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Abstract: As a representative sulfur-containing volatile organic compounds (S-VOCs), CH3SH has
attracted widespread attention due to its adverse environmental and health risks. The performance
of Mn-based catalysts and the effect of their crystal structure on the CH3SH catalytic reaction have
yet to be systematically investigated. In this paper, two different crystalline phases of tunneled MnO2

(α-MnO2 and β-MnO2) with the similar nanorod morphology were used to remove CH3SH, and
their physicochemical properties were comprehensively studied using high-resolution transmission
electron microscope (HRTEM) and electron paramagnetic resonance (EPR), H2-TPR, O2-TPD, Raman,
and X-ray photoelectron spectroscopy (XPS) analysis. For the first time, we report that the specific
reaction rate for α-MnO2 (0.029 mol g−1 h−1) was approximately 4.1 times higher than that of β-
MnO2 (0.007 mol g−1 h−1). The as-synthesized α-MnO2 exhibited higher CH3SH catalytic activity
towards CH3SH than that of β-MnO2, which can be ascribed to the additional oxygen vacancies,
stronger surface oxygen migration ability, and better redox properties from α-MnO2. The oxygen
vacancies on the catalyst surface provided the main active sites for the chemisorption of CH3SH,
and the subsequent electron transfer led to the decomposition of CH3SH. The lattice oxygen on
catalysts could be released during the reaction and thus participated in the further oxidation of
sulfur-containing species. CH3SSCH3, S0, SO3

2−, and SO4
2− were identified as the main products of

CH3SH conversion. This work offers a new understanding of the interface interaction mechanism
between Mn-based catalysts and S-VOCs.

Keywords: CH3SH decomposition; MnO2; oxygen vacancies; oxygen migration

1. Introduction

As a particular class of volatile organic compounds (VOCs), sulfur-containing volatile
organic compounds (S-VOCs) can be converted into sulfate aerosols in the atmosphere
through complex physicochemical reactions [1]. They can also react indirectly with NOx
through photochemistry reactions, which are the crucial precursors for forming PM 2.5 and
O3. Methyl mercaptan (CH3SH), a representative S-VOC, is considered as an important air
odor pollutant, which is harmful to the ecosystem and human health owing to its severe
toxicity and low olfactory threshold [2–4]. In previous studies, various methods have been
employed to eliminate CH3SH, such as adsorption [5,6], biodegradation [7], photocatalytic
oxidation [8], and catalytic oxidation [9,10]. However, these remediation technologies suffer
from secondary pollution because of incomplete removal and high cost. Until now, catalytic
decomposition has been regarded as the most promising strategy for removing S-VOCs
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due to its high purification efficiency, energy-saving nature, lack of additional additives
(O2, H2, O3, etc.), and less secondary pollution [11,12].

Metal-based catalysts are widely used for the removal of VOCs on account of their
superior catalytic performance. Among the various transition metal oxides, MnO2 is of great
interest because of its low cost, low toxicity, environmental friendliness, and wide natural
distribution [13,14]. Meanwhile, MnO2 has been extensively studied in heterogeneous
catalysis due to its unique physicochemical properties (i.e., multivalent, reactive oxygen
species, and polycrystalline nature) and is recognized as one of the most active catalysts for
VOCs removal among transition metal oxides [15–17]. Nanostructured MnO2 possesses a
rich structural flexibility, which adopts various crystallographic forms such as α-, β-, δ-,
and γ-MnO2, depending upon the size of the tunnel [18,19]. These polymorphs of MnO2
include a one-dimensional chain-like tunnel (α-, β-, and γ-MnO2) and two-dimensional
layer structures (δ-MnO2) based on different linkage ways of the basic octahedral molecular
sieves [20,21].

