Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,415)

Search Parameters:
Keywords = SPARE

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 955 KiB  
Review
Breaking Barriers with Sound: The Implementation of Histotripsy in Cancer
by Ashutosh P. Raman, Parker L. Kotlarz, Alexis E. Giff, Katherine A. Goundry, Paul Laeseke, Erica M. Knavel Koepsel, Mosa Alhamami and Dania Daye
Cancers 2025, 17(15), 2548; https://doi.org/10.3390/cancers17152548 (registering DOI) - 1 Aug 2025
Abstract
Histotripsy is a novel, noninvasive, non-thermal technology invented in 2004 for the precise destruction of biologic tissue. It offers a powerful alternative to more conventional thermal or surgical interventions. Using short-pulse, low-duty cycle ultrasonic waves, histotripsy creates cavitation bubble clouds that selectively and [...] Read more.
Histotripsy is a novel, noninvasive, non-thermal technology invented in 2004 for the precise destruction of biologic tissue. It offers a powerful alternative to more conventional thermal or surgical interventions. Using short-pulse, low-duty cycle ultrasonic waves, histotripsy creates cavitation bubble clouds that selectively and precisely destroy targeted tissue in a predefined volume while sparing critical structures like bile ducts, ureters, and blood vessels. Such precision is of value when treating tumors near vital structures. The FDA has cleared histotripsy for the treatment of all liver tumors. Major medical centers are currently spearheading clinical trials, and some institutions have already integrated the technology into patient care. Histotripsy is now being studied for a host of other cancers, including primary kidney and pancreatic tumors. Preclinical murine and porcine models have already revealed promising outcomes. One of histotripsy’s primary advantages is its non-thermal mechanical actuation. This feature allows it to circumvent the limitations of heat-based techniques, including the heat sink effect and unpredictable treatment margins near sensitive tissues. In addition to its non-invasive ablative capacities, it is being preliminarily explored for its potential to induce immunomodulation and promote abscopal inhibition of distant, untreated tumors through CD8+ T cell responses. Thus, it may provide a multilayered therapeutic effect in the treatment of cancer. Histotripsy has the potential to improve precision and outcomes across a multitude of specialties, from oncology to cardiovascular medicine. Continued trials are crucial to further expand its applications and validate its long-term efficacy. Due to the speed of recent developments, the goal of this review is to provide a comprehensive and updated overview of histotripsy. It will explore its physics-based mechanisms, differentiating it from similar technologies, discuss its clinical applications, and examine its advantages, limitations, and future. Full article
Show Figures

Figure 1

10 pages, 2048 KiB  
Article
Ultrasound-Guided PECS II Block Reduces Periprocedural Pain in Cardiac Device Implantation: A Prospective Controlled Study
by Mihaela Butiulca, Florin Stoica Buracinschi and Alexandra Lazar
Medicina 2025, 61(8), 1389; https://doi.org/10.3390/medicina61081389 - 30 Jul 2025
Viewed by 161
Abstract
Background and Objectives: Implantation of cardiac implantable electronic devices (CIEDs) is increasingly performed in elderly and comorbid patients, for whom minimizing perioperative complications—including pain and systemic drug use—is critical. Traditional local infiltration often provides insufficient analgesia. The ultrasound-guided PECS II block, an [...] Read more.
Background and Objectives: Implantation of cardiac implantable electronic devices (CIEDs) is increasingly performed in elderly and comorbid patients, for whom minimizing perioperative complications—including pain and systemic drug use—is critical. Traditional local infiltration often provides insufficient analgesia. The ultrasound-guided PECS II block, an interfascial regional technique, offers promising analgesic benefits in thoracic wall procedures but remains underutilized in cardiac electrophysiology. Materials and Methods: We conducted a prospective, controlled, non-randomized clinical study including 106 patients undergoing de novo CIED implantation. Patients were assigned to receive either a PECS II block (n = 53) or standard lidocaine-based local anesthesia (n = 53). Pain intensity was assessed using the numeric rating scale (NRS) intraoperatively and at 1, 6, and 12 h postoperatively. Secondary outcomes included the need for rescue analgesia, procedural duration, length of hospitalization, and patient satisfaction. Results: Patients in the PECS II group reported significantly lower NRS scores at all time points (mean intraoperative score: 2.1 ± 1.2 vs. 5.7 ± 1.6, p < 0.001; at 1 h: 2.5 ± 1.5 vs. 6.1 ± 1.7, p < 0.001). Rescue analgesia (metamizole sodium) was required in only four PECS II patients (7.5%) vs. 100% in the control group within 1 h. Hospital stay and procedural time were also modestly reduced in the PECS II group. Patient satisfaction scores were significantly higher in the intervention group. Conclusions: The ultrasound-guided PECS II block significantly reduces perioperative pain and the need for additional analgesia during CIED implantation, offering an effective, safe, and opioid-sparing alternative to conventional local infiltration. Its integration into clinical protocols for device implantation may enhance procedural comfort and recovery. Full article
(This article belongs to the Special Issue Regional and Local Anesthesia for Enhancing Recovery After Surgery)
Show Figures

