Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = SNpc

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1540 KiB  
Review
The Search for Disease Modification in Parkinson’s Disease—A Review of the Literature
by Daniel Barber, Tissa Wijeratne, Lakshman Singh, Kevin Barnham and Colin L. Masters
Life 2025, 15(8), 1169; https://doi.org/10.3390/life15081169 - 23 Jul 2025
Viewed by 398
Abstract
Sporadic Parkinson’s Disease (PD) affects 3% of people over 65 years of age. People are living longer, thanks in large part to improvements in global health technology and health access for non-neurological diseases. Consequently, neurological diseases of senescence, such as PD, are representing [...] Read more.
Sporadic Parkinson’s Disease (PD) affects 3% of people over 65 years of age. People are living longer, thanks in large part to improvements in global health technology and health access for non-neurological diseases. Consequently, neurological diseases of senescence, such as PD, are representing an ever-increasing share of global disease burden. There is an intensifying research focus on the processes that underlie these conditions in the hope that neurological decay may be arrested at the earliest time point. The concept of neuronal death linked to ageing- neural senescence- first emerged in the 1800s. By the late 20th century, it was recognized that neurodegeneration was common to all ageing human brains, but in most cases, this process did not lead to clinical disease during life. Conditions such as PD are the result of accelerated neurodegeneration in particular brain foci. In the case of PD, degeneration of the substantia nigra pars compacta (SNpc) is especially implicated. Why neural degeneration accelerates in these particular regions remains a point of contention, though current evidence implicates a complex interplay between a vast array of neuronal cell functions, bioenergetic failure, and a dysfunctional brain immunological response. Their complexity is a considerable barrier to disease modification trials, which seek to intercept these maladaptive cell processes. This paper reviews current evidence in the domain of neurodegeneration in Parkinson’s disease, focusing on alpha-synuclein accumulation and deposition and the role of oxidative stress and inflammation in progressive brain changes. Recent approaches to disease modification are discussed, including the prevention or reversal of alpha-synuclein accumulation and deposition, modification of oxidative stress, alteration of maladaptive innate immune processes and reactive cascades, and regeneration of lost neurons using stem cells and growth factors. The limitations of past research methodologies are interrogated, including the difficulty of recruiting patients in the clinically quiescent prodromal phase of sporadic Parkinson’s disease. Recommendations are provided for future studies seeking to identify novel therapeutics with disease-modifying properties. Full article
(This article belongs to the Section Life Sciences)
Show Figures

Figure 1

20 pages, 1484 KiB  
Article
Protective Role of Whey Protein Isolate on MPP+-Induced Differentiation of SH-SY5Y Cells by Modulating the Nrf2 Antioxidant Pathway
by Panlekha Rungruang, Morakot Sroyraya and Veerawat Sansri
Molecules 2025, 30(10), 2207; https://doi.org/10.3390/molecules30102207 - 18 May 2025
Viewed by 768
Abstract
The pathogenesis of Parkinson’s disease (PD) consists of the apoptosis of dopaminergic neurons in the substantia nigra pars compacta (SNpc) due to oxidative stress. The present study aimed to evaluate the potential antioxidant activity of whey protein isolate (WPI) in PD models, using [...] Read more.
The pathogenesis of Parkinson’s disease (PD) consists of the apoptosis of dopaminergic neurons in the substantia nigra pars compacta (SNpc) due to oxidative stress. The present study aimed to evaluate the potential antioxidant activity of whey protein isolate (WPI) in PD models, using neurotoxin-exposed SH-SY5Y cells differentiated into dopaminergic-like neurons. Our research shows that WPI’s high glutamic acid, aspartic acid, and leucine contribute to its antioxidant and neuroprotective effects, with glutamic acid crucial for glutathione synthesis. In vitro studies found that WPI, at concentrations of 5–1000 µg/mL, is non-toxic to differentiated SH-SY5Y cells. Notably, the lowest con-centration of WPI (5 µg/mL) significantly decreased intracellular reactive oxygen species (ROS) levels in these cells following a 24 h co-treatment with 1-methyl-4-phenylpyridinium (MPP+). The antioxidant effects of WPI were also confirmed by the increased expression of HO1 and GPx antioxidant enzymes, which are Nrf2 pathway target genes and were evaluated by real-time PCR. Furthermore, Nrf2 nuclear translocation in the differentiated SH-SY5Y cells was also increased when the cells were exposed to 5 µg/mL of WPI with MPP+. These results together suggest that WPI has antioxidant effects on dopaminergic-like neurons in a Parkinson’s disease model. Full article
(This article belongs to the Special Issue Feature Papers in Food Chemistry—3rd Edition)
Show Figures

