Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (474)

Search Parameters:
Keywords = SOFC (solid oxide fuel cell)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 971 KiB  
Article
Mechanism of Topotactic Reduction-Oxidation Between Mg-Doped SrMoO3 Perovskites and SrMoO4 Scheelites, Utilized as Anode Materials for Solid Oxide Fuel Cells
by Vanessa Cascos, M. T. Fernández-Díaz and José Antonio Alonso
Materials 2025, 18(15), 3424; https://doi.org/10.3390/ma18153424 - 22 Jul 2025
Viewed by 224
Abstract
Recently, we have described SrMo1-xMgxO3-δ perovskites (x = 0.1, 0.2) as excellent anode materials for solid oxide fuel cells (SOFCs), with mixed ionic and electronic conduction (MIEC) properties. After depositing on the solid electrolyte, they were annealed for [...] Read more.
Recently, we have described SrMo1-xMgxO3-δ perovskites (x = 0.1, 0.2) as excellent anode materials for solid oxide fuel cells (SOFCs), with mixed ionic and electronic conduction (MIEC) properties. After depositing on the solid electrolyte, they were annealed for sintering at high temperatures (typically 1000 °C), giving rise to oxidized scheelite-type phases, with SrMo1-xMgxO4-δ (x = 0.1, 0.2) stoichiometry. To obtain the active perovskite phases, they were reduced again in the working anode conditions, under H2 atmosphere. Therefore, there must be an excellent reversibility between the oxidized Sr(Mo, Mg)O4-δ scheelite and the reduced Sr(Mo, Mg)O3-δ perovskite phases. This work describes the topotactical oxidation, by annealing at 400 °C in air, of the SrMo0.9Mg0.1O3-δ perovskite oxide. The characterization by X-ray diffraction (XRD) and neutron powder diffraction (NPD) was carried out in order to determine the crystal structure features. The scheelite oxides are tetragonal, space group I41/a (No. 88), whereas the perovskites are cubic, s.g. Pm-3m (No. 221). The Rietveld refinement of the scheelite phase from NPD data after annealing the perovskite at 400 °C and cooling it down slowly to RT evidences the absence of intermediate phases between perovskite and scheelite oxides, as well as the presence of oxygen vacancies in both oxidized and reduced phases, essential for their performance as MIEC oxides. The topotactical relationship between both crystal structures is discussed. Full article
Show Figures