Among the MnO2 polymorphs, α-MnO2 has one of the largest tunnel sizes (4.6 Å)
consisting of 1D (1 × 1) and (2 × 2) channels, composed of double chains of edge-sharing
[MnO6] octahedra, filled with alkali metal cations, NH4

+ or H3O+, inside the 2 × 2 tunnels
to stabilize the structure [16]. The pyrolusite-type β-MnO2 has a rutile-type structure with
infinite [MnO6] octahedral chains that share opposing edges. Each chain is connected to
four similar chain corners, forming the smallest tunnel structure (2.3 Å) of MnO2 poly-
morphs, consisting of 1D (1 × 1) and (1 × 1) channels [22,23]. It is generally accepted that
catalysts with different crystal structures exhibit different catalytic efficiencies and reaction
mechanisms for the reactants. For instance, Hayashi et al. evaluated the aerobic catalytic
performance of six types of MnO2 (α-, β-, γ-, δ, λ, ε -phases) for the transformation of
5-hydroxymethylfurfural to 2,5-furandicarboxylic acid and concluded the best activity of
β-MnO2 [19]. Chen et al. found that the α- and γ-MnO2 presented higher benzene oxida-
tion activity than β- and δ-MnO2, whereas δ-MnO2 displayed the best in formaldehyde
oxidation among all of the MnO2 materials [20]. This may be due to the varying oxygen
species in different types of MnO2, which play distinct roles in the catalytic oxidation of
formaldehyde and benzene. In addition, surface defects of manganese-based catalysts
are regarded as an important determinant of their catalytic activity, and their formation
and driving of catalytic reactions are often related to their surface oxygen species [24–26].
Yang et al. investigated the phase-activity relationship of MnO2 toward toluene catalytic
oxidation. They proposed that the excellent catalytic performance of δ-MnO2 may be asso-
ciated with the rich oxygen vacancy and the strong mobility of oxygen species [27]. Tian
et al. prepared α-, β-, and ε- MnO2 for CO oxidation and found that β-MnO2 possesses the
lowest energies for oxygen vacancy generation as well as excellent redox properties, thus
exhibiting the best CO oxidation activity [13]. These studies highlight the importance of
oxygen vacancies in VOC removal and illustrate that the concentration of oxygen vacancies
in different crystal structures tends to dominate their catalytic activity. Therefore, it is
necessary to understand the relationship between the catalytic activity of manganese oxide
and its surface structure to provide a standard for the further modification of MnOx or
other metal oxide catalysts. However, noticeable differences are presented in the surface
morphology and crystal structure of different crystalline MnO2, which makes it difficult
to clarify the contribution of oxygen vacancies to the catalytic reaction. For example, δ-
MnO2 is a layered structure, whereas α-, β- and γ-MnO2 are common tunneling structures.
Among them, γ-MnO2 is a spherical structure, and α- and β-MnO2 are similar nanorod-like
structures. The differences in crystal structure and surface morphology can inherently lead
to variations in catalyst surface properties, which can obscure the critical role of oxygen
vacancies. Therefore, it is essential to reveal the effect of surface vacancies on catalytic
reactions based on the same morphology. In addition, oxygen vacancy-mediated catalytic
reactions may be accompanied by the migration and release of oxygen species and the gen-
eration of new oxygen vacancies, thus the transformation of these active surface species in
catalytic reactions and their contribution to the removal of VOCs need further clarification.
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Herein, we compared the removal efficiency of CH3SH by α-MnO2 and β-MnO2
with similar surface morphology but different crystal structures. Their physicochemical
properties were subsequently characterized by various analysis techniques. The number of
surface low valence Mn, oxygen vacancies and redox properties were studied regarding
high-resolution transmission electron microscope (HRTEM) and electron paramagnetic res-
onance (EPR), X-ray photoelectron spectroscopy (XPS), H2-TPR and O2-TPD. The changes
of catalyst surface species before and after the reaction were characterized by XPS, and the
variation of intermediate species of CH3SH during the reaction were also monitored.

2. Materials and Methods
2.1. Chemical Reagents

α-MnO2 and β-MnO2 were synthesized through the hydrothermal synthesis method
according to previous research [28]. Potassium permanganate (KMnO4, Chengdu Colon
Chemicals Co., LTD, Chengdu, China), hydrated manganese sulfate (MnSO4·H2O, Aladdin
Reagent Co., LTD, Shanghai, China) and ammonium persulfate ((NH4)2S2O8, Aladdin
Reagent Co., LTD, Shanghai, China) were used without further purification.

Synthesis of α-MnO2: 0.1 M KMnO4 and 0.05 M MnSO4·H2O were dissolved in 70 mL
deionized water and stirred for 30 min. The resulting solution was transferred to a 100 mL
Teflon-lined autoclave and maintained at 160 ◦C for 12 h. After cooling to room temperature,
the precipitate was centrifuged and washed with distilled water (700–1000 mL) three times.
Finally, the precipitate was dried at 80 ◦C for 4 h and calcination at 360 ◦C for 2 h.

