error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = SVNT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1819 KB  
Article
Immunogenicity and Safety of Half and Full Doses of Heterologous and Homologous COVID-19 Vaccine Boosters After Priming with ChAdOx1 in Adult Participants in Indonesia: A Single-Blinded Randomized Controlled Trial
by Nina Dwi Putri, Aqila Sakina Zhafira, Pratama Wicaksana, Hindra Irawan Satari, Eddy Fadlyana, Vivi Safitri, Nurlailah Nurlailah, Edwinaditya Sekar Putri, Nidya Putri, Devi Surya Iriyani, Yunita Sri Ulina, Frizka Aprilia, Evi Pratama, Indri Nethalia, Rita Yustisiana, Erlin Qur’atul Aini, Rini Fajarani, Adityo Susilo, Mulya Rahma Karyanti, Ari Prayitno, Hadyana Sukandar, Emma Watts, Nadia Mazarakis, Pretty Multihartina, Vivi Setiawaty, Krisna Nur Andriana Pangesti, Agnes Rengga Indrati, Julitasari Sundoro, Dwi Oktavia Handayani, Cissy B. Kartasasmita, Sri Rezeki Hadinegoro and Kim Mulhollandadd Show full author list remove Hide full author list
Vaccines 2025, 13(11), 1149; https://doi.org/10.3390/vaccines13111149 - 11 Nov 2025
Viewed by 602
Abstract
Background: Numerous studies have proved the efficacy of vaccination in reducing Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) transmission and the coronavirus disease (COVID-19) burden. However, even though the COVID-19 vaccination coverage is high for primary doses, a booster dose is needed [...] Read more.
Background: Numerous studies have proved the efficacy of vaccination in reducing Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) transmission and the coronavirus disease (COVID-19) burden. However, even though the COVID-19 vaccination coverage is high for primary doses, a booster dose is needed to sustain protection. Continuing our previous research, this study evaluates the immunogenicity and safety of full and half doses of two COVID-19 booster vaccines, ChAdOx1-S (AstraZeneca) and BNT162b2 (Pfizer-BioNTech), in individuals primed with ChAdOx1-S. Methods: This study was an observer-blind randomized controlled trial to evaluate the immunogenicity and safety of half and full doses of two COVID-19 booster vaccine types, BNT162b2 and ChAdOx1-S, among fully vaccinated, ChAdOx1-S-primed individuals in Jakarta, Indonesia. A total of 329 participants were randomized to receive either full or half doses of the booster vaccines, namely the ChAdOx1-S and BNT162b2 COVID-19 vaccines. Immunogenicity was assessed through SARS-CoV-2 antibody titers and neutralizing antibodies (NAbs) at 28 days post-booster, while safety was monitored via adverse event reporting. Results: The results showed that both vaccines demonstrated increased geometric mean titers (GMTs) post-booster. In the ChAdOx1-S booster group, at the baseline visit (day 0) and third visit (day 28), no statistically significant differences in GMT between the half- and full-dose groups were observed (p = 0.970 and 0.539, respectively). In the BNT162b2 group, no statistically significant difference was noted at the baseline visit, while the full dose was higher than the half dose at 28 days (Day 28, p = 0.011). Surrogate virus neutralization tests (sVNTs) and NAbs assays also revealed no significant differences between the half and full dose groups for both the Wuhan strain and the Delta variant. The BNT162b2 group compared to the ChAdOx1-S group revealed a statistically significant increase in IgG levels compared to ChAdOx1-S, with p-values of <0.001 and <0.001 for the half dose and full dose, respectively. This was also reflected in the NAbs test results, where BNT162b2 showed significantly higher levels against both the Wuhan strain and Delta variant. Adverse events were predominantly mild: 79.6% (n = 86/108) in the ChAdOx1-S full-dose group, 75.4% (n = 43/57) in the ChAdOx1-S half-dose group, 84.2% (n = 101/120) in the BNT162b2 full-dose group, and 92.6% (n = 88/95) in the BNT162b2 half-dose group, with pain at the injection site being the most common local reaction and myalgia and headache the most frequent systemic reactions. One serious adverse event was reported, assessed as unrelated to the vaccine. Conclusions: This study confirms that half doses of ChAdOx1-S and BNT162b2 are as immunogenic and safe as full doses, and a heterologous booster is more immunogenic than a homologous booster. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

