Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = SU8 microstructure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5620 KB  
Article
Influence of Build Orientation and Heat Treatment on the Microstructure and Mechanical Properties of SUS316L Fabricated by Selective Laser Melting
by Yujin Lim, Chami Jeon, Yoon-Seok Lee and Ilguk Jo
Metals 2025, 15(9), 971; https://doi.org/10.3390/met15090971 - 30 Aug 2025
Viewed by 495
Abstract
Additive manufacturing (AM) via selective laser melting (SLM) is increasingly deployed in aerospace, biomedical, and tooling applications where complex geometries and high performance are required. Yet, process-induced anisotropy and microstructural heterogeneity can strongly affect mechanical and tribological behavior. This study systematically evaluates the [...] Read more.
Additive manufacturing (AM) via selective laser melting (SLM) is increasingly deployed in aerospace, biomedical, and tooling applications where complex geometries and high performance are required. Yet, process-induced anisotropy and microstructural heterogeneity can strongly affect mechanical and tribological behavior. This study systematically evaluates the combined effects of build orientation (0°, 45°, and 90° relative to the build plate) and post-build heat treatment (as-built, 600 °C, and 860 °C) on the phase constitution, microstructure, hardness, tensile response, and dry sliding wear of SLM-fabricated 316L stainless steel. X-ray diffraction indicated a fully austenitic (γ-fcc) structure without detectable secondary phases across all conditions. Orientation-dependent substructures were observed: ~1 µm equiaxed cellular features at 0°, finer 0.3–0.5 µm cells at 45°, and 1–2 µm elongated features at 90°. Microhardness varied with orientation; relative to 0°, 45° specimens were ~15 HV higher, whereas 90° specimens were ~10 HV lower. Heat treatment at 600 °C promoted refinement and recovery of the cellular network, most pronounced in the 45° orientation, while treatment at 860 °C largely erased melt pool boundary contrast, producing a more homogeneous particle-like microstructure. Tensile fractography revealed dimpled rupture in all cases; the 90° orientation showed finer dimples and lower hardness, consistent with a ductile failure mode under reduced constraint. Dry sliding wear tests identified adhesive wear, intensified by the build-up of transferred fragments, as the dominant mechanism in both as-built and 600 °C conditions. Changes to melt pool morphology after 860 °C heat treatment correlated with altered wear track widths, with the 0° condition showing a notable narrowing relative to the 600 °C state. These results highlight processing pathways for tailoring anisotropy, strength–ductility balance, and wear resistance in SLM 316L. Full article
(This article belongs to the Special Issue Advances in Laser Processing of Metals and Alloys)
Show Figures

Figure 1

15 pages, 5614 KB  
Article
Influence of Post-Heat Treatment on the Tensile Strength and Microstructure of Metal Inert Gas Dissimilar Welded Joints
by Van-Thuc Nguyen, Thanh Tan Nguyen, Van Huong Hoang, Tran Ngoc Thien, Duong Thi Kim Yen, Tri Ho Minh, Le Minh Tuan, Anh Tu Nguyen, Hoang Trong Nghia, Pham Quan Anh, Phan Quoc Bao and Van Thanh Tien Nguyen
Crystals 2025, 15(7), 586; https://doi.org/10.3390/cryst15070586 - 20 Jun 2025
Viewed by 425
Abstract
Taguchi and post-heat treatment methods have been used in this study to optimize the metal inert gas (MIG) welding joints between SUS304 austenite stainless steel and plain carbon SS400 steel using AWS ER 308L filler wire. The dissimilar welding joints’ microstructure and tensile [...] Read more.
Taguchi and post-heat treatment methods have been used in this study to optimize the metal inert gas (MIG) welding joints between SUS304 austenite stainless steel and plain carbon SS400 steel using AWS ER 308L filler wire. The dissimilar welding joints’ microstructure and tensile strength have been examined. The findings show that the fast cooling of the weld joint and the ferrite-forming element of the filler wire cause the dendrites’ δ-ferrite phase to emerge on both the weld bead and the heat-affected zone (HAZ) of the SUS304 side. The stickout parameter has the largest impact on the ultimate tensile strength (UTS), next to the welding speed, welding voltage, and welding current, due to the strong impact of the heat distribution. The optimal welding parameters are a welding current of 105 A, a welding voltage of 14.5 V, a stickout of 12 mm, and a welding speed of 420 mm/min, producing the UTS value of 445.3 MPa, which is close to the predicted value of 469.2 ± 53.6 MPa. Post-heat treatment with an annealing temperature that is lower than 700 °C could improve the optimized weld joints’ strength by up to 5%. The findings may provide a more realistic understanding of the dissimilar welding technology. Full article
Show Figures