Figure 1

18 pages, 1999 KiB  
Article
Circadian Light Manipulation and Melatonin Supplementation Enhance Morphine Antinociception in a Neuropathic Pain Rat Model
by Nian-Cih Huang and Chih-Shung Wong
Int. J. Mol. Sci. 2025, 26(15), 7372; https://doi.org/10.3390/ijms26157372 - 30 Jul 2025
Viewed by 161
Abstract
Disruption of circadian rhythms by abnormal light exposure and reduced melatonin secretion has been linked to heightened pain sensitivity and opioid tolerance. This study evaluated how environmental light manipulation and exogenous melatonin supplementation influence pain perception and morphine tolerance in a rat model [...] Read more.
Disruption of circadian rhythms by abnormal light exposure and reduced melatonin secretion has been linked to heightened pain sensitivity and opioid tolerance. This study evaluated how environmental light manipulation and exogenous melatonin supplementation influence pain perception and morphine tolerance in a rat model of neuropathic pain induced by partial sciatic nerve transection (PSNT). Rats were exposed to constant darkness, constant light, or a 12 h/12 h light–dark cycle for one week before PSNT surgery. Behavioral assays and continuous intrathecal (i.t.) infusion of morphine, melatonin, or their combination were conducted over a 7-day period beginning immediately after PSNT. On Day 7, after discontinued drugs infusion, an acute intrathecal morphine challenge (15 µg, i.t.) was administered to assess tolerance expression. Constant light suppressed melatonin levels, exacerbated pain behaviors, and accelerated morphine tolerance. In contrast, circadian-aligned lighting preserved melatonin rhythms and mitigated these effects. Melatonin co-infusion attenuated morphine tolerance and enhanced morphine analgesia. Reduced pro-inflammatory cytokine expression and increase anti-inflammatory cytokine IL-10 level and suppressed astrocyte activation were also observed by melatonin co-infusion during morphine tolerance induction. These findings highlight the potential of melatonin and circadian regulation in improving opioid efficacy and reduced morphine tolerance in managing neuropathic pain. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

25 pages, 874 KiB  
Article
Optimization Method for Reliability–Redundancy Allocation Problem in Large Hybrid Binary Systems
by Florin Leon and Petru Cașcaval
Mathematics 2025, 13(15), 2450; https://doi.org/10.3390/math13152450 - 29 Jul 2025
Viewed by 213
Abstract
This paper addresses a well-known research topic in the design of complex systems, specifically within the class of reliability optimization problems (ROPs). It focuses on optimal reliability–redundancy allocation problems (RRAPs) for large binary systems with hybrid structures. Two main objectives are considered: (1) [...] Read more.
This paper addresses a well-known research topic in the design of complex systems, specifically within the class of reliability optimization problems (ROPs). It focuses on optimal reliability–redundancy allocation problems (RRAPs) for large binary systems with hybrid structures. Two main objectives are considered: (1) to maximize system reliability under cost and volume constraints, and (2) to achieve the required reliability at minimal cost under a volume constraint. The system reliability model includes components with only two states: normal operating or failed. High reliability can result from directly improving component reliability, allocating redundancy, or using both approaches together. Several redundancy strategies are covered: active, passive, hybrid standby with hot, warm, or cold spares, static redundancy such as TMR and 5MR, TMR structures with control logic and spares, and reconfigurable TMR/Simplex structures. The proposed method uses a zero–one integer programming formulation that applies log-transformed reliability functions and binary decision variables to represent subsystem configurations. The experimental results validate the approach and confirm its efficiency. Full article
Show Figures