Figure 1

26 pages, 9003 KiB  
Article
A Pilot-Scale Gasifier Freeboard Equipped with Catalytic Filter Candles for Particulate Abatement and Tar Conversion: 3D-CFD Simulations and Experimental Tests
by Alessandra Tacconi, Pier Ugo Foscolo, Sergio Rapagnà, Andrea Di Carlo and Alessandro Antonio Papa
Processes 2025, 13(7), 2233; https://doi.org/10.3390/pr13072233 - 12 Jul 2025
Viewed by 450
Abstract
This work deals with the catalytic steam reforming of raw syngas to increase the efficiency of coupling gasification with downstream processes (such as fuel cells and catalytic chemical syntheses) by producing high-temperature, ready-to-use syngas without cooling it for cleaning and conditioning. Such a [...] Read more.
This work deals with the catalytic steam reforming of raw syngas to increase the efficiency of coupling gasification with downstream processes (such as fuel cells and catalytic chemical syntheses) by producing high-temperature, ready-to-use syngas without cooling it for cleaning and conditioning. Such a combination is considered a key point for the future exploitation of syngas produced by steam gasification of biogenic solid fuel. The design and construction of an integrated gasification and gas conditioning system were proposed approximately 20 years ago; however, they still require further in-depth study for practical applications. A 3D model of the freeboard of a pilot-scale, fluidized bed gasification plant equipped with catalytic ceramic candles was used to investigate the optimal operating conditions for in situ syngas upgrading. The global kinetic parameters for methane and tar reforming reactions were determined experimentally. A fluidized bed gasification reactor (~5 kWth) equipped with a 45 cm long segment of a fully commercial filter candle in its freeboard was used for a series of tests at different temperatures. Using a computational fluid dynamics (CFD) description, the relevant parameters for apparent kinetic equations were obtained in the frame of a first-order reaction model to describe the steam reforming of key tar species. As a further step, a CFD model of the freeboard of a 100 kWth gasification plant, equipped with six catalytic ceramic candles, was developed in ANSYS FLUENT®. The composition of the syngas input into the gasifier freeboard was obtained from experimental results based on the pilot-scale plant. Simulations showed tar catalytic conversions of 80% for toluene and 41% for naphthalene, still insufficient compared to the threshold limits required for operating solid oxide fuel cells (SOFCs). An overly low freeboard temperature level was identified as the bottleneck for enhancing gas catalytic conversions, so further simulations were performed by injecting an auxiliary stream of O2/steam (50/50 wt.%) through a series of nozzles at different heights. The best simulation results were obtained when the O2/steam stream was fed entirely at the bottom of the freeboard, achieving temperatures high enough to achieve a tar content below the safe operating conditions for SOFCs, with minimal loss of hydrogen content or LHV in the fuel gas. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 5941 KiB  
Article
Non-Calcined Metal Tartrate Pore Formers for Lowering Sintering Temperature of Solid Oxide Fuel Cells
by Mehdi Choolaei, Mohsen Fallah Vostakola and Bahman Amini Horri
Crystals 2025, 15(7), 636; https://doi.org/10.3390/cryst15070636 - 10 Jul 2025
Viewed by 301
Abstract
This paper investigates the application of non-calcined metal tartrate as a novel alternative pore former to prepare functional ceramic composites to fabricate solid oxide fuel cells (SOFCs). Compared to carbonaceous pore formers, non-calcined pore formers offer high compatibility with various ceramic composites, providing [...] Read more.
This paper investigates the application of non-calcined metal tartrate as a novel alternative pore former to prepare functional ceramic composites to fabricate solid oxide fuel cells (SOFCs). Compared to carbonaceous pore formers, non-calcined pore formers offer high compatibility with various ceramic composites, providing better control over porosity and pore size distribution, which allows for enhanced gas diffusion, reactant transport and gaseous product release within the fuel cells’ functional layers. In this work, nanocrystalline gadolinium-doped ceria (GDC) and Ni-Gd-Ce-tartrate anode powders were prepared using a single-step co-precipitation synthesis method, based on the carboxylate route, utilising ammonium tartrate as a low-cost, environmentally friendly precipitant. The non-calcined Ni-Gd-Ce-tartrate was used to fabricate dense GDC electrolyte pellets (5–20 μm thick) integrated with a thin film of Ni-GDC anode with controlled porosity at 1300 °C. The dilatometry analysis showed the shrinkage anisotropy factor for the anode substrates prepared using 20 wt. The percentages of Ni-Gd-Ce-tartrate were 30 wt.% and 40 wt.%, with values of 0.98 and 1.01, respectively, showing a significant improvement in microstructural properties and pore size compared to those fabricated using a carbonaceous pore former. The results showed that the non-calcined pore formers can also lower the sintering temperature for GDC to below 1300 °C, saving energy and reducing thermal stresses on the materials. They can also help maintain optimal material properties during sintering, minimising the risk of unwanted chemical reactions or contamination. This flexibility enables the versatile designing and manufacturing of ceramic fuel cells with tailored compositions at a lower cost for large-scale applications. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Graphical abstract

24 pages, 4363 KiB  
Article
Ni Supported on Pr-Doped Ceria as Catalysts for Dry Reforming of Methane
by Antonella R. Ponseggi, Amanda de C. P. Guimarães, Renata O. da Fonseca, Raimundo C. Rabelo-Neto, Yutao Xing, Andressa A. A. Silva, Fábio B. Noronha and Lisiane V. Mattos
Processes 2025, 13(7), 2119; https://doi.org/10.3390/pr13072119 - 3 Jul 2025
Viewed by 466
Abstract
The use of CH4 and CO2 as fuels in direct internal reforming solid oxide fuel cells (DIR-SOFCs) is a promising strategy for efficient power generation with reduced greenhouse gas emissions. In this study, Ni catalysts supported on Ce–Pr mixed oxides with [...] Read more.
The use of CH4 and CO2 as fuels in direct internal reforming solid oxide fuel cells (DIR-SOFCs) is a promising strategy for efficient power generation with reduced greenhouse gas emissions. In this study, Ni catalysts supported on Ce–Pr mixed oxides with varying Pr contents (0–80 mol%) were synthesized, calcined at 1200 °C, and tested for dry reforming of methane (DRM), aiming at their application as catalytic layers in SOFC anodes. Physicochemical characterization (XRD, TPR, TEM) showed that increasing Pr loading enhances catalyst reducibility and promotes the formation of the Pr2NiO4 phase, which contributes to the generation of smaller Ni0 particles after reduction. Catalytic tests revealed that all samples exhibited low-carbon deposition, attributed to the large Ni crystallites. The catalyst with 80 mol% Pr showed the best performance, achieving the highest CH4 conversion (72%), a H2/CO molar ratio of 0.89, and improved stability. These findings suggest that Ni/Ce0.2Pr0.8 could be a promising candidate for use as a catalyst layer of anodes in DIR-SOFC anodes. Although electrochemical data are not yet available, future work will evaluate the catalyst’s performance and durability under SOFC-relevant conditions. Full article
(This article belongs to the Special Issue Advances in Synthesis and Applications of Supported Nanocatalysts)
Show Figures