Figure 1

28 pages, 11508 KB  
Article
Non-Destructive Integrity Assessment of Austenitic Stainless-Steel Membranes via Magnetic Property Measurements
by Haeng Sung Heo, Jinheung Park, Jehyun You, Shin Hyung Rhee and Myoung-Gyu Lee
Materials 2025, 18(12), 2898; https://doi.org/10.3390/ma18122898 - 19 Jun 2025
Viewed by 520
Abstract
This study proposes a novel non-destructive methodology for assessing structural integrity in liquefied natural gas (LNG) carrier cargo containment systems (CCSs), addressing limitations of conventional inspection techniques like visual inspection and vacuum box testing. The method leverages strain-induced martensitic transformation (SIMT) in austenitic [...] Read more.
This study proposes a novel non-destructive methodology for assessing structural integrity in liquefied natural gas (LNG) carrier cargo containment systems (CCSs), addressing limitations of conventional inspection techniques like visual inspection and vacuum box testing. The method leverages strain-induced martensitic transformation (SIMT) in austenitic stainless steel (SUS304L), widely used in CCS membranes, quantifying magnetic permeability increase via a Feritscope to evaluate deformation history and damage. To analyze SUS304L SIMT behavior, uniaxial tensile (UT) and equi-biaxial tensile (EBT) tests were conducted, as these stress states predominate in CCS membranes. Microstructural evolution was examined using X-ray diffraction (XRD) and electron backscatter diffraction (EBSD), allowing a quantitative assessment of the transformed martensite volume fraction versus plastic strain. Subsequently, Feritscope measurements under the same conditions were calibrated against the XRD-measured martensite volume fraction for accuracy. Based on testing, this study introduces three complementary Feritscope approaches for evaluating CCS health: outlier detection, quantitative damaged area analysis, and time-series analysis. The methodology integrates data-driven quantitative assessment with conventional qualitative inspection, enhancing safety and maintenance efficiency. Full article
Show Figures

Figure 1

19 pages, 12457 KB  
Article
Experimental Study on Strength Characteristics of Overconsolidated Gassy Clay
by Tao Liu, Longfei Zhu, Yan Zhang, Chengrong Qing, Yuanzhe Zhan, Chaonan Zhu and Jiayang Jia
J. Mar. Sci. Eng. 2025, 13(5), 904; https://doi.org/10.3390/jmse13050904 - 30 Apr 2025
Viewed by 576
Abstract
Gassy clay, commonly encountered in coastal areas as overconsolidated deposits, demonstrates distinct mechanical properties posing risks for submarine geohazards and engineering stability. Consolidated undrained triaxial tests combined with cyclic simple shear tests were performed on specimens with varying overconsolidation ratios (OCRs) and initial [...] Read more.
Gassy clay, commonly encountered in coastal areas as overconsolidated deposits, demonstrates distinct mechanical properties posing risks for submarine geohazards and engineering stability. Consolidated undrained triaxial tests combined with cyclic simple shear tests were performed on specimens with varying overconsolidation ratios (OCRs) and initial pore pressures, supplemented by SEM microstructural analysis. Triaxial results indicate that OCR controls the transitions between shear contraction and dilatancy, which govern both stress–strain responses and excess pore pressure development. Higher OCR with lower initial pore pressure increases stress path slope, raises undrained shear strength (su), reduces pore pressure generation, and induces negative pore pressure at elevated OCR. These effects originate from compressed gas bubbles and limited bubble flooding under overconsolidation, intensifying dilatancy during shear. Cyclic tests reveal gassy clay’s superior cyclic strength, slower pore pressure accumulation, reduced stiffness softening, and enhanced deformation resistance relative to saturated soils. Cyclic pore pressure amplitude increases with OCR, while peak cyclic strength and anti-softening capacity occur at OCR = 2, implying gas bubble interactions. Full article
(This article belongs to the Special Issue Advances in Marine Geological and Geotechnical Hazards)
Show Figures