19 pages, 2036 KB  
Article
SARS-CoV-2 Serological Surveillance of Both Vaccinated and Unvaccinated Zoo Animals with the Identification of a Sloth Bear and a Tapir with Previous Infection
by Marie Arvidson, Yashaswi Raj Subedi, Sandipty Kayastha, Angel Mitchell, Kami Alvarado, Xufang Deng, Karen Terio, Matthew Allender and Leyi Wang
Viruses 2025, 17(11), 1459; https://doi.org/10.3390/v17111459 - 31 Oct 2025
Viewed by 909
Abstract
Since its discovery in 2019, SARS-CoV-2 has continued to be detected in both humans and animals worldwide. Currently there is limited research focusing on serological surveillance of wildlife under human care. Here we tested 230 serum samples of 134 animals from two zoological [...] Read more.
Since its discovery in 2019, SARS-CoV-2 has continued to be detected in both humans and animals worldwide. Currently there is limited research focusing on serological surveillance of wildlife under human care. Here we tested 230 serum samples of 134 animals from two zoological institutions collected between 2015 and 2024. To assess prior exposure and antibody responses from natural infection or vaccination, we used three serological assays: a nucleocapsid protein-based ELISA (N-ELISA), a surrogate virus neutralization test (sVNT) for spike (S) protein and a neutralization assay with S-pseudotyped viral particles. Among the 114 samples collected from 58 animals at Fort Wayne Zoo in Indiana, 37 samples from 20 vaccinated animals were sVNT-positive, and 2 of the positive animals had 2 samples prior to vaccination that tested positive by N-ELISA. Of the 116 samples from 76 animals at Brookfield Zoo in Illinois, 20 samples of 20 animals were sVNT-positive, and 19 of the positive animals had been vaccinated. Among these 20 sVNT-positive samples, only one sample from a South American Tapir was positive from prior to vaccination and 1 sample from a sloth bear was also positive by N-ELISA, marking the first documented cases of SARS-CoV-2 exposure in both species. Neutralization assays with S-pseudotyped virus revealed that some of the sVNT-positive samples have strong activity against the WH1-S pseudovirus but showed significantly reduced neutralization against the Omicron LP.8.1-S pseudovirus. These results underscore the need for updated vaccines tailored to emerging variants. Overall, our findings highlight the importance of continued serological surveillance across multiple species to detect new SARS-CoV-2 exposures and monitor vaccine-induced immunity in captive animal populations. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

10 pages, 739 KB  
Article
SARS-COV-2 Vaccination Response in Non-Domestic Species Housed at the Toronto Zoo
by Sara Pagliarani, Jaime Tuling, Phuc H. Pham, Alexander Leacy, Pauline Delnatte, Brandon N. Lillie, Nicholas Masters, Jamie Sookhoo, Shawn Babiuk, Sarah K. Wootton and Leonardo Susta
Vaccines 2025, 13(10), 1037; https://doi.org/10.3390/vaccines13101037 - 8 Oct 2025
Viewed by 699
Abstract
Background: Due to the wide host range of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), vaccination has been recommended for susceptible species in zoological collections, particularly to protect endangered species. The Zoetis® Experimental Mink Coronavirus Vaccine (Subunit) was temporarily authorized [...] Read more.
Background: Due to the wide host range of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), vaccination has been recommended for susceptible species in zoological collections, particularly to protect endangered species. The Zoetis® Experimental Mink Coronavirus Vaccine (Subunit) was temporarily authorized in 2021–2024 for emergency use in North America for this purpose. However, there are limited data regarding its safety or efficacy in non-domestic mammals. The present study was conducted to assess the ability of this vaccine to elicit serum neutralizing titers against SARS-CoV-2 in selected animals from the Toronto Zoo (TZ) vaccinated during 2022. Methods: Serum samples were collected from 24 individuals across four families (Cervidae, Felidae, Ursidae, and Hyaenidae) and tested using a surrogate virus neutralization test (sVNT) and a plaque-reduction neutralization test (PRNT). Results: The results showed that all species developed some neutralizing titers after at least one vaccine dose, except for polar bears, which showed no seroconversion. Felids and hyenas had the highest neutralizing titers, which peaked at 3 and declined between 4 and 6 months after boost. These differences may stem from species-specific immune responses or lack of vaccination protocols tailored to individual species. Conclusions: While natural infection with SARS-CoV-2 could not be ruled out in the cohort of this study, insights from our results have the potential to inform future vaccine recommendations for non-domestic species. Furthermore, our study highlighted the value of competitive assays in assessing serological responses across a broad range of exotic species, for which reagents, such as anti-isotype antibodies, are often unavailable. Full article
(This article belongs to the Collection COVID-19 Vaccine Development and Vaccination)
Show Figures