Graphical abstract

23 pages, 7019 KiB  
Article
An Enhanced Control of Grid-Connected Solid-Oxide Fuel Cell System Using Beluga Whale-Optimized Fractional-Order PID Control
by Moayed Mohamed, Ilyes Boulkaibet, Mohamed Ebeed and Ali M. El-Rifaie
Processes 2025, 13(7), 2044; https://doi.org/10.3390/pr13072044 - 27 Jun 2025
Viewed by 300
Abstract
Fuel cells (FCs) are widely used in various applications such as transportation, vehicles, and energy storage, as well as in commercial and residential buildings. The FC is connected to the grid via an inverter, which converts DC power to AC power for integration [...] Read more.
Fuel cells (FCs) are widely used in various applications such as transportation, vehicles, and energy storage, as well as in commercial and residential buildings. The FC is connected to the grid via an inverter, which converts DC power to AC power for integration with the AC grid. Thus, it is essential to adjust the gain of the inverter’s controllers to improve FC performance and the quality of the power generated by the FCs. In this work, a fractional-order PID (FOPID) controller is used to control an inverter where the FOPID’s gain settings are determined optimally to improve the performance of the current controller of the solid-oxide fuel cell (SOFC). The optimal parameters of the FOPID are obtained using a newly developed and efficient algorithm called beluga whale optimization (BWO). To highlight the efficiency of the proposed optimization approach, the obtained results are compared with particle swarm optimization (PSO) and the conventional active power controller (APC). The findings of this paper demonstrate that the SOFC achieves significantly superior performance when the FOPID controller is optimally tuned using BWO across all performance metrics related to the FC inverter. PSO also yields good results, ensuring smooth system operation and good performance. Based on the results, the output current from the SOFC using the BWO and PSO algorithms aligns well with the reference current, whereas the APC exhibits poor performance in tracking reference current changes in two cases. Specifically, the APC introduces a delay of approximately one second (0.5 to 0.6 s), resulting in poor control performance. This delay causes the system to deviate from the reference current control (RCC) by 10%, leading to poor performance. However, the proposed optimization algorithms effectively resolve this issue, offering a robust solution for enhanced current control. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

19 pages, 1487 KiB  
Review
Progress in Materials and Metal Substrates for Solid Oxide Fuel Cells
by Young-Wan Ju
Energies 2025, 18(13), 3379; https://doi.org/10.3390/en18133379 - 27 Jun 2025
Viewed by 509
Abstract
Solid oxide fuel cells (SOFCs) have been considered as alternative energy conversion devices because of their high energy conversion efficiency, fuel flexibility, and cost efficiency without precious metal catalysts. In current SOFCs, the cermet anode consists of nickel and ion-conducting ceramic materials, and [...] Read more.
Solid oxide fuel cells (SOFCs) have been considered as alternative energy conversion devices because of their high energy conversion efficiency, fuel flexibility, and cost efficiency without precious metal catalysts. In current SOFCs, the cermet anode consists of nickel and ion-conducting ceramic materials, and solid oxide electrolytes and ceramic cathodes have been used. SOFCs normally operate at high temperatures because of the lower ion conductivity of ceramic components at low temperatures, and they have weaknesses in terms of mechanical strength and durability against thermal shock originating from the properties of ceramic materials. To solve these problems, metal-supported solid oxide fuel cells (MS-SOFCs) have been designed. SOFCs using metal substrates, such as Ni-based and Cr-based alloys, provide significant advantages, such as a low material cost, ruggedness, and tolerance to rapid thermal cycling. In this article, SOFCs are introduced briefly, and the types of metal substrate used in MS-SOFCs, as well as the advantages and disadvantages of each metal support, are reviewed. Full article
Show Figures