Figure 1

15 pages, 5841 KB  
Article
Investigation of the Process Optimization for L-PBF Hastelloy X Alloy on Microstructure and Mechanical Properties
by Phuangphaga Daram, Masahiro Kusano and Makoto Watanabe
Materials 2025, 18(8), 1890; https://doi.org/10.3390/ma18081890 - 21 Apr 2025
Viewed by 646
Abstract
The purpose of this study is to investigate the effects of process parameters on the microstructure and mechanical properties of the Hastelloy X (HX) alloy using a laser powder bed fusion (L-PBF) process. A combined experimental and numerical approach was used to evaluate [...] Read more.
The purpose of this study is to investigate the effects of process parameters on the microstructure and mechanical properties of the Hastelloy X (HX) alloy using a laser powder bed fusion (L-PBF) process. A combined experimental and numerical approach was used to evaluate the influence of the energy density distribution and temperature evolution on the microstructure, defects, and mechanical properties. After the specimens were built on SUS304 substrate by the L-PBF, the microstructure and defects in the specimens were analyzed by SEM and EBSD analysis methods, and then the hardness and the tensile tests were performed. The cooling rate under different laser conditions was obtained by the finite element method (FEM). The results show that a low volume energy density (VED) was applied to the unmelted powder particles, and a high energy density resulted in spherical defects. In addition, the microstructures were found to coarsen with increasing the energy density along with a tendency to strengthen the (001) texture orientation in both x–y and x–z planes. Compared to the parts with the thermal history from numerical results, the low cooling rate with high energy density had larger crystal grains elongated along the building direction, coarser sub-grains, resulting in a reduction in microhardness and yield strength together with an increase in elongation for the L-PBF HX alloy. The presented results provide new insights into the effects of parameters and the cooling rates. It can play an important role in optimizing the L-PBF processing parameters, identifying the cause of defects, and controlling the cooling rates for the crystallographic texture in such a way as to guide the development of better metrics for designing processing parameters with the desired mechanical properties. Full article
Show Figures

Figure 1

17 pages, 7483 KB  
Article
Characterization and Modelling of Microstructure Evolution and Flow Stress of Single-Phase Austenite and Ferrite Phases in Duplex Stainless Steels
by Holger Brüggemann, Shunsuke Sasaki, Maximilian Röder, Tatsuro Katsumura and David Bailly
Metals 2025, 15(2), 130; https://doi.org/10.3390/met15020130 - 27 Jan 2025
Viewed by 900
Abstract
This paper presents an experimental and modeling study to investigate and predict the microstructure evolution for single-phase austenite and ferrite steels with the chemistry of the corresponding phases in a duplex stainless steel SUS329J4L under hot forming conditions. For steels with the compositions [...] Read more.
This paper presents an experimental and modeling study to investigate and predict the microstructure evolution for single-phase austenite and ferrite steels with the chemistry of the corresponding phases in a duplex stainless steel SUS329J4L under hot forming conditions. For steels with the compositions corresponding to both austenite and ferrite phases, single-pass hot uniaxial compression tests, stress relaxation tests, and heat treatment tests have been conducted for a temperature range of 1000–1250 °C and strain rates ranging from 0.3 to 30 s−1. The dynamic and static recrystallization mechanisms, as well as the grain growth behavior, were studied, and the material parameters of each mechanism were identified for a semi-empirical microstructure model called StrucSim. Double-compression tests in the same temperature and strain rate range were performed to validate the model, and a good correlation of the flow stress between the experiment and simulation was observed. Full article
Show Figures