Figure 1

17 pages, 1237 KB  
Article
Serological Surveillance of Betacoronaviruses in Bat Guano Collectors: Pre-COVID-19 Pandemic and Post-SARS-CoV-2 Emergence
by Sasiprapa Ninwattana, Spencer L. Sterling, Khwankamon Rattanatumhi, Nattakarn Thippamom, Piyapha Hirunpatrawong, Pakamas Sangsub, Thaniwan Cheun-Arom, Dominic Esposito, Chee Wah Tan, Wee Chee Yap, Feng Zhu, Lin-Fa Wang, Eric D. Laing, Supaporn Wacharapluesadee and Opass Putcharoen
Viruses 2025, 17(6), 837; https://doi.org/10.3390/v17060837 - 10 Jun 2025
Viewed by 1733
Abstract
Community-based serosurveillance for emerging zoonotic viruses can provide a powerful and cost-effective measurement of cryptic spillovers. Betacoronaviruses, including SARS-CoV, SARS-CoV-2 and MERS-CoV, are known to infect bats and can cause severe respiratory illness in humans, yet remain under-surveyed in high-risk populations. This study [...] Read more.
Community-based serosurveillance for emerging zoonotic viruses can provide a powerful and cost-effective measurement of cryptic spillovers. Betacoronaviruses, including SARS-CoV, SARS-CoV-2 and MERS-CoV, are known to infect bats and can cause severe respiratory illness in humans, yet remain under-surveyed in high-risk populations. This study aimed to determine the seroprevalence of betacoronaviruses in an occupational cohort in contact with bats before and after the emergence of SARS-CoV-2. Serum samples from pre- and post-COVID-19 pandemic were screened using antigen-based multiplex microsphere immunoassays (MMIAs) and a multiplex surrogate virus neutralization test (sVNT). Pre-pandemic samples showed no SARS-CoV-2 antibodies, while post-pandemic samples from vaccinated participants displayed binding and neutralizing antibodies against SARS-CoV-2 and a related bat CoV. Furthermore, one participant (1/237, 0.43%) had persistent antibodies against MERS-CoV in 2017, 2018 and 2021 but was seronegative in 2023, despite reporting no history of traveling abroad or severe pneumonia. The observed sustained antibody levels indicate a possible exposure to MERS-CoV or a MERS-CoV-like virus, although the etiology and clinical relevance of this finding remains unclear. Ongoing surveillance in high-risk populations remains crucial for understanding virus epidemiology and mitigating zoonotic transmission risk. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

22 pages, 4653 KB  
Article
SARS-CoV-2 Variant-Specific Antibodies in Vaccinated Inflammatory Bowel Disease Patients
by Eva Ulla Lorentzen, Richard Vollenberg, Rieke Neddermeyer, Michael Schoefbaenker, Eike R. Hrincius, Stephan Ludwig, Phil-Robin Tepasse and Joachim Ewald Kuehn
Vaccines 2025, 13(6), 595; https://doi.org/10.3390/vaccines13060595 - 30 May 2025
Viewed by 1409
Abstract
Background/Objectives: Patients suffering from inflammatory bowel diseases (IBDs) undergoing treatment with anti-TNF antibodies mount a diminished humoral immune response to vaccination against SARS-CoV-2 compared to healthy controls. The characterization of variant-specific immune responses is particularly warranted among immunosuppressed patients, where reduced responses may [...] Read more.
Background/Objectives: Patients suffering from inflammatory bowel diseases (IBDs) undergoing treatment with anti-TNF antibodies mount a diminished humoral immune response to vaccination against SARS-CoV-2 compared to healthy controls. The characterization of variant-specific immune responses is particularly warranted among immunosuppressed patients, where reduced responses may necessitate further medical interventions. Methods: This pilot study investigated the humoral immune response of vaccinated IBD patients on anti-TNF medication and a comparable group of healthy individuals against the viral variants Alpha, Beta, Gamma, Delta, and Omicron BA.1 and BA.5. While total IgG antibodies targeting the receptor binding site of the spike protein of SARS-CoV-2 were quantified using a chemiluminescence microparticle immunoassay (CMIA), their potential neutralizing capacity was determined using commercial and variant-specific in-house surrogate virus neutralization tests (sVNTs) against a variant-specific in-house VSV-pseudotyped virus neutralization test (pVNT) as the gold standard. Results: Employing variant-specific assays recapitulated the immune escape functions of virus variants. Conspicuously, antibody reactivity against Alpha and Omicron BA.1 and BA.5 was strikingly poor in IBD patient sera post-initial vaccination compared to healthy individuals. A comparison of the diagnostic performance of assays with the pVNT revealed that identification of patients with inadequate humoral responses by CMIA and sVNT may require adjustments to cut-off values and end-point titration of sera. Following adaptation of cut-off values, patient sera exhibited reduced reactivity against all tested variants. The assay panel used substantiated the impact of anti-TNF therapy in IBD patients as to reduced strength, function, and breadth of the immune response to several SARS-CoV-2 variants. The immune response measured following the second vaccination was comparable to the antibody response observed in healthy individuals following the first vaccination. Conclusion: Variant-specific sVNTs and pVNTs have the potential to serve as valuable tools for evaluating the efficacy of adapted vaccines and to inform clinical interventions in the care of immunosuppressed patients. Anti-TNF-treated individuals with antibody levels below the optimized CMIA threshold should be considered for early booster vaccination and/or close immunological monitoring. Full article
Show Figures