Figure 1

53 pages, 3300 KiB  
Review
A Comprehensive Review of Smart Thermosensitive Nanocarriers for Precision Cancer Therapy
by Atena Yaramiri, Rand Abo Asalh, Majd Abo Asalh, Nour AlSawaftah, Waad H. Abuwatfa and Ghaleb A. Husseini
Int. J. Mol. Sci. 2025, 26(15), 7322; https://doi.org/10.3390/ijms26157322 - 29 Jul 2025
Viewed by 302
Abstract
By 2030, millions of new cancer cases will be diagnosed, as well as millions of cancer-related deaths. Traditional drug delivery methods have limitations, so developing smart drug delivery systems (SDDs) has emerged as a promising avenue for more effective and precise cancer treatment. [...] Read more.
By 2030, millions of new cancer cases will be diagnosed, as well as millions of cancer-related deaths. Traditional drug delivery methods have limitations, so developing smart drug delivery systems (SDDs) has emerged as a promising avenue for more effective and precise cancer treatment. Nanotechnology, particularly nanomedicine, provides innovative approaches to enhance drug delivery, including the use of nanoparticles. One such type of SDD is thermosensitive nanoparticles, which respond to internal and external stimuli, such as temperature changes, to release drugs precisely at tumor sites and minimize off-target effects. On the other hand, hyperthermia is a cancer treatment mode that goes back centuries and has become popular because it can target cancer cells while sparing healthy tissue. This paper presents a comprehensive review of smart thermosensitive nanoparticles for cancer treatment, with a primary focus on organic nanoparticles. The integration of hyperthermia with temperature-sensitive nanocarriers, such as micelles, hydrogels, dendrimers, liposomes, and solid lipid nanoparticles, offers a promising approach to improving the precision and efficacy of cancer therapy. By leveraging temperature as a controlled drug release mechanism, this review highlights the potential of these innovative systems to enhance treatment outcomes while minimizing adverse side effects. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

37 pages, 1520 KiB  
Article
Comparative Analysis of Machine and Deep Learning Algorithms for Bragg Peak Estimation in Polymeric Materials for Tissue-Sparing Radiotherapy
by Koray Acici
Polymers 2025, 17(15), 2068; https://doi.org/10.3390/polym17152068 - 29 Jul 2025
Viewed by 180
Abstract
Proton therapy has emerged as a highly precise and tissue-sparing radiotherapy technique, capitalizing on the unique energy deposition pattern of protons characterized by the Bragg peak. Ensuring treatment accuracy relies on calibration phantoms, often composed of tissue-equivalent polymeric materials. This study investigates the [...] Read more.
Proton therapy has emerged as a highly precise and tissue-sparing radiotherapy technique, capitalizing on the unique energy deposition pattern of protons characterized by the Bragg peak. Ensuring treatment accuracy relies on calibration phantoms, often composed of tissue-equivalent polymeric materials. This study investigates the dosimetric behavior of four commonly used polymers—Parylene, Epoxy, Lexan, and Mylar—by analyzing their linear energy transfer (LET) values and Bragg curve characteristics across various proton energies. Experimental LET data were collected and used to train and evaluate the predictive power for Bragg peak of multiple artificial intelligence models, including kNN, SVR, MLP, RF, LWRF, XGBoost, 1D-CNN, LSTM, and BiLSTM. These algorithms were optimized using 10-fold cross-validation and assessed through statistical error and performance metrics including MAE, RAE, RMSE, RRSE, CC, and R2. Results demonstrate that certain AI models, particularly RF and LWRF, accurately (in terms of all evaluation metrics) predict Bragg peaks in Epoxy polymers, reducing the reliance on costly and time-consuming simulations. In terms of CC and R2 metrics, the LWRF model demonstrated superior performance, achieving scores of 0.9969 and 0.9938, respectively. However, when evaluated against MAE, RMSE, RAE, and RRSE metrics, the RF model emerged as the top performer, yielding values of 12.3161, 15.8223, 10.3536, and 11.4389, in the same order. Additionally, the SVR model achieved the highest number of statistically significant differences when compared pairwise with the other eight models, showing significance against six of them. The findings support the use of AI as a robust tool for designing reliable calibration phantoms and optimizing proton therapy planning. This integrative approach enhances the synergy between materials science, medical physics, and data-driven modeling in advanced radiotherapy systems. Full article
Show Figures