Figure 1

13 pages, 13417 KB  
Article
Microstructures and Mechanical Properties of SUS 630 Stainless Steel: Effects of Age Hardening in a Tin Bath and Atmospheric Environments
by Kuan-Jen Chen and Fu-Sung Chuang
Materials 2025, 18(3), 574; https://doi.org/10.3390/ma18030574 - 27 Jan 2025
Viewed by 1251
Abstract
This study investigates the solution-aging treatment of precipitation-hardening SUS 630 stainless steel, alongside an analysis of the carbon emissions generated by the energy consumed during aging treatments. By employing atmospheric and liquid tin as aging media, the research comprehensively explores the effects of [...] Read more.
This study investigates the solution-aging treatment of precipitation-hardening SUS 630 stainless steel, alongside an analysis of the carbon emissions generated by the energy consumed during aging treatments. By employing atmospheric and liquid tin as aging media, the research comprehensively explores the effects of aging treatments on the characteristics of 630 stainless steel. The maximum hardness value for the 630 stainless steel was observed after atmospheric aging at 500 °C for 1 h. The given 630 stainless steel obtained its maximum hardness value after atmospheric aging at 500 °C for 1 h, indicating that the formation of secondary precipitates strengthens the steel’s performance. By leveraging the intrinsic characteristics of liquid tin, using it as an aging medium (Sn bath aging) significantly improves the efficiency of the aging process, achieving mechanical properties comparable to those of atmosphere-aged steel. The 630 stainless steel aged in a Sn bath exhibited a refined martensitic matrix with substantial precipitate formation, contributing to superior impact toughness and dynamic fatigue resistance. With an equivalent mass and performance, Sn bath aging notably reduced the duration of the treatment compared to atmospheric aging, leading to substantial energy savings and reduced carbon emissions. The Sn bath treatment, recognized in metallurgical science and heat treatment for its excellent thermal conductivity and recyclability, shows potential to enhance process efficiency and enable low carbon emissions in the heat treatment industry. By highlighting the differences between aging methods, this study provides solutions for optimizing heat treatment processes and thereby achieving industrial advancement and sustainability goals. Full article
Show Figures

Figure 1

17 pages, 3310 KB  
Article
Comparison of Physical, Sensorial, and Microstructural Properties to Assess the Similarity Between Plant- and Animal-Based Meat Products
by Fouad Ali Abdullah Abdullah, Matej Pospiech, Dani Dordevic and Eliska Kabourkova
Appl. Sci. 2024, 14(24), 11513; https://doi.org/10.3390/app142411513 - 10 Dec 2024
Cited by 2 | Viewed by 2120
Abstract
The aim of this study was to compare the physical, sensorial, and microstructural properties of selected meat products with their plant-based alternatives to assess how closely the alternatives mimic the original products. Six meat analogue products, including Frankfurter sausage (SuA), steak (StA), Hungarian [...] Read more.
The aim of this study was to compare the physical, sensorial, and microstructural properties of selected meat products with their plant-based alternatives to assess how closely the alternatives mimic the original products. Six meat analogue products, including Frankfurter sausage (SuA), steak (StA), Hungarian sausage (KA), minced meat (MA), salami (SaA), and burger (BA), were compared with their corresponding meat products (SuM, StM, KM, MM, SaM, and BM, respectively). The study measured colour indicators, texture parameters, sensory attributes, and microstructural properties. The redness values (a*) of the external surfaces of SuM and KM, as well as the hardness of MM, were similar to those of their alternative products, with no statistically significant differences (p > 0.05). Sensory evaluation revealed similar ratings for two attributes: product similarity and overall appearance. However, significant differences were found in the descriptors for animal character and meat taste. Full article
(This article belongs to the Special Issue Recent Processing Technologies for Improving Meat Quality)
Show Figures

Figure 1

17 pages, 6487 KB  
Article
Effect of Photolithographic Biomimetic Surface Microstructure on Wettability and Droplet Evaporation Process
by Zhihao Zhang and Yuying Yan
Biomimetics 2024, 9(12), 724; https://doi.org/10.3390/biomimetics9120724 - 24 Nov 2024
Cited by 2 | Viewed by 1173
Abstract
In nature, engineering technology and daily life, wetting phenomena are widespread and have essential roles and significance. Bionics is becoming increasingly important nowadays and exploring the mechanism that influences biomimetic surface microstructure on droplet wetting process and heat and mass transfer characteristics is [...] Read more.
In nature, engineering technology and daily life, wetting phenomena are widespread and have essential roles and significance. Bionics is becoming increasingly important nowadays and exploring the mechanism that influences biomimetic surface microstructure on droplet wetting process and heat and mass transfer characteristics is becoming more meaningful. In this paper, based on photolithography technology, SU-8 photoresist was used as raw material to prepare biomimetic surfaces with microstructures in various arrangements. The research results show that the wettability of biomimetic functional surfaces can be regulated by regulating the shape and arrangement of photoresist micro-pillars. At the same time, the effects of surface microstructure configuration and roughness on the heat and mass transfer processes within the droplets were also comprehensively studied. The results show that a biomimetic surface with cylindrical micro-pillars can effectively inhibit the evaporative cooling effect of the liquid–vapour interface. This effect becomes more evident with the increase in roughness, and the interface temperature difference can be reduced by up to 18%. Similarly, the biomimetic surface with cylindrical micro-pillars can also effectively promote the evaporation rate of sessile droplets, which can be increased by about 13%. In addition, the research also shows that regardless of the structure, substrate temperature changes will significantly impact the wetting phenomenon of the biomimetic surface. This study aims to guide the optimal design of biomimetic surfaces prepared based on photoresistance. Full article
Show Figures