Figure 1

12 pages, 1018 KB  
Article
The Humoral Immune Response Against COVID-19 Through Vaccination in Hemodialysis Patients
by Ji Young Park, Seong-Ho Choi, Yong Kwan Lim, Jungho Shin, Soie Kwon, Haein Kim and Jin-Won Chung
Vaccines 2025, 13(2), 170; https://doi.org/10.3390/vaccines13020170 - 10 Feb 2025
Cited by 1 | Viewed by 1121
Abstract
Background: This study investigated the humoral responses to SARS-CoV-2 in hemodialysis (HD) patients. The clearance of molecules in the blood during hemodialysis is influenced by factors such as filter pore size, flow rate, operating pressure, and treatment duration. Chronic kidney disease patients often [...] Read more.
Background: This study investigated the humoral responses to SARS-CoV-2 in hemodialysis (HD) patients. The clearance of molecules in the blood during hemodialysis is influenced by factors such as filter pore size, flow rate, operating pressure, and treatment duration. Chronic kidney disease patients often show low antibody titers for pathogens like pneumococcus, influenza virus, and hepatitis B virus. Methods: In this study, the surrogate virus neutralization test (sVNT) for the wild type (WT) and Omicron variants, as well as spike-specific IgG levels, were measured at two time points (May 2022 and December 2023). Medical records and questionnaires were used to gather participant information. Results: A total of 26 HD patients were enrolled, including 3 on immunosuppressive therapies. A total of 8 patients had COVID-19 during the first sampling, and 19 during the second. The results showed that sVNT levels for WT decreased over time, though positivity remained at 100% during both sampling periods. In contrast, sVNT levels for Omicron increased significantly, with positivity rising from 46.2% to 75.0% (p < 0.05). Spike-specific IgG levels also increased, with positivity improving from 96.2% to 100%. Patients on immunosuppressive therapies had significantly lower sVNT levels for both WT and Omicron in the second period (p < 0.05), though no significant differences were observed during the first period. Conclusion: HD patients, particularly those on immunosuppressive therapies, showed reduced and declining neutralizing responses over time. A meta-analysis of HD patients seems necessary to determine whether all dialysis patients need COVID-19 booster vaccinations, similar to the hepatitis B vaccine, highlighting the need for targeted vaccination strategies. Full article
Show Figures

Figure 1

15 pages, 1073 KB  
Article
Bison, Elk, and Other Captive Wildlife Species Humoral Immune Responses against SARS-CoV-2
by Mehrnaz Ardalan, Konner Cool, Natasha N. Gaudreault, Dashzeveg Bold, Catherine Rojas, Anna Mannix, Janine Seetahal, Juergen A. Richt and Roman M. Pogranichniy
Animals 2024, 14(19), 2829; https://doi.org/10.3390/ani14192829 - 30 Sep 2024
Cited by 4 | Viewed by 2051
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, has been found to infect various domestic and wild animal species. In this study, convenience serum samples from 575 bison, 180 elk, and 147 samples from various wildlife species collected between [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, has been found to infect various domestic and wild animal species. In this study, convenience serum samples from 575 bison, 180 elk, and 147 samples from various wildlife species collected between 2020 and 2023 from several regions in the United States were analyzed for the presence of SARS-CoV-2-specific antibodies. Two commercial ELISA assays based on the inhibition of the SARS-CoV-2 receptor-binding domain (sVNT) or the nucleocapsid protein (N-ELISA) of SARS-CoV-2 were used. Positive samples from the sVNT were additionally evaluated using a conventional virus neutralization test (VNT). Our results indicated that 1.2% of bison, 2.2% of elk, and 4.1% of the other wildlife species serum samples were seropositive in the sVNT, whereas 4.2% of bison, 3.3% of elk, and 1.4% of the other captive wildlife species serum samples tested positive by the N-ELISA. Among the sVNT serum samples, two samples from bison, one sample from elk, and five serum samples from other wildlife species (one cheetah, one gorilla, two lions, and one hippopotamus) had neutralizing antibody titers in the VNT, indicating these species are susceptible to SARS-CoV-2 infection. These findings highlight the importance of broad surveillance efforts for the effective monitoring of SARS-CoV-2 in non-human hosts. Full article
(This article belongs to the Section Zoo Animals)
Show Figures