Figure 1

17 pages, 5119 KiB  
Article
Anode-Supported SOFCs with a Bi2O3-Doped NiO–ScSZ Anode and ScSZ Electrolyte: Low-Temperature Co-Sintering and High Performance
by Shang Peng, Zhao Liu, Pairuzha Xiaokaiti, Tiancheng Fang, Jiwei Wang, Guoqing Guan and Abuliti Abudula
ChemEngineering 2025, 9(4), 66; https://doi.org/10.3390/chemengineering9040066 - 24 Jun 2025
Viewed by 402
Abstract
In this study, a novel anode-supported solid oxide fuel cell (SOFC) comprising a Bi2O3-doped NiO-ScSZ anode and an ScSZ electrolyte was successfully fabricated via a low-temperature co-sintering process at 1300 °C. The incorporation of 3 wt% Bi2O [...] Read more.
In this study, a novel anode-supported solid oxide fuel cell (SOFC) comprising a Bi2O3-doped NiO-ScSZ anode and an ScSZ electrolyte was successfully fabricated via a low-temperature co-sintering process at 1300 °C. The incorporation of 3 wt% Bi2O3 effectively promoted the sintering of both the anode support and electrolyte layer, resulting in a dense, gas-tight electrolyte and a mechanically robust porous anode support. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses confirmed the formation of phase-pure, highly crystalline ScSZ with an optimized microstructure. Electrochemical performance measurements demonstrated that the fabricated cells achieved excellent power density, reaching a peak value of 0.861 W cm−2 at 800 °C under humidified hydrogen fuel conditions. The cells maintained stable performance under dry methane operation, with a maximum power density of 0.624 W cm−2 at 800 °C, indicating resistance to carbon deposition. Gas chromatographic analyses further revealed that the Bi2O3-doped NiO-ScSZ anode facilitated earlier and more stable electrochemical oxidation of methane-derived species compared with the conventional NiO-YSZ system, even under conditions of an elevated methane partial pressure. These findings demonstrate that Bi2O3 co-doping, combined with low-temperature co-sintering, provides an effective approach for fabricating high-performance intermediate-temperature SOFCs with enhanced structural integrity and electrochemical stability. The developed methodology presents a promising pathway toward achieving cost-effective and durable SOFC technologies. Full article
Show Figures

Figure 1

40 pages, 5193 KiB  
Review
A Comprehensive Review of the Development of Perovskite Oxide Anodes for Fossil Fuel-Based Solid Oxide Fuel Cells (SOFCs): Prospects and Challenges
by Arash Yahyazadeh
Physchem 2025, 5(3), 25; https://doi.org/10.3390/physchem5030025 - 23 Jun 2025
Viewed by 744
Abstract
Solid oxide fuel cells (SOFCs) represent a pivotal technology in renewable energy due to their clean and efficient power generation capabilities. Their role in potential carbon mitigation enhances their viability. SOFCs can operate via a variety of alternative fuels, including hydrocarbons, alcohols, solid [...] Read more.
Solid oxide fuel cells (SOFCs) represent a pivotal technology in renewable energy due to their clean and efficient power generation capabilities. Their role in potential carbon mitigation enhances their viability. SOFCs can operate via a variety of alternative fuels, including hydrocarbons, alcohols, solid carbon, and ammonia. However, several solutions have been proposed to overcome various technical issues and to allow for stable operation in dry methane, without coking in the anode layer. To avoid coke formation thermodynamically, methane is typically reformed, contributing to an increased degradation rate through the addition of oxygen-containing gases into the fuel gas to increase the O/C ratio. The performance achieved by reforming catalytic materials, comprising active sites, supports, and electrochemical testing, significantly influences catalyst performance, showing relatively high open-circuit voltages and coking-resistance of the CH4 reforming catalysts. In the next step, the operating principles and thermodynamics of methane reforming are explored, including their traditional catalyst materials and their accompanying challenges. This work explores the components and functions of SOFCs, particularly focusing on anode materials such as perovskites, Ruddlesden–Popper oxides, and spinels, along with their structure–property relationships, including their ionic and electronic conductivity, thermal expansion coefficients, and acidity/basicity. Mechanistic and kinetic studies of common reforming processes, including steam reforming, partial oxidation, CO2 reforming, and the mixed steam and dry reforming of methane, are analyzed. Furthermore, this review examines catalyst deactivation mechanisms, specifically carbon and metal sulfide formation, and the performance of methane reforming and partial oxidation catalysts in SOFCs. Single-cell performance, including that of various perovskite and related oxides, activity/stability enhancement by infiltration, and the simulation and modeling of electrochemical performance, is discussed. This review also addresses research challenges in regards to methane reforming and partial oxidation within SOFCs, such as gas composition changes and large thermal gradients in stack systems. Finally, this review investigates the modeling of catalytic and non-catalytic processes using different dimension and segment simulations of steam methane reforming, presenting new engineering designs, material developments, and the latest knowledge to guide the development of and the driving force behind an oxygen concentration gradient through the external circuit to the cathode. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