Figure 1

11 pages, 220 KiB  
Review
Superficial Cervical Plexus Block for Postoperative Pain Management in Occipital Craniotomies: A Narrative Review
by Shahab Ahmadzadeh, Bennett M. Ford, Alex V. Hollander, Mary Kathleen Luetkemeier, Tomasina Q. Parker-Actlis and Sahar Shekoohi
Med. Sci. 2025, 13(3), 101; https://doi.org/10.3390/medsci13030101 - 28 Jul 2025
Viewed by 327
Abstract
Post-craniotomy pain is common yet often sub-optimally managed because systemic opioids can obscure postoperative neurologic examinations. The superficial cervical plexus block (SCPB) has, therefore, emerged as a targeted regional anesthesia option for occipital craniotomies. The SCPB targets the C2–C4 nerves to anesthetize the [...] Read more.
Post-craniotomy pain is common yet often sub-optimally managed because systemic opioids can obscure postoperative neurologic examinations. The superficial cervical plexus block (SCPB) has, therefore, emerged as a targeted regional anesthesia option for occipital craniotomies. The SCPB targets the C2–C4 nerves to anesthetize the occipital scalp region, covering the lesser occipital nerve territory that lies within typical posterior scalp incisions. Clinical evidence shows the block is effective in reducing acute postoperative pain after occipital craniotomy and diminishes opioid requirements. Studies have demonstrated successful and long-lasting analgesia, reductions in 24-h opioid consumption, and a lower incidence of severe pain. Moreover, the technique exhibits a low complication rate and is safer than a deep cervical plexus block because the injection remains superficial and avoids critical vascular and neural structures. When delivered under ultrasound guidance, major adverse events are exceedingly rare. By reducing opioid use, the SCPB can help reduce postoperative complications, allowing earlier neurological assessments and fewer opioid-related side effects. Incorporation of the SCPB into multimodal analgesia regimens can, therefore, accelerate postoperative recovery by providing regionally focused, opioid-sparing pain control without clinically significant sedation. Overall, current data support the SCPB as a dependable, well-tolerated, and clinically practical approach for managing post-craniotomy pain in patients undergoing occipital approaches. In this narrative review, we will discuss the mechanism of action and anatomy, the clinical application, safety and tolerability, patient outcomes, and emerging future directions of the superficial cervical plexus block and how it mitigates post-occipital craniotomy pain. Full article
12 pages, 2075 KiB  
Communication
Pharmacological Interaction of Botulinum Neurotoxins with Excitatory and Inhibitory Neurotransmitter Systems Involved in the Modulation of Inflammatory Pain
by Sara Marinelli, Flaminia Pavone and Siro Luvisetto
Toxins 2025, 17(8), 374; https://doi.org/10.3390/toxins17080374 - 28 Jul 2025
Viewed by 171
Abstract
Botulinum neurotoxins (BoNTs) are known to inhibit synaptic transmission by targeting SNARE proteins, but their selectivity toward central excitatory and inhibitory pathways is not yet fully understood. In this study, the interaction of serotypes A (BoNT/A) and B (BoNT/B) with the glutamatergic and [...] Read more.
Botulinum neurotoxins (BoNTs) are known to inhibit synaptic transmission by targeting SNARE proteins, but their selectivity toward central excitatory and inhibitory pathways is not yet fully understood. In this study, the interaction of serotypes A (BoNT/A) and B (BoNT/B) with the glutamatergic and GABAergic systems has been investigated using a pharmacological approach in an animal model of inflammatory pain, i.e., the formalin test in mice. BoNTs were administered intracerebroventricularly, three days before testing, followed 15 min before testing by systemic administration of sub-analgesic doses of MK801, an NMDA receptor antagonist, or muscimol, a GABA_A receptor agonist. BoNT/A reduced the second phase of the formalin test without affecting both the first phase and the interphase, suggesting a selective action on excitatory glutamatergic circuits while sparing GABAergic inhibition. Co-administration of MK801 with BoNT/A did not enhance analgesia, and muscimol did not further reduce interphase, confirming preserved GABAergic transmission. In contrast, BoNT/B abolished the interphase, consistent with impaired GABA release. Co-administration of MK801 or muscimol with BoNT/B restored the interphase, indicating compensatory rebalancing of excitatory-inhibitory networks. These results demonstrate that BoNT/A and BoNT/B exert distinct effects on central neurotransmission and support the hypothesis that BoNT/A preferentially targets excitatory synapses, while BoNT/B targets inhibitory synapses. This work contributes to a deeper understanding of anti-inflammatory mechanisms of BoNTs and their selective interaction with central pain pathways. Full article
(This article belongs to the Special Issue Botulinum Toxins: New Uses in the Treatment of Diseases (2nd Edition))
Show Figures