Figure 1

10 pages, 986 KB  
Article
SARS-CoV-2 Infection Enhances Humoral Immune Response in Vaccinated Liver Transplant Recipients
by Jan Basri Adiprasito, Tobias Nowacki, Richard Vollenberg, Jörn Arne Meier, Florian Rennebaum, Tina Schomacher, Jonel Trebicka, Julia Fischer, Eva U. Lorentzen and Phil-Robin Tepasse
Antibodies 2024, 13(3), 78; https://doi.org/10.3390/antib13030078 - 23 Sep 2024
Cited by 1 | Viewed by 1772
Abstract
In the spring of 2020, the SARS-CoV-2 pandemic presented a formidable challenge to national and global healthcare systems. Immunocompromised individuals or those with relevant pre-existing conditions were particularly at risk of severe coronavirus disease 2019 (COVID-19). Thus, understanding the immunological processes in these [...] Read more.
In the spring of 2020, the SARS-CoV-2 pandemic presented a formidable challenge to national and global healthcare systems. Immunocompromised individuals or those with relevant pre-existing conditions were particularly at risk of severe coronavirus disease 2019 (COVID-19). Thus, understanding the immunological processes in these patient groups is crucial for current research. This study aimed to investigate humoral immunity following vaccination and infection in liver transplant recipients. Humoral immunity analysis involved measuring IgG against the SARS-CoV-2 spike protein (anti-S IgG) and employing a surrogate virus neutralization test (sVNT) for assessing the hACE2 receptor-binding inhibitory capacity of antibodies. The study revealed that humoral immunity post-vaccination is well established, with positive results for anti-S IgG in 92.9% of the total study cohort. Vaccinated and SARS-CoV-2-infected patients exhibited significantly higher anti-S IgG levels compared to vaccinated, non-infected patients (18,590 AU/mL vs. 2320 AU/mL, p < 0.001). Additionally, a significantly elevated receptor-binding inhibitory capacity was observed in the cPassTMTM sVNT (96.4% vs. 91.8%, p = 0.004). Furthermore, a substantial enhancement of anti-S IgG levels (p = 0.034) and receptor-binding inhibition capacity (p < 0.001) was observed with an increasing interval post-transplantation (up to 30 years), calculated by generalized linear model analysis. In summary, fully vaccinated liver transplant recipients exhibit robust humoral immunity against SARS-CoV-2, which significantly intensifies following infection and with increasing time after transplantation. These findings should be considered for booster vaccination schemes for liver transplant recipients. Full article
(This article belongs to the Section Humoral Immunity)
Show Figures

Figure 1

13 pages, 809 KB  
Article
The Anti-SARS-CoV-2 S-Protein IgG, Which Is Detected Using the Chemiluminescence Microparticle Immunoassay (CMIA) in Individuals Having Either a History of COVID-19 Vaccination and/or SARS-CoV-2 Infection, Showed a High-Titer Neutralizing Effect
by Dilan Cin, Pinar Soguksu, Meryem Merve Oren, Nuray Ozgulnar, Ali Agacfidan and Sevim Mese
Viruses 2024, 16(9), 1409; https://doi.org/10.3390/v16091409 - 3 Sep 2024
Cited by 2 | Viewed by 1922
Abstract
Neutralizing antibodies plays a primary role in protective immunity by preventing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from entering the cells. Therefore, characterization of antiviral immunity is important for protection against SARS-CoV-2. In this study, the neutralizing effect of the anti-SARS-CoV-2 S1 protein [...] Read more.
Neutralizing antibodies plays a primary role in protective immunity by preventing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from entering the cells. Therefore, characterization of antiviral immunity is important for protection against SARS-CoV-2. In this study, the neutralizing effect of the anti-SARS-CoV-2 S1 protein IgG, which was detected using the chemiluminescence microparticle immunoassay (CMIA)-based SARS-CoV-2 IgG II Quant (Abbott, Waukegan, IL, USA) test in SARS-CoV-2 infected and/or vaccinated individuals, was investigated with a surrogate virus neutralization test (sVNT). In total, 120 Seropositive individuals were included in this study. They were divided into two groups: Vaccinated (n = 60) and Vaccinated + Previously Infected (n = 60). A commercial sVNT, the ACE2–RBD Neutralization Test (Dia.Pro, Milan, Italy), was used to assess the neutralizing effect. The assay is performed in two steps: screening and titration. The screening showed positive results in all seropositive samples. Low titration in 1.7%, medium titration in 5%, and high titration in 93.3% of the Vaccinated group, and medium titration in 1.7% and high titration in 98.3% of the other group, as obtained from the ACE2-RBD titration test. A strong positive and significant correlation was found between the SARS-CoV-2 IgG II Quant test and the ACE2-RBD titration test at the 1/32 titration level for both groups (p < 0.001 for both). This study shows that the SARS-CoV-2 IgG detected using the CMIA method after SARS-CoV-2 infection and/or vaccination has a high neutralizing titration by using the sVNT. In line with these data, knowledge that seropositivity determined by CMIA also indicates a strong neutralizing effect contributes to countrywide planning for protecting the population. Full article
Show Figures