Graphical abstract

18 pages, 5233 KiB  
Article
Retinoid X Receptor as a Therapeutic Target to Treat Neurological Disorders Associated with α-Synucleinopathy
by Assylbek Zhylkibayev, Christopher R. Starr, M. Iqbal Hossain, Sandeep Kumar, Shaida A. Andrabi, Maria B. Grant, Venkatram R. Atigadda, Marina S. Gorbatyuk and Oleg S. Gorbatyuk
Cells 2025, 14(10), 685; https://doi.org/10.3390/cells14100685 - 9 May 2025
Viewed by 852
Abstract
This study investigated the therapeutic potential of the nuclear retinoid X receptor (RXR) in mitigating the progression of alpha-synucleinopathies (αSNPs), particularly in Parkinson’s disease (PD). PD-like pathology in mice was successfully induced through the co-delivery of AAV expressing human α-synuclein (αS) and αS [...] Read more.
This study investigated the therapeutic potential of the nuclear retinoid X receptor (RXR) in mitigating the progression of alpha-synucleinopathies (αSNPs), particularly in Parkinson’s disease (PD). PD-like pathology in mice was successfully induced through the co-delivery of AAV expressing human α-synuclein (αS) and αS preformed fibrils (PFFs) into the substantia nigra pars compacta (SNpc). Significant increases in Lewy body (LB)-like inclusions, loss of tyrosine hydroxylase-positive (TH+) neurons, and reductions in dopamine (DA) levels in the striatum were observed. Additionally, diminished levels of PPARα and NURR1—proteins essential for neuronal survival—along with elevated expression of IBA1 and GFAP, markers of microglial activation and astrocytic gliosis, respectively, are associated with the pathogenesis of Parkinson’s disease. AAV-mediated overexpression of human RXRα demonstrated preservation of TH+ neurons, prevention of DA decline, and attenuation of αS accumulation. Furthermore, RXR-treated PD brains showed a reduced number of GFAP+ and Iba1+ cells, decreased GFAP+ and IBA1+ immunoreactivity, and fewer and less widespread LB-like aggregates. RXR overexpression also enhanced the production of PPARα and NURR1. These findings suggest that RXRα upregulation promotes neuroprotection by mitigating αSNPs and chronic neuroinflammation, a major contributor to PD progression. This research underscores the therapeutic potential of targeting nuclear receptors, such as RXR, in neurodegenerative diseases like PD. Full article
Show Figures

Figure 1

22 pages, 14590 KiB  
Article
Carrier-Based Implementation of SVPWM for a Three-Level Simplified Neutral Point Clamped Inverter with XOR Logic Gates
by Zifan Lin, Wenxiang Du, Yang Bai, Herbert Ho Ching Iu, Tyrone Fernando and Xinan Zhang
Electronics 2025, 14(7), 1408; https://doi.org/10.3390/electronics14071408 - 31 Mar 2025
Cited by 1 | Viewed by 695
Abstract
The three-level simplified neutral point clamped (3L-SNPC) inverter has received increasing attention in recent years due to its potential applications in electrical drives and smart grids with renewable energy integration. However, most existing research has primarily focused on control development, with limited studies [...] Read more.
The three-level simplified neutral point clamped (3L-SNPC) inverter has received increasing attention in recent years due to its potential applications in electrical drives and smart grids with renewable energy integration. However, most existing research has primarily focused on control development, with limited studies investigating modulation strategies or analyzing inverter losses under varying operating conditions. These aspects are critical for practical industrial applications. To address this gap, this paper proposes a novel carrier-based space vector pulse width modulation (CB-SVPWM) strategy for the 3L-SNPC inverter, aimed at simplifying PWM implementation and reducing cost. The proposed modulation strategy is experimentally evaluated by comparing inverter losses and total harmonic distortion with those of the conventional three-level neutral point clamped (3L-NPC) inverter under an equivalent carrier-based modulation scheme. A comprehensive comparative analysis is conducted across the full modulation range to demonstrate the effectiveness of the proposed approach, achieving a 13.2% reduction in total power loss, a 33.6% improvement in execution time, and maintaining a comparable weighted total harmonic distortion (WTHD) with a deviation within 0.04% of the conventional 3L-NPC inverter. Full article
(This article belongs to the Special Issue Control and Optimization of Power Converters and Drives)
Show Figures