Synthesis of β-MnO2: 0.14 M MnSO4·H2O and 0.14 M (NH4)2S2O8 were dissolved
in 70 mL deionized water and stirred for 30 min. The resulting solution was transferred
to a 100 mL Teflon-lined autoclave and maintained at 140 ◦C for 12 h. After cooling
to room temperature, the precipitate was centrifuged and washed with distilled water
(700–1000 mL) three times. Finally, the precipitate was dried at 80 ◦C for 4 h and calcination
at 360 ◦C for 2 h.

2.2. Catalyst Characterization

The refined test of X-ray powder diffraction (XRD) of the products was performed
using a Bragg-Brentano-type powder diffractometer (Nihongo TTRIII, Tokyo City, Japan,
operated at 40 kV and 200 mA, Cu Kα radiation, λ = 0.15418 nm). To investigate the
Brunauer-Emmett-Teller (BET) surface areas, average pore diameters, and total pore vol-
umes of the samples, N2 adsorption-desorption isotherms were determined using a NOVA
4200e Surface Area and Pore Size Analyzer. Electron paramagnetic resonance (EPR) signals
were carried out on a Bruker A300 spectrometer (Saarbrucken, Germany) at 25 ◦C. XPS pro-
files were obtained with a Thermo Scientific K-Alpha spectrometer (Waltham, MA, USA).
The binding energy (BE) values were calibrated using the C 1 s peak at 284.8 eV. The Raman
spectra were recorded using a 514 nm laser excitation source with an integration time of 3 s
and 30 accumulations (Raman, BX41, HOEIBA Scientific, Paris, France). Scanning electron
microscopy (SEM, VEGA3SBH, Brno, Czech Republic) and high-resolution transmission
electron microscopy (HRTEM, Talos F200X, Thermo Scientific, Waltham, MA, USA) were
used to observe catalyst morphologies.

Hydrogen temperature-programmed reduction (H2-TPR) and oxygen temperature-
programmed desorption (O2-TPD) experiments were performed on a FULI II 7970 gas
chromatograph (Fuli Analytical Instrument Inc., Hangzhou, China) with a thermal con-
ductivity detector (TCD). In H2-TPR experiments, 50 mg of the sample was placed in a
quartz tube and pretreated in a gas flow of 10% H2/Ar (30 mL min−1) at 100 ◦C for 30 min
to remove impurities. After the pretreatment process, the sample was reduced by 10%
H2/Ar (30 mL min−1) from 100 to 800 ◦C with a heating rate of 10 ◦C/min. For O2-TPD
analysis, 50 mg of sample was loaded on the quartz tube, heated to 105 ◦C and pretreated
with He (30 mL min−1) for 30 min to remove surface adsorbed water, followed by cooling
to 30 ◦C. Subsequently, the sample was adsorbed by 10% O2/He (30 mL min−1) at room
temperature for 60 min, and then He (30 mL min−1) was used to purge the sample for
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30 min to remove physically adsorbed O2 and stabilize the baseline. Subsequently, the
temperature was ramped from 30 to 850 ◦C at 10 ◦C mL min−1.

2.3. Catalyst Activity Evaluation

The catalytic performance for the CH3SH decomposition was investigated in a fixed-
bed quartz tube reactor (i.d. = 6 mm). 200 mg samples with the size of 40–60 meshes were
loaded into the reactor. The reaction temperature was controlled and maintained for about
1 h at each designated temperature. The inlet CH3SH concentration was set at 5000 ppm,
and the total flow rate was maintained at 30 mL min−1. The concentration of CH3SH
was recorded by GC-9790 (FULI, China) equipped with a flame ionization detector (FID)
and flame photometric detector (FPD), and the CH3SH conversion ratio was calculated
as follows:

CH3SH conversion =
Cin − Cout

Cin
× 100%

Cin represents the inlet concentration of CH3SH and Cout is the outlet concentration
of CH3SH.