24 pages, 5102 KiB  
Article
Electrocatalytic Investigation of the SOFC Internal CH4 Dry Reforming with Modified Ni/GDC: Effect of Au Content on the Performance Enhancement by Fe-Au Doping
by Evangelia Ioannidou, Stylianos G. Neophytides and Dimitrios K. Niakolas
Catalysts 2025, 15(7), 618; https://doi.org/10.3390/catal15070618 - 23 Jun 2025
Viewed by 414
Abstract
Internal Dry Reforming of Methane (IDRM) in biogas fed Solid Oxide Fuel Cells (SOFCs) was investigated on Fe-Au modified Ni/GDC electrolyte-supported cells at 900 and 850 °C. The aim was to clarify the synergistic interaction between Fe and Au, focusing on the effect [...] Read more.
Internal Dry Reforming of Methane (IDRM) in biogas fed Solid Oxide Fuel Cells (SOFCs) was investigated on Fe-Au modified Ni/GDC electrolyte-supported cells at 900 and 850 °C. The aim was to clarify the synergistic interaction between Fe and Au, focusing on the effect of X wt.% of Au loading (where X = 1 or 3 wt.%) in binary Au-Ni/GDC and ternary 0.5 wt.% Fe-Au-Ni/GDC fuel electrodes. The investigation combined i-V, Impedance Spectroscopy and Gas Chromatography electrocatalytic measurements. It was found that modification with 0.5Fe-Au enhanced significantly the electrocatalytic activity of Ni/GDC for the IDRM reaction, whereas the low wt.% Au content had the most promoting effect. The positive interaction of 0.5 wt.% Fe with 1 wt.% Au increased the conductivity of Ni/GDC and enhanced the corresponding IDRM charge transfer electrochemical processes, especially those in the intermediate frequency region. Comparative long-term measurements, between cells comprising Ni/GDC and 0.5Fe-1Au-Ni/GDC, highlighted the significantly higher IDRM electrocatalytic activity of the modified electrode. The latter operated for almost twice the time (280 h instead of 160 h for Ni/GDC) with a lower degradation rate (0.44 mV/h instead of 0.51 mV/h). Ni/GDC degradation was ascribed to inhibited charge transfer processes in the intermediate frequencies region and to deteriorated ohmic resistance. Stoichiometric analysis on the (post-mortem) surface state of each fuel electrode showed that the wt.% content of reduced nickel on Ni/GDC was lower, compared to 0.5Fe-1Au-Ni/GDC, verifying the lower re-oxidation degree of the latter. This was further correlated to the hindered H2O production during IDRM operation, due to the lower selectivity of the modified electrode for the non-desired RWGS reaction. Full article
Show Figures