Figure 1

25 pages, 2888 KiB  
Article
Steady Moderate Exercise Confers Resilience Against Neurodegeneration and Neuroinflammation in a Mouse Model of Parkinson’s Disease
by Ewelina Palasz, Anna Gasiorowska-Bien, Patrycja Drapich, Wiktor Niewiadomski and Grazyna Niewiadomska
Int. J. Mol. Sci. 2025, 26(3), 1146; https://doi.org/10.3390/ijms26031146 - 28 Jan 2025
Cited by 2 | Viewed by 1375
Abstract
Intensive aerobic exercise slows the progression of movement disorders in Parkinson’s disease (PD) and is therefore recommended as an important component of treatment for PD patients. Studies in animal models of PD have shown that vigorous exercise has neuroprotective effects, and emerging evidence [...] Read more.
Intensive aerobic exercise slows the progression of movement disorders in Parkinson’s disease (PD) and is therefore recommended as an important component of treatment for PD patients. Studies in animal models of PD have shown that vigorous exercise has neuroprotective effects, and emerging evidence suggests that it may be a disease-modifying treatment in humans. However, many people with PD may not be able to participate in vigorous exercise because of multiple medical conditions that severely limit their physical activity. In this study, we have shown that chronic MPTP treatment in sedentary mice resulted in loss of dopaminergic neurons in the SNpc, decreased levels of neurotrophins, BDNF and GDNF, and increased levels of inflammatory markers and pro-inflammatory changes in immunocompetent cells. Moderate exercise, initiated both before and after chronic MPTP treatment, significantly attenuated the loss of dopaminergic neurons and increased BDNF and GDNF levels even above those in sedentary control mice. No signs of inflammation were observed in MPTP-treated mice, either when training began before or after MPTP treatment. Training induced beneficial changes in the dopaminergic system, increased levels of neurotrophins and suppression of inflammation were similar for both steady moderate (present data) and intense training (our previously published data). This suggests that there is a kind of saturation when the percentage of rescued dopaminergic neurons reaches the highest possible value, and therefore further increases in exercise intensity do not enhance neuroprotection. In conclusion, our present results compared with the previous data show that increasing exercise intensity beyond the level used in this study does not increase the neuroprotective effect of aerobic training in a mouse model of Parkinson’s disease. Full article
Show Figures

Figure 1

31 pages, 4210 KiB  
Review
State of the Art in Sub-Phenotyping Midbrain Dopamine Neurons
by Valentina Basso, Máté D. Döbrössy, Lachlan H. Thompson, Deniz Kirik, Heidi R. Fuller and Monte A. Gates
Biology 2024, 13(9), 690; https://doi.org/10.3390/biology13090690 - 3 Sep 2024
Cited by 4 | Viewed by 5182
Abstract
Dopaminergic neurons in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNpc) comprise around 75% of all dopaminergic neurons in the human brain. While both groups of dopaminergic neurons are in close proximity in the midbrain and partially overlap, development, [...] Read more.
Dopaminergic neurons in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNpc) comprise around 75% of all dopaminergic neurons in the human brain. While both groups of dopaminergic neurons are in close proximity in the midbrain and partially overlap, development, function, and impairments in these two classes of neurons are highly diverse. The molecular and cellular mechanisms underlying these differences are not yet fully understood, but research over the past decade has highlighted the need to differentiate between these two classes of dopaminergic neurons during their development and in the mature brain. This differentiation is crucial not only for understanding fundamental circuitry formation in the brain but also for developing therapies targeted to specific dopaminergic neuron classes without affecting others. In this review, we summarize the state of the art in our understanding of the differences between the dopaminergic neurons of the VTA and the SNpc, such as anatomy, structure, morphology, output and input, electrophysiology, development, and disorders, and discuss the current technologies and methods available for studying these two classes of dopaminergic neurons, highlighting their advantages, limitations, and the necessary improvements required to achieve more-precise therapeutic interventions. Full article
(This article belongs to the Section Neuroscience)
Show Figures