Figure 1

39 pages, 1246 KiB  
Review
Gaultherin, a Natural Alternative to Aspirin: A Comprehensive Review of Molecular Mechanisms, Pharmacokinetics, Biocompatibility, Isolation Techniques, and Plant Sources
by Piotr Michel
Int. J. Mol. Sci. 2025, 26(15), 7280; https://doi.org/10.3390/ijms26157280 - 28 Jul 2025
Viewed by 280
Abstract
Gaultherin [methyl salicylate 2-O-β-D-xylopyranosyl-(1→6)-β-D-glucopyranoside] is a natural salicylate found in some plant species belonging primarily to the Ericaceae and Rosaceae families. Biological studies conducted since the beginning of the 21st century have suggested the potential use of gaultherin in treating various [...] Read more.
Gaultherin [methyl salicylate 2-O-β-D-xylopyranosyl-(1→6)-β-D-glucopyranoside] is a natural salicylate found in some plant species belonging primarily to the Ericaceae and Rosaceae families. Biological studies conducted since the beginning of the 21st century have suggested the potential use of gaultherin in treating various diseases related to inflammation and oxidative stress, including rheumatoid arthritis, sciatica, neuralgia, and muscular pain. The accumulated results indicated a targeted range of biological effects, particularly anti-inflammatory, antipyretic, and anti-rheumatic properties associated with reduced adverse outcomes. The molecular mechanisms involve the influence on several signalling pathways, including NF-κB, MAPK, and potentially AMPK, as well as the inhibition of critical pro-inflammatory enzymes, such as COX-2. This inhibition is achieved without affecting the COX-1 isoform, thereby preventing side effects such as bleeding ulcers or intracranial haemorrhage. This overview summarises the current knowledge about pharmacokinetics, molecular mechanisms, pharmacology, and biocompatibility of gaultherin. Additionally, four methods for isolating gaultherin from plant material and its distribution within the plant kingdom were the focal points of review and discussion. The paper also describes significant differences between synthetic aspirin and natural gaultherin in their biological potential and side effects, resulting from their different mechanisms of action. As a prodrug of salicylic acid, gaultherin releases salicylic acid gradually through enzymatic hydrolysis in the gastrointestinal tract. This controlled release minimises direct gastric irritation and accounts for its superior gastrointestinal safety profile compared to aspirin. Unlike aspirin, which irreversibly inhibits COX-1 and can lead to serious side effects with chronic use, gaultherin selectively inhibits COX-2 while sparing COX-1. These properties position gaultherin as a compelling natural alternative for patients requiring long-term anti-inflammatory therapy with reduced risk of gastrointestinal or bleeding complications. Full article
(This article belongs to the Special Issue The Role of Natural Products in Inflammation)
Show Figures

Figure 1

7 pages, 2239 KiB  
Case Report
Silently Wrapped: Embolization and Surgical Strategy for Giant Sciatic-Sparing Myxoid Liposarcoma—Case Report
by Radu Aurelian Vișan and Victor Baluța
Reports 2025, 8(3), 124; https://doi.org/10.3390/reports8030124 - 28 Jul 2025
Viewed by 280
Abstract
Background and Clinical Significance: Myxoid liposarcoma (MLS) is a malignant soft tissue tumor that often presents as a painless, slow-growing mass and is known for its atypical extrapulmonary metastatic pattern. Although sciatic nerve involvement is rare, when present, it usually causes neurologic symptoms. [...] Read more.
Background and Clinical Significance: Myxoid liposarcoma (MLS) is a malignant soft tissue tumor that often presents as a painless, slow-growing mass and is known for its atypical extrapulmonary metastatic pattern. Although sciatic nerve involvement is rare, when present, it usually causes neurologic symptoms. In this case, a large MLS silently expanded and completely encased the sciatic nerve without causing deficits, highlighting the importance of early imaging, multidisciplinary planning, and individualized surgical strategy in managing complex soft tissue sarcomas. Case Presentation: This case report describes a 67-year-old male with a 30 cm encapsulated myxoid liposarcoma of the posterior left thigh. The tumor had grown insidiously over one year and completely encased the sciatic nerve without causing pain, paresthesia, or motor impairment. Selective embolization was performed preoperatively to minimize blood loss. A posteromedial surgical approach allowed for en bloc resection with negative margins and preservation of sciatic nerve integrity. Histopathology confirmed a myxoid liposarcoma composed primarily of spindle-shaped tumor cells. The patient experienced no postoperative complications or neurologic deficits. At the two-year follow-up, he remains disease-free with full functional recovery. Conclusions: This case illustrates the potential for large, asymptomatic myxoid liposarcomas to encase critical neurovascular structures without infiltration. Preoperative embolization as part of a multidisciplinary plan was key to achieving safe resection and excellent functional outcomes. Full article
Show Figures