Figure 1

22 pages, 6613 KB  
Article
Investigations on the Potential Role of Free-Ranging Wildlife as a Reservoir of SARS-CoV-2 in Switzerland
by Juliette Kuhn, Iris Marti, Marie-Pierre Ryser-Degiorgis, Kerstin Wernike, Sarah Jones, Grace Tyson, Gary Delalay, Patrick Scherrer, Stéphanie Borel, Margaret J. Hosie, Anja Kipar, Evelyn Kuhlmeier, Tatjana Chan, Regina Hofmann-Lehmann and Marina L. Meli
Viruses 2024, 16(9), 1407; https://doi.org/10.3390/v16091407 - 3 Sep 2024
Cited by 3 | Viewed by 2999
Abstract
Amid the SARS-CoV-2 pandemic, concerns surfaced regarding the spread of the virus to wildlife. Switzerland lacked data concerning the exposure of free-ranging animals to SARS-CoV-2 during this period. This study aimed to investigate the potential exposure of Swiss free-ranging wildlife to SARS-CoV-2. From [...] Read more.
Amid the SARS-CoV-2 pandemic, concerns surfaced regarding the spread of the virus to wildlife. Switzerland lacked data concerning the exposure of free-ranging animals to SARS-CoV-2 during this period. This study aimed to investigate the potential exposure of Swiss free-ranging wildlife to SARS-CoV-2. From 2020 to 2023, opportunistically collected samples from 712 shot or found dead wild mustelids (64 European stone and pine martens, 13 European badgers, 10 European polecats), canids (449 red foxes, 41 gray wolves, one golden jackal) and felids (56 Eurasian lynx, 18 European wildcats), as well as from 45 captured animals (39 Eurasian lynx, 6 European wildcats) were tested. A multi-step serological approach detecting antibodies to the spike protein receptor binding domain (RBD) and N-terminal S1 subunit followed by surrogate virus neutralization (sVNT) and pseudotype-based virus neutralization assays against different SARS-CoV-2 variants was performed. Additionally, viral RNA loads were quantified in lung tissues and in oronasal, oropharyngeal, and rectal swabs by reverse transcription polymerase chain reactions (RT-qPCRs). Serologically, SARS-CoV-2 exposure was confirmed in 14 free-ranging Swiss red foxes (prevalence 3.1%, 95% CI: 1.9–5.2%), two Eurasian lynx (2.2%, 95% CI: 0.6–7.7%), and one European wildcat (4.2%, 95% CI: 0.2–20.2%). Two positive foxes exhibited neutralization activity against the BA.2 and BA.1 Omicron variants. No active infection (viral RNA) was detected in any animal tested. This is the first report of SARS-CoV-2 antibodies in free-ranging red foxes, Eurasian lynx, and European wildcats worldwide. It confirms the spread of SARS-CoV-2 to free-ranging wildlife in Switzerland but does not provide evidence of reservoir formation. Our results underscore the susceptibility of wildlife populations to SARS-CoV-2 and the importance of understanding diseases in a One Health Concept. Full article
(This article belongs to the Special Issue Multiple Hosts of SARS-CoV-2: Second Volume)
Show Figures

Figure 1

11 pages, 1109 KB  
Article
Post-Hoc Analysis of Potential Correlates of Protection of a Recombinant SARS-CoV-2 Spike Protein Extracellular Domain Vaccine Formulated with Advax-CpG55.2-Adjuvant
by Nikolai Petrovsky
Int. J. Mol. Sci. 2024, 25(17), 9459; https://doi.org/10.3390/ijms25179459 - 30 Aug 2024
Cited by 1 | Viewed by 1628
Abstract
SpikoGen® vaccine is a subunit COVID-19 vaccine composed of an insect cell expressed recombinant spike protein extracellular domain formulated with Advax-CpG55.2™ adjuvant. A randomized double-blind, placebo-controlled Phase II clinical trial was conducted in 400 adult subjects who were randomized 3:1 to receive [...] Read more.
SpikoGen® vaccine is a subunit COVID-19 vaccine composed of an insect cell expressed recombinant spike protein extracellular domain formulated with Advax-CpG55.2™ adjuvant. A randomized double-blind, placebo-controlled Phase II clinical trial was conducted in 400 adult subjects who were randomized 3:1 to receive two intramuscular doses three weeks apart of either SpikoGen® vaccine 25 μg or saline placebo, as previously reported. This study reports a post hoc analysis of the trial data to explore potential immune correlates of SpikoGen® vaccine protection. A range of humoral markers collected pre- and post-vaccination, including spike- and RBD-binding IgG and IgA, surrogate (sVNT), and conventional (cVNT) virus neutralization tests were compared between participants who remained infection-free or got infected over three months of follow-up. From 2 weeks after the second vaccine dose, 21 participants were diagnosed with SARS-CoV-2 infection, 13 (4.2%) in the SpikoGen® group and 8 (9%) in the placebo group. Those in the vaccinated group who experienced breakthrough infections had significantly lower sVNT titers (GMT 5.75 μg/mL, 95% CI; 3.72–8.91) two weeks after the second dose (day 35) than those who did not get infected (GMT 21.06 μg/mL, 95% CI; 16.57–26.76). Conversely, those who did not develop SARS-CoV-2 infection during follow-up had significantly higher baseline sVNT, cVNT, spike-binding IgG and IgA, and RBD-binding IgG, consistent with a past SARS-CoV-2 infection. SpikoGen® further reduced the risk of re-infection (OR 0.29) in baseline seropositive (previously infected) as well as baseline seronegative participants. This indicates that while SpikoGen vaccine is protective in seronegative individuals, those with hybrid immunity have the most robust protection. Full article
(This article belongs to the Special Issue Advances in Vaccines, Adjuvants and Delivery Technologies)
Show Figures