The reaction rates of CH3SH decomposition were determined in the kinetic regime at
a CH3SH conversion lower than 20% at different temperatures; The reaction rate (rCH3SH;
mol g−1 h−1) for CH3SH decomposition was calculated according to the following equations:

rCH3SH =
CCH3SH × XCH3SH × F

mcat

rnorm =
CCH3SH × XCH3SH × F

mcat × SBET

where the CCH3SH represents the initial methyl mercaptan concentration, F (mol·h−1)
represents the total flow rate, XCH3SH denotes CH3SH conversion, and SBET (m2·g−1)
represents the specific surface area of catalysts.

The turnover frequency (TOF, h−1) was calculated for different crystal types based
on oxygen vacancy concentration for MnO2, and indicates the number of reactions of
methyl mercaptan at each active site per unit of time, thus TOF was obtained using the
following equation:

TOF
(

h−1
)
=

CCH3SH × XCH3SH × F
mMnO2
MMnO2

× (Mn2+ + Mn3+)

MMnO2 (mol·g−1) is the molar mass of MnO2, and Mn2+ + Mn3+ derived from XPS
data, which represent the concentration of the oxygen vacancies of MnO2 deduced from
the obtained XPS spectra.

3. Results and Discussion
3.1. Structure and Morphology

XRD was used to determine the crystal structure of the prepared material. The XRD
patterns of as-prepared MnO2 with various crystal types are shown in Figure 1. The
diffraction peaks located at ~12.7◦, ~18.1◦, ~28.8◦, and ~37.5◦ can be assigned to α-MnO2
(JCPDS card no. 44-0141) (Figure 1A), and the peaks at ~28.7◦, ~37.2◦, ~42.7◦ and ~56.4◦ can
be ascribed to β-MnO2 (JCPDS card no. 24-0735) (Figure 1B) [29]. There was no apparent
crystal transformation on these samples after 360 ◦C calcination. The sharp and strait peaks
of β-MnO2 could indicate its great crystallization and large grain size; α-MnO2 presented
wide bands with relatively lower crystallinity and smaller grain sizes. The above results
indicate the successful obtaining of the two kinds of MnO2 with specific crystal phases.
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Figure 1. XRD patterns of α-MnO2 (A) and β-MnO2 (B).

The morphologies of MnO2 samples were characterized by a scanning electron mi-
croscopy (SEM), a transmission electron microscope (TEM), and a high-resolution TEM
(HRTEM). As can be seen in Figure 2A, α-MnO2 showed a stacking-nanorod structure
with an average length of about 330 nm. β-MnO2 (Figure 2F) also showed a typical rod
shape with a diameter near 50 nm and a length of ~1.2 µm. TEM showed consistent results
with the SEM that α-MnO2 (Figure 2B) and β-MnO2 (Figure 2G) had similar nanorod-like
structures as previously reported [30]. The well-identified periodic lattice fringes of 6.9 Å
can be clearly observed in Figure 2C, corresponding to the interplanar distance of (110) facet
of α-MnO2. Figure 2H exhibited the lattice fringes of 3.1 Å, which match the interplanar
distance of the (110) facet of β-MnO2 well. Compared with the β-MnO2 samples, α-MnO2
showed more blurry lattice fringes, representing poor crystallinity, which also agrees well
with the XRD patterns. In addition, the presence of defects was further demonstrated using
the inverse Fast Fourier Transform (FFT) pattern (Figure 2E,J). Significantly more lattice
distortion can be clearly observed on the surface of α-MnO2 (Figure 2D) (highlighted by
red ovals), thus leading to more defects than β-MnO2 [10]. Besides, severe blurring of the
lattice fringes was also detected on α-MnO2 than β-MnO2. Lattice distortion can be caused
by nearby point defects. Simultaneously, a defect layer will be formed once the defect
concentration is high enough, resulting in a blurry lattice fringe in the HRTEM images [31].
Hence, the intrinsic defective structure of α-MnO2 was confirmed. Oxygen vacancies, as an
important point defect in catalysts, play a prominent role in the catalytic reaction process,
and the high oxygen vacancy concentration will result in a blurry lattice fringe, which can
be reflected in the HRTEM images [32]. As shown in Figure 3, the EPR signal corresponding
to g = 2.003 can be attributed to oxygen vacancies, and its signal intensity can represent
the number of oxygen vacancies [27]. Therefore, more oxygen vacancies on α-MnO2 than
β-MnO2 can be confirmed based on EPR, consistent with HRTEM analysis.
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The BET surface areas (SBET), and pore volumes of the two catalysts are shown in
Figure 4A,B. It is reported that the different structures assembled by MnO6 octahedra in
MnO2 will affect the related surface areas and pore volumes. β-MnO2 presented relatively
low specific surface areas (12.76 m2 g−1) and pore volumes (0.06 cm3 g−1), whereas α-MnO2
showed higher specific surface areas (34.59 m2 g−1) and pore volumes (0.13 cm3 g−1). More-
over, the nitrogen adsorption-desorption isotherms of α-MnO2 and β-MnO2 displayed a
type IV curve with H3-type hysteresis loops, indicating that both samples were mesoporous
structures [33].
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3.2. Catalytic Performance