Figure 1

17 pages, 6581 KB  
Article
Dissimilar MIG Welding Optimization of C20 and SUS201 by Taguchi Method
by Thanh Tan Nguyen, Van Huong Hoang, Van-Thuc Nguyen and Van Thanh Tien Nguyen
J. Manuf. Mater. Process. 2024, 8(5), 219; https://doi.org/10.3390/jmmp8050219 - 1 Oct 2024
Cited by 2 | Viewed by 1796
Abstract
This study looks at how welding intensity, speed, voltage, and stick-out affect the structural and mechanical characteristics of metal inert gas (MIG) welding on SUS 201 stainless steel and C20 steel. The Taguchi method is used to optimize the study’s experiment findings. The [...] Read more.
This study looks at how welding intensity, speed, voltage, and stick-out affect the structural and mechanical characteristics of metal inert gas (MIG) welding on SUS 201 stainless steel and C20 steel. The Taguchi method is used to optimize the study’s experiment findings. The results show that the welding current has a more significant effect on the tensile test than the welding voltage, stick-out, and welding speed. Welding voltage has the lowest influence. In addition to the base metals’ ferrite, pearlite, and austenite phases, the weld bead area contains martensite and bainite microstructures. The optimal parameters for the ultimate tensile strength (UTS), yield strength, and elongation values are a 110 amp welding current, 15 V of voltage, a 500 mm.min−1 welding speed, and a 10 mm stick-out. The confirmed UTS, yield strength, and elongation values are 452.78 MPa, 374.65 MPa, and 38.55%, respectively, comparable with the expected value derived using the Taguchi method. In the flexural test, the welding current is the most critical element affecting flexural strength. A welding current of 110 amp, an arc voltage of 15 V, a welding speed of 500 mm.min−1, and a stick-out of 12 mm are the ideal values for flexural strength. The flexural strength, confirmed at 1756.78 MPa, is more than that of the other samples. The study’s conclusions can offer more details regarding the dissimilar welding industry. Full article
Show Figures

Figure 1

21 pages, 19406 KB  
Article
Optimizing Surface Characteristics of Stainless Steel (SUS) for Enhanced Adhesion in Heterojunction Bilayer SUS/Polyamide 66 Composites
by Sang-Seok Yun, Wanjun Yoon and Keon-Soo Jang
Polymers 2024, 16(19), 2737; https://doi.org/10.3390/polym16192737 - 27 Sep 2024
Cited by 2 | Viewed by 1130
Abstract
The increasing environmental concerns and stringent regulations targeting emissions and energy efficiency necessitate innovative material solutions that not only comply with these standards but also enhance performance and sustainability. This study investigates the potential of heterojunction bilayer composites comprising stainless steel (SUS) and [...] Read more.
The increasing environmental concerns and stringent regulations targeting emissions and energy efficiency necessitate innovative material solutions that not only comply with these standards but also enhance performance and sustainability. This study investigates the potential of heterojunction bilayer composites comprising stainless steel (SUS) and polyamide 66 (PA66), aiming to improve fuel efficiency and reduce harmful emissions by achieving lightweight materials. Joining a polymer to SUS is challenging due to the differing physical and chemical properties of each material. To address this, various surface treatment techniques such as blasting, plasma, annealing, and etching were systematically studied to determine their effects on the microstructural, chemical, and mechanical properties of the SUS surface, thereby identifying mechanisms that improve adhesion. Chemical etching using HNO3/HCl and CuSO4/HCl increased surface roughness and mechanical properties, but these properties decreased after annealing. In contrast, K3Fe(CN)6/NaOH treatment increased the lap shear strength after annealing. Blasting increased surface roughness and toughness with increasing spray pressure and further enhanced these properties after annealing. Contact angle measurements indicated that the hydrophilicity of the SUS surface improved with surface treatment and further improved due to microstructure formation after annealing. This study demonstrates that customized surface treatments can significantly enhance the interfacial adhesion and mechanical properties of SUS/polymer heterojunction bilayer composites, and further research is recommended to explore the long-term stability and durability of these treatments under various environmental conditions. Full article
(This article belongs to the Special Issue Functional Hybrid Polymeric Composites, 2nd Edition)
Show Figures