Figure 1

11 pages, 3767 KiB  
Case Report
Confirming the Presence of Neurapraxia and Its Potential for Immediate Reversal by Novel Diagnostic and Therapeutic Ultrasound-Guided Hydrodissection Using 5% Dextrose in Water Without Local Anesthetics: Application in a Case of Acute Radial Nerve Palsy
by Ho Won Lee, Jihyo Hwang, Chanwool Park, Minjae Lee, Yonghyun Yoon, Yeui-Seok Seo, Hyemi Yu, Rowook Park, Jaehyun Shim, Junhyuk Ann, Daniel Chiung-Jui Su, Teinny Suryadi, Keneath Dean Reeves and King Hei Stanley Lam
Diagnostics 2025, 15(15), 1880; https://doi.org/10.3390/diagnostics15151880 - 26 Jul 2025
Viewed by 1601
Abstract
Background and Clinical Significance: Radial nerve palsy typically presents as wrist drop due to nerve compression, with conventional management often yielding prolonged recovery. We report a case where ultrasound-guided hydrodissection (HD) with 5% dextrose in water (D5W) achieved immediate functional restoration, suggesting neurapraxia [...] Read more.
Background and Clinical Significance: Radial nerve palsy typically presents as wrist drop due to nerve compression, with conventional management often yielding prolonged recovery. We report a case where ultrasound-guided hydrodissection (HD) with 5% dextrose in water (D5W) achieved immediate functional restoration, suggesting neurapraxia as the underlying pathology. Case Presentation: A 54-year-old diabetic female presented with acute left wrist drop without trauma. Examination confirmed radial nerve palsy (MRC grade 0 wrist extension), while radiographs ruled out structural causes. Ultrasound revealed fascicular swelling at the spiral groove. Under real-time guidance, 50 mL D5W (no local anesthetic) was injected to hydrodissect the radial nerve. Immediate post-procedure assessment showed restored wrist extension (medical research council (MRC) grade 4+). At one- and three-month follow-ups, the patient maintained complete resolution of symptoms and normal function. Conclusions: This case highlights two key findings: (1) HD with D5W can serve as both a diagnostic tool (confirming reversible neurapraxia through immediate response) and therapeutic intervention, and (2) early HD may circumvent prolonged disability associated with conservative management. The absence of electrodiagnostic studies limits objective severity assessment, though ultrasound localized the lesion. While promising, these observations require validation through controlled trials comparing HD to standard care, particularly in diabetic patients with heightened compression susceptibility. Technical considerations—including optimal injectate volume and the role of adjuvant therapies—warrant further investigation. US-guided HD with D5W emerges as a minimally invasive, surgery-sparing option for acute compressive radial neuropathies, with potential to redefine treatment paradigms when applied at symptom onset. Full article
(This article belongs to the Special Issue Recent Advances and Application of Point of Care Ultrasound)
Show Figures

Figure 1

21 pages, 1208 KiB  
Review
Combination of Irreversible Electroporation and Clostridium novyi-NT Bacterial Therapy for Colorectal Liver Metastasis
by Zigeng Zhang, Guangbo Yu, Qiaoming Hou, Farideh Amirrad, Sha Webster, Surya M. Nauli, Jianhua Yu, Vahid Yaghmai, Aydin Eresen and Zhuoli Zhang
Cancers 2025, 17(15), 2477; https://doi.org/10.3390/cancers17152477 - 26 Jul 2025
Viewed by 239
Abstract
Colorectal liver metastasis (CRLM) poses a significant challenge in oncology due to its high incidence and poor prognosis in unresectable cases. Current treatments, including surgical resection, systemic chemotherapy, and liver-directed therapies, often fail to effectively target hypoxic tumor regions, which are inherently more [...] Read more.
Colorectal liver metastasis (CRLM) poses a significant challenge in oncology due to its high incidence and poor prognosis in unresectable cases. Current treatments, including surgical resection, systemic chemotherapy, and liver-directed therapies, often fail to effectively target hypoxic tumor regions, which are inherently more resistant to these interventions. This review examines the potential of a novel therapeutic strategy combining irreversible electroporation (IRE) ablation and Clostridium novyi-nontoxic (C. novyi-NT) bacterial therapy. IRE is a non-thermal tumor ablation technique that uses high-voltage electric pulses to create permanent nanopores in cell membranes, leading to cell death while preserving surrounding structures, and is often associated with temporary tumor hypoxia due to disrupted perfusion. C. novyi-NT is an attenuated, anaerobic bacterium engineered to selectively germinate and proliferate in hypoxic tumor regions, resulting in localized tumor cell lysis while sparing healthy, oxygenated tissue. The synergy between IRE-induced hypoxia and hypoxia-sensitive C. novyi-NT may enhance tumor destruction and stimulate systemic antitumor immunity. Furthermore, the integration of advanced imaging and artificial intelligence can support precise treatment planning and real-time monitoring. This integrated approach holds promise for improving outcomes in patients with CRLM, though further preclinical and clinical validation is needed. Full article
(This article belongs to the Section Cancer Metastasis)
Show Figures