In order to explore the activity of two catalysts on sulfur-containing volatile organic
pollutants (S-VOCs), methyl mercaptan (CH3SH) was chosen as the model S-VOCs, and
the catalytic activities of α-MnO2 and β-MnO2 are shown in Figure 5A. Two MnO2 samples
exhibited significantly different catalytic performance in CH3SH catalytic reaction. α-
MnO2 (74%) exhibited significantly better catalyst activity than β-MnO2 (3%) at 30 ◦C.
The decreases of CH3SH conversion for α-MnO2 at 50 ◦C may be due to the desorption of
CH3SH on the catalyst. As the temperature increased, the conversion of CH3SH reached
100% at 100 ◦C with both catalysts. Furthermore, the reaction rates of α-MnO2 and β-MnO2
at 50 ◦C were calculated based on the activity experiments. As shown in Figure 5B, α-MnO2
showed the CH3SH reaction rate of 2.9 × 10−2 mol g−1 h−1, this being ~4.1 times higher
than the rates measured for and β-MnO2 at 50 ◦C, which was consistent with the results
for the catalytic activity.
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rates (×10−2 mol g−1 h−1) at 50 ◦C for α-MnO2 and β-MnO2 (B).

It is well known that the specific surface area plays a critical role in catalytic reactions.
To eliminate its influence, the reaction rates with surface area normalization were calculated
at different temperatures based on the data from the activity experiments. The results of
the normalized reaction rates (rnorm, mol m−2 h−1) of CH3SH decomposition are shown in
Figure 6A. The normalized reaction rates for α-MnO2 were obviously higher than those
of β-MnO2 at 30, 50, 60 and 80 ◦C, which suggested that reactivity was not governed by
the specific surface area. Turnover frequency (TOF) is essential for studying the intrinsic
reactivity of catalysts. In this work, the TOF (h−1) was calculated based on oxygen vacancy
concentration, and the TOF value for the CH3SH catalytic decomposition was conducted at
50 ◦C with 0.01 g of catalyst and was calculated within a low CH3SH conversion (1 h of
reaction, below 15.0%). As displayed in Figure 6B, the α-MnO2 showed the highest TOF
value of 0.14 h−1, which was 1.8 times as that of the β-MnO2 (0.08 h−1), indicating that
α-MnO2 has better catalytic performance for CH3SH.
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The value of TOF (h−1) at 50 ◦C for α-MnO2 and β-MnO2 (B). Reaction conditions: 0.01 g catalysts,
5000 ppm styrene, total flow rate = 30 mL min−1, GHSV = 9000 h−1.

3.3. Redox Capacity and Oxygen Species

To evaluate the reduction behaviors of MnO2 samples, H2-temperature-programmed
reduction (TPR) was performed (Figure 7A). For α-MnO2, the peaks at 289 and 309 ◦C
corresponded to the reduction of Mn4+ →Mn3+ and Mn3+ →Mn2+, respectively, and the
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peaks around 291 and 317 ◦C for β-MnO2 were attributed to Mn4+ →Mn3+ and Mn3+ →
Mn2+, respectively [20,34]. The reduction temperature of α-MnO2 was lower than that of
β-MnO2, indicating that the reduction of α-MnO2 is relatively faster. More importantly,
the more remarkable reduction ability of α-MnO2 means easier deoxygenation during
hydrogen treatment, suggesting that oxygen migration is more likely to occur on its surface.
Therefore, α-MnO2 features stronger oxygen species mobility than β-MnO2.
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O2-TPD was conducted further to explore the oxygen species of the MnO2 catalysts.
Figure 7B shows three desorption peaks related to oxygen species that can be observed on
the MnO2. The low-temperature peak below 400 ◦C was ascribed to the chemisorbed active
oxygen species on the surface (O− and O2