Figure 1

16 pages, 5092 KB  
Article
Material Strength Optimization of Dissimilar MIG Welding between Carbon and Stainless Steels
by Hoang Van Huong, Thanh Tan Nguyen, Van-Thuc Nguyen and Van Thanh Tien Nguyen
Metals 2024, 14(9), 1011; https://doi.org/10.3390/met14091011 - 4 Sep 2024
Cited by 2 | Viewed by 2069
Abstract
This study examines the effects of stick-out, welding current, welding speed, and voltage on the mechanical characteristics and microstructure of MIG welding on SUS 304 stainless steel and S20C steel. The Taguchi method was used to maximize the experiment’s outcomes. Fine columnar dendrites [...] Read more.
This study examines the effects of stick-out, welding current, welding speed, and voltage on the mechanical characteristics and microstructure of MIG welding on SUS 304 stainless steel and S20C steel. The Taguchi method was used to maximize the experiment’s outcomes. Fine columnar dendrites formed at fusion sites, and δ-ferrite phases with dark lines and shapes accumulated between the fusion line and the austenite phases. A welding current of 110 A, voltage of 15 V, welding speed of 500 mm/min, and stick-out of 12 mm were the optimal settings for the ultimate tensile strength (UTS). The UTS value confirmation was 469.4 MPa, which agrees with the estimated value determined using the Taguchi technique. The tensile test revealed that welding current had a far greater impact on mechanical qualities than welding voltage, speed, and stick-out distance. The ideal welding parameters for flexural strength were as follows: stick-out of 12 mm, arc voltage of 15 V, welding speed of 450 mm/min, and welding current of 110 amp. The Taguchi method is useful, as evidenced by the validation of the flexure strength of 1937.45 MPa, which is much greater than the other samples. The impact of the thermal annealing process on the mechanical characteristics of the dissimilar weld joints could be the subject of future research. The investigation results may offer more insightful information about the dissimilar welding field. Full article
Show Figures

Figure 1

13 pages, 6682 KB  
Article
Tensile Properties of Cryorolled Cu/Al Clad Sheet with an SUS304 Interlayer after Annealing at Various Temperatures
by Yanni Xuan, Jing Li, Haitao Gao and Hailiang Yu
Materials 2024, 17(16), 4065; https://doi.org/10.3390/ma17164065 - 15 Aug 2024
Viewed by 1181
Abstract
This paper investigates the tensile properties and microstructures of Cu/Al clad sheets with an SUS304 interlayer after cryorolling and subsequent annealing and compares them with hot-rolled samples. The experimental results show that the inhibition of dynamic recovery by cryorolling enables the Cu/Al clad [...] Read more.
This paper investigates the tensile properties and microstructures of Cu/Al clad sheets with an SUS304 interlayer after cryorolling and subsequent annealing and compares them with hot-rolled samples. The experimental results show that the inhibition of dynamic recovery by cryorolling enables the Cu/Al clad sheets to achieve a tensile strength of 302 MPa. After annealing, the tensile strength sharply drops to 159 MPa, while the elongation recovers to 29.0%. Compared with hot-rolled samples, the tensile strength of cryorolled samples is increased by 13.1% due to the effect of fine-grain strengthening. During the annealing process, the cryorolled samples exhibit improved elongation under a comparable strength with the hot-rolled samples, profiting from the higher degree of recrystallization and a higher proportion of annealing twins. The tensile properties of Cu/Al clad sheet with an SUS304 interlayer are strengthened by cryorolling and subsequent annealing, providing a new method for the fabrication of high-performance Cu/Al clad sheets. Full article
Show Figures