Graphical abstract

22 pages, 4523 KiB  
Article
Entropy Generation Analysis and Performance Comparison of a Solid Oxide Fuel Cell with an Embedded Porous Pipe Inside of a Mono-Block-Layer-Build Geometry and a Planar Geometry with Trapezoidal Baffles
by J. J. Ramírez-Minguela, J. M. Mendoza-Miranda, V. Pérez-García, J. L. Rodríguez-Muñoz, Z. Gamiño-Arroyo, J. A. Alfaro-Ayala, S. Alonso-Romero and T. Pérez-Segura
Entropy 2025, 27(7), 659; https://doi.org/10.3390/e27070659 - 20 Jun 2025
Viewed by 286
Abstract
An analysis of entropy generation and a performance comparison are carried out for a solid oxide fuel cell with an embedded porous pipe in the air supply channel of a mono-block-layer-build geometry (MOLB-PPA SOFC) and a planar geometry with trapezoidal baffles inside the [...] Read more.
An analysis of entropy generation and a performance comparison are carried out for a solid oxide fuel cell with an embedded porous pipe in the air supply channel of a mono-block-layer-build geometry (MOLB-PPA SOFC) and a planar geometry with trapezoidal baffles inside the fuel and air channels (P-TBFA SOFC). The results for power density at different current densities are discussed. Also, a comparison of the field of species concentration, temperature, and current density on the electrode–electrolyte interface is analyzed at a defined power density. Finally, a comparison of maps of the local entropy generation rate and the global entropy generation due to heat transfer, fluid flow, mass transfer, activation loss, and ohmic loss are studied. The results show that the MOLB-PPA SOFC reaches a 7.5% higher power density than the P-TBFA SOFC. Furthermore, the P-TBFA SOFC has a more homogeneous temperature distribution than the MOLB-type SOFC. The entropy generation analysis indicates that the MOLB-PPA SOFC exhibits lower global entropy generation due to heat transfer compared to the P-TBFA SOFC. The entropy generation due to ohmic losses is predominant for both geometries. Finally, the total irreversibilities are 24.75% higher in the P-TBFA SOFC than in the MOLB-PPA SOFC. Full article
(This article belongs to the Special Issue Advances in Entropy and Computational Fluid Dynamics, 2nd Edition)
Show Figures

Figure 1

20 pages, 6305 KiB  
Article
Controlled Growth of α-Al2O3 Nanofilm on FeCrAl Alloy as an Effective Cr Barrier for Solid Oxide Fuel Cell (SOFC) Cathode Air Pre-Heaters
by Kun Zhang, Ahmad El-Kharouf and Robert Steinberger-Wilckens
Energies 2025, 18(12), 3055; https://doi.org/10.3390/en18123055 - 9 Jun 2025
Viewed by 494
Abstract
Solid oxide fuel cell (SOFC) systems often employ metallic cathode air pre-heaters (CAPHs), frequently made from alloys with high chromium (Cr) content, to recover thermal energy from exhaust gases and pre-heat incoming air and fuel. Cr evaporation from metallic CAPHs can poison SOFC [...] Read more.
Solid oxide fuel cell (SOFC) systems often employ metallic cathode air pre-heaters (CAPHs), frequently made from alloys with high chromium (Cr) content, to recover thermal energy from exhaust gases and pre-heat incoming air and fuel. Cr evaporation from metallic CAPHs can poison SOFC cathodes, reducing their durability. To mitigate this, we investigated controlled pre-oxidation of a FeCrAl alloy (alloy 318) to form a protective alumina scale by self-growing, assessing its impact on and oxidation resistance and Cr retention capability for CAPH applications. The effects of pre-oxidation were investigated across a temperature range of 800 to 1100 °C and dwelling times of 0.5 to 4 h. The formed oxide scales were characterised using gravimetry in combination with advanced analytic techniques, such as SEM/EDX, STEM/EDX, TEM, and XRD. Subsequently, the pre-oxidised FeCrAl alloys were characterised with respect to the oxidation rate and Cr2O3 evaporation in a tubular furnace at 850 °C, with 6.0 L/min air flow and 3 vol% H2O to simulate the SOFC cathode environment. TEM analysis confirmed that the FeCrAl alloys formed alumina scales with 10 nm and 34 nm thickness after 1 h of pre-oxidation at 900 and 1100 °C, respectively. The corrosion and Cr2O3 evaporation rates of the FeCrAl alloy at 850 °C in humidified air were shown to be dramatically decreased by pre-oxidation. It was found that the mechanisms of oxidation and Cr2O3 evaporation were found to be controlled by the formation of different alumina phases during the pre-oxidation. Measurements of Cr2O3 evaporation and weight gain revealed that the alloy 318 pre-treated at 1100 °C for 1 h will form an α-Al2O3 scale, leading to a 98% reduction of the oxidation rate and 90% reduction of Cr2O3 evaporation compared to the non-oxidised alloy 318 under simulated SOFC cathode conditions. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Graphical abstract