−) [35]. The desorption peaks at 400–650 ◦C
and 700–850 ◦C were related to the release of subsurface and bulk lattice oxygen species
(O2−), respectively [36,37]. The desorption of surface oxygen at low temperature (<400 ◦C)
plays the primary role as reactive oxygen species participating in the catalytic reaction [38].
Moreover, the lower temperature of the surface oxygen desorption peak means better
low-temperature mobility of oxygen species. As depicted in Figure 7B, α-MnO2 showed a
lower temperature at 146 ◦C of the surface oxygen desorption peak than β-MnO2 at 367 ◦C,
indicating the better low-temperature mobility of oxygen species, which is in agreement
with H2-TPR.

More bonding properties were discussed through Raman spectra (Figure 8A). The
peaks at 348 and 640 cm−1 corresponded to the Mn-O bending and the stretching vibration,
respectively [39]. Significantly weaker and broader Raman peaks at around 640 cm−1

were detected for α-MnO2 than β-MnO2, suggesting lower crystallinity and more defects
due to the lattice distortion [40]. To evaluate the strength of the Mn-O bond, the bond
force constant (k) was calculated from Hooke’s law [41,42] using the following equation:

ω = 1
2Πc

√
k
µ , where ω is the Raman shift (cm−1), c is light velocity, and µ is the effective

mass of the Mn-O bond. The calculated Mn-O force constant (k) is shown in the inset of
Figure 8B. Thus, the Mn-O bond force constant of α-MnO2 (293 N/m) was smaller than
that of β-MnO2 (296 N/m), implying the weaker Mn-O bond. The weaker Mn-O bond
means easier migration of O and easier redox of Mn during the reaction, which is beneficial
for catalytic reactions [25].

3.4. Identification of the Role of Oxygen Vacancies in CH3SH Degradation

The surface elemental composition and chemical state of these MnO2 samples were
identified by XPS. The XPS spectra of Mn 2p3/2 of the samples are shown in Figure 9. The
peaks corresponding to binding energies at 642.7, 641.7 and 640.6 eV can be attributed
to Mn4+, Mn3+ and Mn2+, respectively [43,44]. It is noteworthy that the binding energy
corresponding to different valences of Mn were slightly different in both MnO2 samples,
indicating that crystal phase structure has a certain effect on the electron density of the
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MnO2 surface, which is related to the degree of charge imbalance, oxygen vacancies, as
well as the relative content of Mn2+, Mn3+ and Mn4+ [45]. Specifically, the oxygen vacancy
will be generated to maintain electrostatic balance with the increasing Mn2+ and Mn3+

proportion, and the proportion of low-valence Mn is generally regarded as an indicator of
surface oxygen vacancies [44]. As shown in Table 1 and Figure 9A, the proportion of the
low valence Mn (Mn2+ + Mn3+) showed α-MnO2 (41.62%) > β-MnO2 (37.74%). Besides,
the average oxidation state (AOS) of MnO2 was calculated according to the formula of
AOS = 8.956 − 1.126 ∆E [46], which was based on the size of Mn 3s multiple splitting (∆E)
in Mn 3s XPS spectra (Figure 10A). The AOS values of the Mn element in α-MnO2 and
β-MnO2 were calculated to be 3.57 and 3.75, respectively. In previous studies, lower AOS
of MnO2 was also able to indicate more surface oxygen vacancies [47]. Therefore, it can
be inferred that α-MnO2 has a greater surface oxygen vacancy density than β-MnO2 (in
agreement with HETEM and EPR).
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Table 1. Mn 3s Mn 2p3/2 results before and after the reaction of B-MnO2 and C-MnO2.