Figure 1

9 pages, 671 KiB  
Article
Comparative Effects of Pulsed Field and Radiofrequency Ablation on Blood Cell Parameters During Pulmonary Vein Isolation
by Lucio Addeo, Federica Di Feo, Mario Vaccariello, Alfonso Varriale, Benedetta Brescia, Davide Bonadies, Stefano Nardi, Luigi Argenziano, Vittoria Marino, Vincenza Abbate, Luigi Cocchiara, Pasquale Guarini, Laura Adelaide Dalla Vecchia and Francesco Donatelli
Biomedicines 2025, 13(8), 1828; https://doi.org/10.3390/biomedicines13081828 - 25 Jul 2025
Viewed by 400
Abstract
Background: Pulsed field ablation (PFA) is a novel non-thermal modality for pulmonary vein isolation (PVI) in atrial fibrillation (AF), offering myocardial selectivity through irreversible electroporation while sparing surrounding structures. However, concerns have emerged regarding potential subclinical hemolysis, reflected by alterations in biochemical markers [...] Read more.
Background: Pulsed field ablation (PFA) is a novel non-thermal modality for pulmonary vein isolation (PVI) in atrial fibrillation (AF), offering myocardial selectivity through irreversible electroporation while sparing surrounding structures. However, concerns have emerged regarding potential subclinical hemolysis, reflected by alterations in biochemical markers such as lactate dehydrogenase (LDH). Methods: We conducted a retrospective, single-center study involving 249 patients undergoing PVI: 121 treated with PFA (PulseSelect or FARAPULSE) and 128 with radiofrequency (RF) ablation (PVAC catheter). Laboratory parameters were assessed at baseline, post-procedure, and at discharge, including hemoglobin, hematocrit, red blood cell (RBC) count, platelet count, creatinine, and LDH. The primary endpoint was the variation in blood cell indices; the secondary endpoint was the evaluation of LDH and hematocrit changes. Statistical analysis included t-tests and chi-square tests. Results: Baseline characteristics and pre-procedural labs did not differ significantly between groups. No significant changes in hemoglobin, hematocrit, RBC count, platelet count, or creatinine were observed post-ablation or at discharge. However, LDH levels significantly increased in the PFA group both post-procedurally and at discharge (p < 0.001), without concurrent changes in other blood cell parameters. Conclusions: PFA and RF ablation yield comparable hematological profiles after PVI, with no significant impact on key blood cell parameters. Nonetheless, the consistent rise in LDH levels in the PFA group suggests mild, subclinical hemolysis or tissue injury due to more extensive lesions. While supporting the hematologic safety of PFA, these findings underscore the need for further studies to assess the clinical significance of these biochemical alterations, particularly in high-risk patients or extensive ablation settings. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

