou, M.; Qiao, L.; Lou, S.; Jing, S.; Huang, C.; et al. Characteristics of atmospheric intermediate volatility organic compounds (IVOCs) in winter and summer under different air pollution levels. Atmos. Environ. 2019, 210, 58–65. [Google Scholar] [CrossRef]
- Flores, R.M.; özdemir, H.; ünal, A.; Tayanç, M. Distribution and sources of SVOCs in fine and coarse aerosols in the megacity of Istanbul. Atmos. Res. 2022, 271, 106100. [Google Scholar] [CrossRef]
- Fang, H.; Luo, S.; Huang, X.; Fu, X.; Xiao, S.; Zeng, J.; Wang, J.; Zhang, Y.; Wang, X. Ambient naphthalene and methylnaphthalenes observed at an urban site in the Pearl River Delta region: Sources and contributions to secondary organic aerosol. Atmos. Environ. 2021, 252, 118295. [Google Scholar] [CrossRef]
- Xu, R.; Alam, M.S.; Stark, C.; Harrison, R.M. Composition and emission factors of traffic- emitted intermediate volatility and semi-volatile hydrocarbons (C10–C36) at a street canyon and urban background sites in central London, UK. Atmos. Environ. 2020, 231, 117448. [Google Scholar] [CrossRef]
- Klein, F.; Farren, N.J.; Bozzetti, C.; Daellenbach, K.R.; Kilic, D.; Kumar, N.K.; Pieber, S.M.; Slowik, J.G.; Tuthill, R.N.; Hamilton, J.F.; et al. Indoor terpene emissions from cooking with herbs and pepper and their secondary organic aerosol production potential. Sci. Rep. 2016, 6, 36623. [Google Scholar] [CrossRef]
- Mcdonald, B.C.; de Gouw, J.A.; Gilman, J.B.; Jathar, S.H.; Akherati, A.; Cappa, C.D.; Jimenez, J.L.; Lee-Taylor, J.; Hayes, P.L.; Mckeen, S.A.; et al. Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science 2018, 359, 760–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, R.U.; Coggon, M.M.; Gkatzelis, G.I.; Mcdonald, B.C.; Tasoglou, A.; Huber, H.; Gilman, J.; Warneke, C.; Robinson, A.L.; Presto, A.A. Urban Oxidation Flow Reactor Measurements Reveal Significant Secondary Organic Aerosol Contributions from Volatile Emissions of Emerging Importance. Environ. Sci. Technol. 2020, 54, 714–725. [Google Scholar] [CrossRef]
- Humes, M.B.; Wang, M.; Kim, S.; Machesky, J.E.; Gentner, D.R.; Robinson, A.L.; Donahue, N.M.; Presto, A.A. Limited Secondary Organic Aerosol Production from Acyclic Oxygenated Volatile Chemical Products. Environ. Sci. Technol. 2022, 56, 4806–4815. [Google Scholar] [CrossRef]
- Harrison, R.M.; Beddows, D.C. Efficacy of Recent Emissions Controls on Road Vehicles in Europe and Implications for Public Health. Sci. Rep. 2017, 7, 1152. [Google Scholar] [CrossRef] [Green Version]
- Wen, Y.; Zhang, S.; He, L.; Yang, S.; Wu, X.; Wu, Y. Characterizing start emissions of gasoline vehicles and the seasonal, diurnal and spatial variabilities in China. Atmos. Environ. 2021, 245, 118040. [Google Scholar] [CrossRef]
- Xu, R.; Alam, M.S.; Stark, C.; Harrison, R.M. Behaviour of traffic emitted semi-volatile and intermediate volatility organic compounds within the urban atmosphere. Sci. Total Environ. 2020, 720, 137470. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zheng, X.; You, Y.; Zhang, S.; Zhao, B.; Wang, X.; Huang, G.; Chen, T.; Cao, Y.; He, L.; et al. Comprehensive chemical characterization of gaseous I/SVOC emissions from heavy-duty diesel vehicles using two-dimensional gas chromatography time-of-flight mass spectrometry. Environ. Pollut. 2022, 305, 119284. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Man, H.; Zhao, J.; Jiang, Y.; Zeng, M.; Cai, Z.; Huang, C.; Huang, W.; Zhao, H.; Jing, S.; et al. Primary organic gas emissions in vehicle cold start events: Rates, compositions and temperature effects. J. Hazard. Mater. 2022, 435, 128979. [Google Scholar] [CrossRef]