Catalysts Mn2+ (%) Mn3+ (%) Mn4+ (%) Mn2+ + Mn3+/
Mn4+ (%) AOS 1

α-MnO2-Fresh 11.31 30.31 58.38 0.71 3.57
β-MnO2-Fresh 2.71 35.04 62.26 0.6 3.75
α-MnO2-Spent 25.19 43.77 31.04 2.22 2.83
β-MnO2-Spent 16.39 46.99 36.62 1.99 3.25

1 AOS = 8.956 − 1.126 × ∆E.
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Additionally, Mn2+-O and Mn3+-O bonds are weaker than Mn4+-O [48]. Thus, the
higher ratio of low valence Mn (Mn2+ + Mn3+) endows MnO2 with a larger proportion
of weaker M-O bonds on its surface, meaning the easier release of O to participate in the
reaction. Figure 9A showed that α-MnO2 had more low valence Mn (Mn2+ + Mn3+) than
β-MnO2, which also implies the easier release of surface oxygen species, consistent with
the results of H2-TPR and O2-TPD. Comparison of the Mn 2p3/2 spectra before and after
the reaction (Figure 9B) of MnO2 with CH3SH showed that the valence state of Mn in both
samples changed obviously, suggesting the electron transfer during the reaction. For both
samples, Mn4+ decreased, and Mn2+ and Mn3+ increased, proving that the high-valent
Mn (IV) was reduced by gaining electrons during the reaction. After the reaction, the
Mn2++Mn3+/Mn4+ of α-MnO2 increased by 1.51 and that of β-MnO2 by 1.39, and AOS
decreased by 0.74 for α-MnO2 and that of β-MnO2 decreased by 0.5 (Figure 10B), testifying
that α-MnO2 was reduced to a greater extent by gaining more electrons than β-MnO2,
which can well match H2-TPR results. It is noteworthy that higher AOS usually indicates a
stronger electron-gaining ability of the catalyst because of the presence of more high-valent
atoms, however, α-MnO2 exhibited a stronger electron-gaining ability in the reaction with
CH3SH, suggesting that oxygen vacancies play a more important role in catalyzing CH3SH
comparing to the high-valent Mn. This may explain the fact that chemisorption is the



Nanomaterials 2023, 13, 775 11 of 16

rate-limiting step for electron transfer, and more surface oxygen vacancies provide more
surface adsorption sites for CH3SH.

In addition, the reaction between CH3SH and the catalyst could change the electronic
environment of the catalyst. During the reaction, as the ratio of Mn2+ and Mn3+ increased,
weaker Mn-O bonds were continuously formed and broken, leading to deoxygenation
and further generation of oxygen vacancies to maintain electrostatic equilibrium, which
may provide new sites for the reaction, and these desorbed oxygen species may favor the
catalytic oxidation of CH3SH as well.

The XPS spectra of O 1s of the samples are shown in Figure 11. Peaks with binding
energies at 529–529.8, 530.9–532 and 533 eV in the XPS spectra of O 1s of the MnO2 samples
(Figure 11) can be attributed to lattice oxygen (Olatt) and surface adsorption oxygen (Oads),
and surface hydroxyl oxygen (OadsO-H), respectively [49–51]. The molar ratio of Oads/Olatt
is shown in Table 2 and follows the order of α-MnO2 (0.65) > β-MnO2(0.35). Oads was
generally considered the most reactive oxygen species in the catalytic reaction and capable
of participating in the catalytic oxidation of VOCs in previous reports [52,53]. The oxygen
species changes before and after the reaction are shown in Figure 11B and Table 2. The
Olatt and Oads for both two materials decreased and increased, respectively, suggesting the
migration of Olatt to form Oads during the reduction of Mn. Obviously, α-MnO2 formed
more Oads after the reaction, which corresponds to its greater degree of reduction, also
implying that α-MnO2 has a stronger catalytic capacity.
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Catalysts Oads OH2O Olatt Oads/Olatt

α-MnO2-Fresh 30.22 23.53 46.25 0.65
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3.5. Product Detection during the Reaction