33 pages, 4339 KiB  
Review
Review of Electrochemical Systems for Grid Scale Power Generation and Conversion: Low- and High-Temperature Fuel Cells and Electrolysis Processes
by Tingke Fang, Annette von Jouanne and Alex Yokochi
Energies 2025, 18(10), 2493; https://doi.org/10.3390/en18102493 - 12 May 2025
Viewed by 837
Abstract
This review paper presents an overview of fuel cell electrochemical systems that can be used for clean large-scale power generation and energy storage as global energy concerns regarding emissions and greenhouse gases escalate. The fundamental thermochemical and operational principles of fuel cell power [...] Read more.
This review paper presents an overview of fuel cell electrochemical systems that can be used for clean large-scale power generation and energy storage as global energy concerns regarding emissions and greenhouse gases escalate. The fundamental thermochemical and operational principles of fuel cell power generation and electrolyzer technologies are discussed with a focus on high-temperature solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs) that are best suited for grid scale energy generation. SOFCs and SOECs share similar promising characteristics and have the potential to revolutionize energy conversion and storage due to improved energy efficiency and reduced carbon emissions. Electrochemical and thermodynamic foundations are presented while exploring energy conversion mechanisms, electric parameters, and efficiency in comparison with conventional power generation systems. Methods of converting hydrocarbon fuels to chemicals that can serve as fuel cell fuels are also presented. Key fuel cell challenges are also discussed, including degradation, thermal cycling, and long-term stability. The latest advancements, including in materials selection research, design, and manufacturing methods, are also presented, as they are essential for unlocking the full potential of these technologies and achieving a sustainable, near zero-emission energy future. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

11 pages, 6157 KiB  
Article
Numerical Study of the Effects of Heat Loss and Solid Thermal Conductivity on Syngas Production for Fuel Cells
by Xiaolong Wang, Mengmeng Yu, Zunmin Li, Zhen Wang, Xiuxia Zhang, Junrui Shi, Xiangjin Kong and Jinsheng Lv
Batteries 2025, 11(5), 187; https://doi.org/10.3390/batteries11050187 - 9 May 2025
Viewed by 516
Abstract
Syngas can be used as feedstock for efficient energy conversion in solid oxide fuel cells (SOFCs). In the current paper, the conversion efficiency of methane to synthesis gas (H2 and CO) within a two-layer porous media reactor is investigated by a one-dimensional [...] Read more.
Syngas can be used as feedstock for efficient energy conversion in solid oxide fuel cells (SOFCs). In the current paper, the conversion efficiency of methane to synthesis gas (H2 and CO) within a two-layer porous media reactor is investigated by a one-dimensional two-temperature model. A detailed chemical reaction mechanism GRI-Mech 1.2 is used to describe the chemical processes. Attention is focused on CO2 content in the methane/air mixture, heat loss to the surroundings, and solid thermal conductivity on temperature distribution and conversion efficiency. Numerical results show that addition of CO2 to the methane/air mixture improves the conversion efficiency. For a molar ratio of CO2/CH4 = 1, the conversion efficiency reaches 44.8%. An increase in heat loss to the surroundings leads to a decrease in conversion efficiency. A greater solid thermal conductivity can improve the conversion efficiency. Full article
(This article belongs to the Special Issue Challenges, Progress, and Outlook of High-Performance Fuel Cells)
Show Figures