- Li, W.; Li, L.; Chen, C.; Kacarab, M.; Peng, W.; Price, D.; Xu, J.; Cocker, D.R. Potential of select intermediate-volatility organic compounds and consumer products for secondary organic aerosol and ozone formation under relevant urban conditions. Atmos. Environ. 2018, 178, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Bian, S.; Gao, K.; Cao, Y.; Wu, H.; Liu, C.; Jiang, X.; Sun, X. Studies on the meso-sized selectivity of a novel organic/inorganic hybrid mesoporous silica membrane. J. Membr. Sci. 2014, 457, 9–18. [Google Scholar] [CrossRef]
- Jia, C.; Batterman, S. A Critical Review of Naphthalene Sources and Exposures Relevant to Indoor and Outdoor Air. Int. J. Env. Res. Pub. He. 2010, 7, 2903–2939. [Google Scholar] [CrossRef] [PubMed]
- Drozd, G.T.; Zhao, Y.; Saliba, G.; Frodin, B.; Maddox, C.; Oliver Chang, M.C.; Maldonado, H.; Sardar, S.; Weber, R.J.; Robinson, A.L.; et al. Detailed Speciation of Intermediate Volatility and Semivolatile Organic Compound Emissions from Gasoline Vehicles: Effects of Cold-Starts and Implications for Secondary Organic Aerosol Formation. Environ. Sci. Technol. 2019, 53, 1706–1714. [Google Scholar] [CrossRef]
- Xie, M.; Barsanti, K.C.; Hannigan, M.P.; Dutton, S.J.; Vedal, S. Positive matrix factorization of PM2.5 –eliminating the effects of gas/particle partitioning of semivolatile organic compounds. Atmos. Chem. Phys. 2013, 13, 7381–7393. [Google Scholar] [CrossRef] [Green Version]
- Ling, Z.; Wu, L.; Wang, Y.; Shao, M.; Wang, X.; Huang, W. Roles of semivolatile and intermediate-volatility organic compounds in secondary organic aerosol formation and its implication: A review. J. Environ. Sci. 2022, 114, 259–285. [Google Scholar] [CrossRef]
IVOCs | Location | Date | Concentration (μg m−3) | Reference |
---|---|---|---|---|
Primary IVOCs | Urban air, Shanghai | 5 December 2016~3 January 2017 | 35.1 ± 16.1 | [32] |
Primary IVOCs | Ambient air, California | 17 May 2010~11 June 2010 | 6.3 ± 1.9 | [13] |
Primary IVOCs | Coastal, Yang Shan Port | August~September 2016 | 5.1 ± 0.8 | [31] |
Total IVOC | Urban air, Beijing | 11 September 2020~6 October 2020 | 7.56 ± 3.50 (speciated 1.01 ± 0.32 ) | This study |
PAHs n-alkanes | Urban air, Istanbul | January 2017~January 2018 | 55.3~204.2 7.1~80.8 | [33] |
Total SVOC | Urban air, Beijing | 11 September 2020~6 October 2020 | 104.85 ± 164.67 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Fan, J.; Song, K.; Gong, Y.; Lv, D.; Wan, Z.; Li, T.; Zhang, C.; Lu, S.; Chen, S.; et al. Secondary Organic Aerosol Formation from Semi-Volatile and Intermediate Volatility Organic Compounds in the Fall in Beijing. Atmosphere 2023, 14, 94. https://doi.org/10.3390/atmos14010094
Zhang Y, Fan J, Song K, Gong Y, Lv D, Wan Z, Li T, Zhang C, Lu S, Chen S, et al. Secondary Organic Aerosol Formation from Semi-Volatile and Intermediate Volatility Organic Compounds in the Fall in Beijing. Atmosphere. 2023; 14(1):94. https://doi.org/10.3390/atmos14010094
Chicago/Turabian StyleZhang, Yuan, Jingsen Fan, Kai Song, Yuanzheng Gong, Daqi Lv, Zichao Wan, Tianyu Li, Chaoyi Zhang, Sihua Lu, Shiyi Chen, and et al. 2023. "Secondary Organic Aerosol Formation from Semi-Volatile and Intermediate Volatility Organic Compounds in the Fall in Beijing" Atmosphere 14, no. 1: 94. https://doi.org/10.3390/atmos14010094
APA StyleZhang, Y., Fan, J., Song, K., Gong, Y., Lv, D., Wan, Z., Li, T., Zhang, C., Lu, S., Chen, S., Zeng, L., & Guo, S. (2023). Secondary Organic Aerosol Formation from Semi-Volatile and Intermediate Volatility Organic Compounds in the Fall in Beijing. Atmosphere, 14(1), 94. https://doi.org/10.3390/atmos14010094