The main gas phase products were monitored quantitatively to better understand
the reaction process of CH3SH over two different catalysts. As displayed in Figure 12,
the decomposition of CH3SH at different temperatures corresponded to the production
of CH3SSCH3. Meanwhile, the concentration of CH3SH during the reaction showed an
excellent correlation with the concentration of CH3SSCH3, indicating that CH3SSCH3
was the main gas-phase product. At 150 ◦C, CH3SH was completely decomposed for
both MnO2 catalysts, consistent with the thermodynamic theory that catalytic reactions
proceed easier at higher temperatures. The yield of CH3SSCH3 gradually decreased when
T > 100 ◦C, which may be due to the further catalytic oxidation of CH3SSCH3 at higher
temperatures.
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Figure 13 shows the changes of S 2p before and after the reaction, which was used to
detect the solid-phase intermediates in the reaction process. No S species were detected on
two catalysts before the reaction. In contrast, significant amounts of S species were detected
on both samples after the reaction, indicating that some sulfur-containing products were
adsorbed on the catalyst surface. As shown in Figure 13B, three peaks at 163.2, 167.9, and
169.2 eV corresponding to S0, SO3

2− (S4+), and SO4
2− (S6+), respectively [30,54], which

all showed higher valence than S2- from CH3SH, indicating the oxidation of S during
the reaction. It is worth noting that the catalytic experiments in CH3SH were performed
under a nitrogen atmosphere, so it can be concluded that the O in the S-O species was
mainly derived from the Oads of MnO2. This illustrated the Oads involvement in the
catalytic reaction of CH3SH. SO3

2− and SO4
2− were mainly retained on the manganese

dioxide surface in the form of MnSO3 and MnSO4, implying that chemisorption was a
prerequisite for the decomposition of CH3SH on MnO2. Notably, reacted α-MnO2 showed
a higher proportion of SO4

2− (S6+) (26.31%) than β-MnO2 (12.56%) (Table 3 and Figure 13B),
suggesting a greater degree of S oxidation, which corresponds to a greater reduction of
Mn4+ after the reaction (Table 1 and Figure 9B). Furthermore, SO4

2− requires more oxygen
to be coordinated with S than SO3

2−, so a higher proportion of SO4
2− production requires

more Oads to participate in the reaction. Correspondingly, the H2-TPR, O2-TPD, and XPS
analysis demonstrated more Oads and better surface oxygen mobility for α-MnO2 than
β-MnO2.

Based on the above experimental and characterization analysis, the catalytic mecha-
nism of CH3SH by α-MnO2 and β-MnO2 can be inferred in Figure 14. CH3SH was first
chemisorbed on the MnO2 surface and subsequently underwent a single electron transfer
to form CH3S·, and then the two CH3S· were coupled to form CH3SSCH3. Based on the
formation of S-S bonds, it is speculated that the single electron transfer occurs on S, sug-
gesting that the chemisorption may be through the formation of Mn-S bonds. Moreover,
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more lattice oxygen was released during the reduction of Mn, which was involved in the
further catalytic oxidation of S-containing species to produce SO3

2− and SO4
2−, and may

further form new oxygen vacancies to support more active sites. Although β-MnO2 enjoys
a higher AOS based on the proportion of high valence Mn, α-MnO2 showed better catalytic
activity due to more oxygen vacancies and stronger oxygen mobility.
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4. Conclusions

In this paper, MnO2 catalysts with similar morphology but different crystal structures
(α-MnO2 and β-MnO2) were successfully prepared, and the effects of the physicochemical
properties on the catalytic activities were systematically investigated. Both Mn-based
catalysts showed significant removal of CH3SH at 150 ◦C, achieving complete conversion,
whereas α-MnO2 exhibited significantly better catalytic activity compared to β-MnO2 at a
lower temperature (T < 100 ◦C) under a GHSV of 9000 mL g−1 h−1. Coupled with O2-TPD,
H2-TPR, Raman spectra, XPS, EPR, and HRTEM, it was demonstrated that α-MnO2 has
more oxygen vacancies, stronger surface oxygen migration ability, and better redox proper-
ties, which can be favorable for CH3SH decomposition. The readily released lattice oxygen
during the reaction promoted further oxidative decomposition of S-containing species. The
intermediate products of the solid and gas phases were determined as CH3SSCH3 and the
S0, SO3

2−, and SO4
2−, respectively. The catalytic mechanism was further proposed as the

oxygen vacancies on MnO2 provided active sites for the adsorption of CH3SH, facilitating
the electron transfer of MnO2 with CH3SH, and the oxygen species derived from the Mn
surface were further involved in the CH3SH catalytic oxidation. The findings of this study
are essential for broadening the application of Mn-based catalysts in the removal of S-VOCs
and providing new insights into the mechanism of interfacial reactions between VOCs and
metal-based catalysts.
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