Figure 1

13 pages, 6148 KB  
Article
Effect of Rotational Velocity on Mechanical and Corrosion Properties of Friction Stir-Welded SUS301L Stainless Steel
by Jianing Dong, Yuming Xie, Shengnan Hu, Junchen Li, Yaobang Zhao, Xiangchen Meng and Yongxian Huang
Materials 2024, 17(14), 3486; https://doi.org/10.3390/ma17143486 - 14 Jul 2024
Cited by 3 | Viewed by 1095
Abstract
Friction stir welding was utilized to obtain high-quality SUS301L stainless steel joints, whose mechanical and corrosion properties were thoroughly evaluated. Sound joints were obtained with a wide range of rotational velocities from 400 to 700 rpm. The microstructures of the stir zone primarily [...] Read more.
Friction stir welding was utilized to obtain high-quality SUS301L stainless steel joints, whose mechanical and corrosion properties were thoroughly evaluated. Sound joints were obtained with a wide range of rotational velocities from 400 to 700 rpm. The microstructures of the stir zone primarily consisted of austenite and lath martensite without the formation of detrimental phases. The ultimate tensile strength of the welded joints improved with higher rotational velocities apart from 400 rpm. The ultimate tensile strength reached 813 ± 16 MPa, equal to 98.1 ± 1.9% of the base materials (BMs) with a rotational velocity of 700 rpm. The corrosion resistance of the FSW joints was improved, and the corrosion rates related to uniform corrosion with lower rotational velocities were one order of magnitude lower than that of the BMs, which was attributed to the lower martensite content. However, better anti-pitting corrosion performance was obtained with a high rotational velocity of 700 rpm, which was inconsistent with the uniform corrosion results. It could be speculated that a higher martensitic content had a negative effect on the uniform corrosion performance, but had a positive effect on the improvement of the anti-pitting corrosion ability. Full article
(This article belongs to the Special Issue Advanced Welding in Alloys and Composites)
Show Figures

Figure 1

19 pages, 8055 KB  
Article
Wear Analysis of NiTi Sand Screens Using Altair Discrete Element Method
by Azubuike Hope Amadi, Mysara Mohyaldinn, Abdullah Abduljabbar, Syahrir Ridha, Prasad Avilala and Gabriel Tayo Owolabi
Materials 2024, 17(2), 281; https://doi.org/10.3390/ma17020281 - 5 Jan 2024
Cited by 8 | Viewed by 2683
Abstract
This research explores discrete element method analysis to investigate the wear of NiTi Sand Screens in comparison to traditional materials. The study utilized Altair EDEM v2022.2 software and employed Oka and Archard models to simulate the wear behavior of Nitinol, a well-established Shape [...] Read more.
This research explores discrete element method analysis to investigate the wear of NiTi Sand Screens in comparison to traditional materials. The study utilized Altair EDEM v2022.2 software and employed Oka and Archard models to simulate the wear behavior of Nitinol, a well-established Shape Memory Alloy (SMA). The mechanical properties considered include Poisson’s ratio, solid density, shear modulus, and Young modulus. Results indicate significantly higher wear values and deformations with the Oka model compared to negligible wear with the Archard model. The Oka model’s emphasis on impact as the primary wear mechanism, supported by high normal cumulative energy, better represents sand screen wear phenomena. Additionally, this study indicates that factors such as particle size distribution and normal and tangential cumulative contact energy hold potential as predictors of wear response and characteristics. The Oka model demonstrated that NiTi exhibited reduced wear losses compared to SUS630 and Cr–Mn white cast iron, both of which are recognized for their high toughness when subjected to an impact load. Experimental analysis validated the simulation findings with morphological and graphical erosion plots. The limitation of observing the shape memory effect through DEM (discrete element method) simulation was acknowledged. Recommendations include characterizing post-wear microstructural changes, exploring the influence of temperature on wear behavior, and further research to refine wear models and understand SMA sand screen responses. Full article
(This article belongs to the Special Issue Mechanical Behaviour of Advanced Metal and Composite Materials)
Show Figures

Figure 1

Back to TopTop