15 pages, 2884 KiB  
Article
Strategies for Offline Adaptive Biology-Guided Radiotherapy (BgRT) on a PET-Linac Platform
by Bin Cai, Thomas I. Banks, Chenyang Shen, Rameshwar Prasad, Girish Bal, Mu-Han Lin, Andrew Godley, Arnold Pompos, Aurelie Garant, Kenneth Westover, Tu Dan, Steve Jiang, David Sher, Orhan K. Oz, Robert Timmerman and Shahed N. Badiyan
Cancers 2025, 17(15), 2470; https://doi.org/10.3390/cancers17152470 - 25 Jul 2025
Viewed by 332
Abstract
Background/Objectives: This study aims to present a structured clinical workflow for offline adaptive Biology-guided Radiotherapy (BgRT) using the RefleXion X1 PET-linac system, addressing challenges introduced by inter-treatment anatomical and biological changes. Methods: We propose a decision tree offline adaptation framework based [...] Read more.
Background/Objectives: This study aims to present a structured clinical workflow for offline adaptive Biology-guided Radiotherapy (BgRT) using the RefleXion X1 PET-linac system, addressing challenges introduced by inter-treatment anatomical and biological changes. Methods: We propose a decision tree offline adaptation framework based on real-time assessments of Activity Concentration (AC), Normalized Target Signal (NTS), and bounded dose-volume histogram (bDVH%) metrics. Three offline strategies were developed: (1) preemptive adaptation for minor changes, (2) partial re-simulation for moderate changes, and (3) full re-simulation for major anatomical or metabolic alterations. Two clinical cases demonstrating strategies 1 and 2 are presented. Results: The preemptive adaptation strategy was applied in a case with early tumor shrinkage, maintaining delivery parameters within acceptable limits while updating contours and dose distribution. In the partial re-Simulation case, significant changes in PET signal necessitated a same-day PET functional modeling session and plan re-optimization, effectively restoring safe deliverability. Both cases showed reduced target volumes and improved OAR sparing without additional patient visits or tracer injections. Conclusions: Offline adaptive workflows for BgRT provide practical solutions to address inter-fractional changes in tumor structure and function. These strategies can help maintain the safety and accuracy of BgRT delivery and support clinical adoption of PET-guided radiotherapy, paving the way for future online adaptive capabilities. Full article
Show Figures

Figure 1

17 pages, 440 KiB  
Review
Diagnosis and Management of Upper Tract Urothelial Carcinoma: A Review
by Domenique Escobar, Christopher Wang, Noah Suboc, Anishka D’Souza and Varsha Tulpule
Cancers 2025, 17(15), 2467; https://doi.org/10.3390/cancers17152467 - 25 Jul 2025
Viewed by 339
Abstract
Background/Objectives: Upper tract urothelial carcinoma (UTUC) is a rare and biologically distinct subset of urothelial malignancies, comprising approximately 5–10% of urothelial cancers. UTUC presents unique diagnostic and therapeutic challenges, with both a higher likelihood of invasive disease at presentation and a less favorable [...] Read more.
Background/Objectives: Upper tract urothelial carcinoma (UTUC) is a rare and biologically distinct subset of urothelial malignancies, comprising approximately 5–10% of urothelial cancers. UTUC presents unique diagnostic and therapeutic challenges, with both a higher likelihood of invasive disease at presentation and a less favorable prognosis compared to urothelial carcinoma of the bladder. Current treatment strategies for UTUC are largely derived from bladder cancer studies, underscoring the need for UTUC-directed research. This review provides a comprehensive overview of UTUC, encompassing diagnostic approaches, systemic and intraluminal therapies, surgical management, and future directions. Methods: A narrative review was conducted synthesizing evidence from guideline-based recommendations, retrospective and prospective clinical studies, and ongoing trials focused on UTUC. Results: Neoadjuvant cisplatin-based chemotherapy is increasingly preferred in UTUC due to the risk of postoperative renal impairment that may preclude adjuvant cisplatin use. Surgical management includes kidney-sparing approaches and radical nephroureterectomy (RNU), with selection guided by tumor risk and patient comorbidities. While endoscopic management (EM) preserves renal function, it carries a higher recurrence and surveillance burden; RNU remains standard for high-risk cases. Systemic therapy for advanced and metastatic UTUC mirrors that of bladder urothelial carcinoma. Enfortumab vedotin (EV) plus pembrolizumab showed superior efficacy over chemotherapy in the EV-302 trial, with improved response rate, progression-free survival, and overall survival across subgroups, including UTUC. For patients ineligible for EV, the CheckMate-901 study supported first-line chemoimmunotherapy with gemcitabine, cisplatin, and nivolumab. Further systemic therapy strategies include maintenance avelumab post-chemotherapy (JAVELIN Bladder 100), targeted therapies such as erdafitinib (THOR trial), and trastuzumab deruxtecan (DESTINY-PanTumor02) in FGFR2/3-altered and HER2-positive disease, respectively. Conclusions: Historically, the therapeutic landscape of UTUC has been extrapolated from bladder cancer; however, ongoing research specific to UTUC is deriving more precise regimens involving the use of immune checkpoint inhibitors, antibody–drug conjugates, and biomarker-driven therapies. Full article
(This article belongs to the Special Issue Upper Tract Urothelial Carcinoma: Current Knowledge and Perspectives)
Show Figures

Figure 1

Back to TopTop