Figure 1

11 pages, 602 KB  
Article
The Protection Level of S-RBD SARS-CoV-2 Immunoglobulin G Antibodies Using the Chemiluminescent Immunoassay Compared to the Surrogate Virus Neutralization Test Method
by Agnes Rengga Indrati, Erinca Horian, Nina Susana Dewi, Nida Suraya, Marita Restie Tiara, Hofiya Djauhari and Bachti Alisjahbana
Diagnostics 2024, 14(16), 1776; https://doi.org/10.3390/diagnostics14161776 - 14 Aug 2024
Cited by 3 | Viewed by 1913
Abstract
COVID-19 infection in high-risk populations is fatal and has a poor prognosis, necessitating a test to determine the protectiveness of immune response. Antibody testing is necessary to determine the body’s immune response to COVID-19 infection and also vaccination strategies. Among the various methods [...] Read more.
COVID-19 infection in high-risk populations is fatal and has a poor prognosis, necessitating a test to determine the protectiveness of immune response. Antibody testing is necessary to determine the body’s immune response to COVID-19 infection and also vaccination strategies. Among the various methods available, the chemiluminescent immunoassay (CLIA) test is more widely used and accessible to determine antibody levels. This study aimed to determine the protection level of S-RBD SARS-CoV-2 IgG using CLIA compared to the Surrogate Virus Neutralization Test (SVNT). The population of this study comprised all healthcare professionals who experienced S-RBD SARS-CoV-2 IgG antibody level examinations. S-RBD SARS-CoV-2 IgG antibody levels were examined using CLIA and SVNT. The cut-off was determined using a receiver operating characteristic (ROC) curve, and area under the curve (AUC) measurements were evaluated. The result showed a strong positive correlation between S-RBD SARS-CoV-2 IgG CLIA and SVNT, with a value of r = 0.933 and p < 0.001. The value ≥ 37.29 BAU/mL was determined as the cut-off based on SVNT 30% inhibition level with sensitivity, specificity, and positive and negative predictive values of 96.5%, 90.9%, 96.5%, and 90.9%, respectively. A titer of antibodies greater than or equal to 37.29 BAU/mL with CLIA showed the presence of protective antibodies compared to SVNT. Full article
(This article belongs to the Section Diagnostic Microbiology and Infectious Disease)
Show Figures

Figure 1

21 pages, 5550 KB  
Article
Novel Competitive ELISA Utilizing Trimeric Spike Protein of SARS-CoV-2, Could Identify More Than RBD-RBM Specific Neutralizing Antibodies in Hybrid Sera
by Petros Eliadis, Annie Mais, Alexandros Papazisis, Eleni K. Loxa, Alexios Dimitriadis, Ioannis Sarrigeorgiou, Marija Backovic, Maria Agallou, Marios Zouridakis, Evdokia Karagouni, Konstantinos Lazaridis, Avgi Mamalaki and Peggy Lymberi
Vaccines 2024, 12(8), 914; https://doi.org/10.3390/vaccines12080914 - 13 Aug 2024
Cited by 2 | Viewed by 3672
Abstract
Since the initiation of the COVID-19 pandemic, there has been a need for the development of diagnostic methods to determine the factors implicated in mounting an immune response against the virus. The most promising indicator has been suggested to be neutralizing antibodies (nAbs), [...] Read more.
Since the initiation of the COVID-19 pandemic, there has been a need for the development of diagnostic methods to determine the factors implicated in mounting an immune response against the virus. The most promising indicator has been suggested to be neutralizing antibodies (nAbs), which mainly block the interaction between the Spike protein (S) of SARS-CoV-2 and the host entry receptor ACE2. In this study, we aimed to develop and optimize conditions of a competitive ELISA to measure serum neutralizing titer, using a recombinant trimeric Spike protein modified to have six additional proline residues (S(6P)-HexaPro) and h-ACE2. The results of our surrogate Virus Neutralizing Assay (sVNA) were compared against the commercial sVNT (cPass, Nanjing GenScript Biotech Co., Nanjing City, China), using serially diluted sera from vaccinees, and a high correlation of ID50–90 titer values was observed between the two assays. Interestingly, when we tested and compared the neutralizing activity of sera from eleven fully vaccinated individuals who subsequently contracted COVID-19 (hybrid sera), we recorded a moderate correlation between the two assays, while higher sera neutralizing titers were measured with sVNA. Our data indicated that the sVNA, as a more biologically relevant model assay that paired the trimeric S(6P) with ACE2, instead of the isolated RBD-ACE2 pairing cPass test, could identify nAbs other than the RBD-RBM specific ones. Full article
Show Figures