Figure 1

29 pages, 1309 KiB  
Review
Alpha Synuclein Toxicity and Non-Motor Parkinson’s
by Gabriella M. Mazzotta and Carmela Conte
Cells 2024, 13(15), 1265; https://doi.org/10.3390/cells13151265 - 27 Jul 2024
Cited by 2 | Viewed by 5668
Abstract
Parkinson’s disease (PD) is a common multisystem neurodegenerative disorder affecting 1% of the population over the age of 60 years. The main neuropathological features of PD are the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the presence of [...] Read more.
Parkinson’s disease (PD) is a common multisystem neurodegenerative disorder affecting 1% of the population over the age of 60 years. The main neuropathological features of PD are the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the presence of alpha synuclein (αSyn)-rich Lewy bodies both manifesting with classical motor signs. αSyn has emerged as a key protein in PD pathology as it can spread through synaptic networks to reach several anatomical regions of the body contributing to the appearance of non-motor symptoms (NMS) considered prevalent among individuals prior to PD diagnosis and persisting throughout the patient’s life. NMS mainly includes loss of taste and smell, constipation, psychiatric disorders, dementia, impaired rapid eye movement (REM) sleep, urogenital dysfunction, and cardiovascular impairment. This review summarizes the more recent findings on the impact of αSyn deposits on several prodromal NMS and emphasizes the importance of early detection of αSyn toxic species in biofluids and peripheral biopsies as prospective biomarkers in PD. Full article
(This article belongs to the Collection Molecular Insights into Neurodegenerative Diseases)
Show Figures

Figure 1

22 pages, 30049 KiB  
Article
Alpha-Synuclein Gene Alterations Modulate Tyrosine Hydroxylase in Human iPSC-Derived Neurons in a Parkinson’s Disease Animal Model
by Luis Daniel Bernal-Conde, Verónica Peña-Martínez, C. Alejandra Morato-Torres, Rodrigo Ramos-Acevedo, Óscar Arias-Carrión, Francisco J. Padilla-Godínez, Alexa Delgado-González, Marcela Palomero-Rivero, Omar Collazo-Navarrete, Luis O. Soto-Rojas, Margarita Gómez-Chavarín, Birgitt Schüle and Magdalena Guerra-Crespo
Life 2024, 14(6), 728; https://doi.org/10.3390/life14060728 - 5 Jun 2024
Cited by 3 | Viewed by 3383
Abstract
Parkinson’s disease (PD) caused by SNCA gene triplication (3XSNCA) leads to early onset, rapid progression, and often dementia. Understanding the impact of 3XSNCA and its absence is crucial. This study investigates the differentiation of human induced pluripotent stem cell (hiPSC)-derived [...] Read more.
Parkinson’s disease (PD) caused by SNCA gene triplication (3XSNCA) leads to early onset, rapid progression, and often dementia. Understanding the impact of 3XSNCA and its absence is crucial. This study investigates the differentiation of human induced pluripotent stem cell (hiPSC)-derived floor-plate progenitors into dopaminergic neurons. Three different genotypes were evaluated in this study: patient-derived hiPSCs with 3XSNCA, a gene-edited isogenic line with a frame-shift mutation on all SNCA alleles (SNCA 4KO), and a normal wild-type control. Our aim was to assess how the substantia nigra pars compacta (SNpc) microenvironment, damaged by 6-hydroxydopamine (6-OHDA), influences tyrosine hydroxylase-positive (Th+) neuron differentiation in these genetic variations. This study confirms successful in vitro differentiation into neuronal lineage in all cell lines. However, the SNCA 4KO line showed unusual LIM homeobox transcription factor 1 alpha (Lmx1a) extranuclear distribution. Crucially, both 3XSNCA and SNCA 4KO lines had reduced Th+ neuron expression, despite initial successful neuronal differentiation after two months post-transplantation. This indicates that while the SNpc environment supports early neuronal survival, SNCA gene alterations—either amplification or knock-out—negatively impact Th+ dopaminergic neuron maturation. These findings highlight SNCA’s critical role in PD and underscore the value of hiPSC models in studying neurodegenerative diseases. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