Graphical abstract

33 pages, 19731 KiB  
Article
Comparative Study of Physicochemical Properties of Biochar Samples Derived from Nutshells as a Solid Fuel for Direct Carbon Solid Oxide Fuel Cells
by Magdalena Dudek, Bartosz Adamczyk, Anita Zych, Katarzyna Król, Przemysław Grzywacz, Krystian Sokołowski, Krzysztof Mech, Maciej Sitarz, Piotr Jeleń, Magdalena Ziąbka, Maja Mroczkowska-Szerszeń, Małgorzata Witkowska and Joanna Kowalska
Materials 2025, 18(9), 2112; https://doi.org/10.3390/ma18092112 - 4 May 2025
Viewed by 765
Abstract
This paper presents the results of an investigation into the effect of the physicochemical properties of carbon chars (biochars) on the performance of direct carbon solid oxide fuel cells (DC-SOFCs). Biochars were obtained from walnut, coconut, pistachio, hazelnut and peanut shells by pyrolysis [...] Read more.
This paper presents the results of an investigation into the effect of the physicochemical properties of carbon chars (biochars) on the performance of direct carbon solid oxide fuel cells (DC-SOFCs). Biochars were obtained from walnut, coconut, pistachio, hazelnut and peanut shells by pyrolysis at a temperature of 850 °C. The results of structural studies conducted using X-ray diffraction and Raman spectroscopy reflected a low degree of graphitisation of carbon particles. Biochar derived from walnut shells is characterised by a relatively uniform content of alkali elements, such as sodium, potassium, calcium, magnesium and iron, which are natural components of the mineral residue and act as catalysts for the Boudouard reaction. This study of gasification of biochar samples in a CO2 atmosphere recorded that the highest conversion rate from solid phase to gaseous phase was for the biochar sample produced from walnut shells. The superior properties of this sample are directly connected to structural features, as well as to the random distribution of alkali elements. DC-SOFCs involving 10 mol% of Sc2O3, 1 mol% of CeO2, 89 mol% of ZrO2 (10S1CeZ) or 8 mol% of Y2O3 in ZrO2 (8YSZ) were used as both solid oxide electrolytes and components of the anode electrode. It was found that the highest electrochemical power output (Pmax) was achieved for DC-SOFCs fuelled by biochar from walnut shells, with around 103 mW/cm2 obtained for such DC-SOFCs involving 10S1CeZ electrolytes. Full article
Show Figures

Figure 1

31 pages, 2677 KiB  
Article
The Development and Evaluation of a Low-Emission, Fuel-Flexible, Modular, and Interchangeable Solid Oxide Fuel Cell System Architecture for Combined Heat and Power Production: The SO-FREE Project
by Enrico Bocci, Alessandro Dell’Era, Carlo Tregambe, Giacomo Tamburrano, Vera Marcantonio and Francesca Santoni
Energies 2025, 18(9), 2273; https://doi.org/10.3390/en18092273 - 29 Apr 2025
Viewed by 448
Abstract
Within the framework of the SOCIETAL CHALLENGES—Secure, Clean, and Efficient Energy objective under the European Horizon 2020 research and innovation funding program, the SO-FREE project has developed a future-ready solid oxide fuel cell (SOFC) system with high-efficiency heat recovery. The system concept prioritizes [...] Read more.
Within the framework of the SOCIETAL CHALLENGES—Secure, Clean, and Efficient Energy objective under the European Horizon 2020 research and innovation funding program, the SO-FREE project has developed a future-ready solid oxide fuel cell (SOFC) system with high-efficiency heat recovery. The system concept prioritizes low emissions, fuel flexibility, modular power production, and efficient thermal management. A key design feature is the interchangeability of two different SOFC stack types, allowing for operation under different temperature conditions. The system was developed with a strong emphasis on simplicity, minimizing the number of components to reduce overall plant costs while maintaining high performance. This paper presents the simulation results of the proposed flexible SOFC system, conducted using Aspen Plus® software version 11 to establish a baseline architecture for real plant development. The simulated layout consists of an autothermal reformer (ATR), a high-temperature blower, an SOFC stack, a burner, and a heat recovery system incorporating four heat exchangers. Simulations were performed for two different anodic inlet temperatures (600 °C and 700 °C) and three fuel compositions (100% CH4, 100% H2, and 50% H2 + 50% CH4), resulting in six distinct operating scenarios. The results demonstrate a system utilization factor (UFF) exceeding 90%, electrical efficiency ranging from 60% to 77%, and an effective heat recovery rate above 60%. These findings were instrumental in the development of the Piping and Instrumentation Diagram (P&ID) required for the design and implementation of the real system. The proposed SOFC system represents a cost-effective and adaptable energy conversion solution, contributing to the advancement of high-efficiency and low-emission power generation technologies. Full article
Show Figures

Figure 1

Back to TopTop