Figure 1

12 pages, 246 KB  
Article
Risk Factors for Impaired Cellular or Humoral Immunity after Three Doses of SARS-CoV-2 Vaccine in Healthy and Immunocompromised Individuals
by Jae-Hoon Ko, Choon-Mee Kim, Mi-Seon Bang, Da-Yeon Lee, Da-Young Kim, Jun-Won Seo, Na-Ra Yun, Jin-Young Yang, Kyong-Ran Peck, Kyo-Won Lee, Sung-Hoon Jung, Hyun-Jin Bang, Woo-Kyun Bae, Tae-Jong Kim, Kyeong-Hwan Byeon, Sung-Han Kim and Dong-Min Kim
Vaccines 2024, 12(7), 752; https://doi.org/10.3390/vaccines12070752 - 8 Jul 2024
Cited by 2 | Viewed by 2506
Abstract
Background: We aimed to identify the risk factors for impaired cellular and humoral immunity after three doses of the SARS-CoV-2 vaccine. Methods: Six months after the third vaccine dose, T-cell immunity was evaluated using interferon-gamma release assays (IGRAs) in 60 healthy and 139 [...] Read more.
Background: We aimed to identify the risk factors for impaired cellular and humoral immunity after three doses of the SARS-CoV-2 vaccine. Methods: Six months after the third vaccine dose, T-cell immunity was evaluated using interferon-gamma release assays (IGRAs) in 60 healthy and 139 immunocompromised (IC) individuals, including patients with hematologic malignancy (HM), solid malignancy (SM), rheumatic disease (RD), and kidney transplantation (KT). Neutralizing antibody titers were measured using the plaque reduction neutralization test (PRNT) and surrogate virus neutralization test (sVNT). Results: T-cell immunity results showed that the percentages of IGRA-positive results using wild-type/alpha spike protein (SP) and beta/gamma SP were 85% (51/60) and 75% (45/60), respectively, in healthy individuals and 45.6% (62/136) and 40.4% (55/136), respectively, in IC individuals. IC with SM or KT showed a high percentage of IGRA-negative results. The underlying disease poses a risk for impaired cellular immune response to wild-type SP. The risk was low when all doses were administered as mRNA vaccines. The risk factors for an impaired cellular immune response to beta/gamma SP were underlying disease and monocyte%. In the sVNT using wild-type SP, 12 of 191 (6.3%) individuals tested negative. In the PRNT of 46 random samples, 6 (13%) individuals tested negative for the wild-type virus, and 19 (41.3%) tested negative with omicrons. KT poses a risk for an impaired humoral immune response. Conclusions: Underlying disease poses a risk for impaired cellular immune response after the third dose of the SARS-CoV-2 vaccine; KT poses a risk for impaired humoral immune response, emphasizing the requirement of precautions in patients. Full article
14 pages, 2177 KB  
Article
Accuracy of Anti-SARS-CoV-2 Antibody in Comparison with Surrogate Viral Neutralization Test in Persons Living with HIV, Systemic Lupus Erythematosus, and Chronic Kidney Disease
by Marita Restie Tiara, Chrisan Bimo Prayuda, Tara Titian Maulidya, Hofiya Djauhari, Dadang Suhendar, Rudi Wisaksana, Laniyati Hamijoyo, Rudi Supriyadi, Agnes Rengga Indrati and Bachti Alisjahbana
Vaccines 2024, 12(5), 558; https://doi.org/10.3390/vaccines12050558 - 20 May 2024
Viewed by 2073
Abstract
The presence of the anti-SARS-CoV-2-RBD antibody (anti-RBD) prevents severe COVID-19. We aimed to determine the accuracy of a point-of-care anti-RBD testing implemented in persons living with HIV (PLWH), systemic lupus erythematosus (SLE), and chronic kidney disease (CKD). We enrolled 182 non-comorbid subjects and [...] Read more.
The presence of the anti-SARS-CoV-2-RBD antibody (anti-RBD) prevents severe COVID-19. We aimed to determine the accuracy of a point-of-care anti-RBD testing implemented in persons living with HIV (PLWH), systemic lupus erythematosus (SLE), and chronic kidney disease (CKD). We enrolled 182 non-comorbid subjects and 335 comorbid subjects (PLWH, SLE, CKD) to test the anti-RBD assay compared to the surrogate viral neutralization test (sVNT) as the reference test. We performed linear correlation analysis between anti-RBD and sVNT, along with an ROC analysis to ascertain the anti-RBD cutoff at 30%, 60%, and 90% inhibition of sVNT, to calculate accuracy. The correlations between anti-RBD and sVNT among all groups were excellent, with R = 0.7903, R = 0.7843, and R = 0.8153 among the non-comorbid, SLE, and CKD groups, respectively, and with significantly higher correlation among the PLWH group (R = 0.8877; p-value = 0.0072) compared to the non-comorbid group. The accuracy of the anti-RBD test among the PLWH and CKD groups was similar to that among the non-comorbid group but showed lower sensitivity in the SLE group (p = 0.000014). The specificity of the test remained high in all groups. In conclusion, the anti-RBD test had excellent correlation with the sVNT. The persistently high specificity in all groups suggests that this test can be reliably utilized to detect the presence of low neutralization capacity, prompting additional vaccination. Full article
Show Figures

Figure 1

Back to TopTop