22 pages, 6472 KiB  
Article
Intranasal Administration of GRP78 Protein (HSPA5) Confers Neuroprotection in a Lactacystin-Induced Rat Model of Parkinson’s Disease
by Maria B. Pazi, Daria V. Belan, Elena Y. Komarova and Irina V. Ekimova
Int. J. Mol. Sci. 2024, 25(7), 3951; https://doi.org/10.3390/ijms25073951 - 2 Apr 2024
Cited by 9 | Viewed by 5038
Abstract
The accumulation of misfolded and aggregated α-synuclein can trigger endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), leading to apoptotic cell death in patients with Parkinson’s disease (PD). As the major ER chaperone, glucose-regulated protein 78 (GRP78/BiP/HSPA5) plays a key role [...] Read more.
The accumulation of misfolded and aggregated α-synuclein can trigger endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), leading to apoptotic cell death in patients with Parkinson’s disease (PD). As the major ER chaperone, glucose-regulated protein 78 (GRP78/BiP/HSPA5) plays a key role in UPR regulation. GRP78 overexpression can modulate the UPR, block apoptosis, and promote the survival of nigral dopamine neurons in a rat model of α-synuclein pathology. Here, we explore the therapeutic potential of intranasal exogenous GRP78 for preventing or slowing PD-like neurodegeneration in a lactacystin-induced rat model. We show that intranasally-administered GRP78 rapidly enters the substantia nigra pars compacta (SNpc) and other afflicted brain regions. It is then internalized by neurons and microglia, preventing the development of the neurodegenerative process in the nigrostriatal system. Lactacystin-induced disturbances, such as the abnormal accumulation of phosphorylated pS129-α-synuclein and activation of the pro-apoptotic GRP78/PERK/eIF2α/CHOP/caspase-3,9 signaling pathway of the UPR, are substantially reversed upon GRP78 administration. Moreover, exogenous GRP78 inhibits both microglia activation and the production of proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in model animals. The neuroprotective and anti-inflammatory potential of exogenous GRP78 may inform the development of effective therapeutic agents for PD and other synucleinopathies. Full article
Show Figures

Figure 1

19 pages, 5627 KiB  
Article
Akkermansia muciniphila Is Beneficial to a Mouse Model of Parkinson’s Disease, via Alleviated Neuroinflammation and Promoted Neurogenesis, with Involvement of SCFAs
by Chen-Meng Qiao, Wen-Yan Huang, Yu Zhou, Wei Quan, Gu-Yu Niu, Ting Li, Mei-Xuan Zhang, Jian Wu, Li-Ping Zhao, Wei-Jiang Zhao, Chun Cui and Yan-Qin Shen
Brain Sci. 2024, 14(3), 238; https://doi.org/10.3390/brainsci14030238 - 29 Feb 2024
Cited by 17 | Viewed by 3289
Abstract
Increasing evidence suggests that the gut microbiota may represent potential strategies for Parkinson’s disease (PD) treatment. Our previous research revealed a decreased abundance of Akkermansia muciniphila (Akk) in PD mice; however, whether Akk is beneficial to PD is unknown. To answer this question, [...] Read more.
Increasing evidence suggests that the gut microbiota may represent potential strategies for Parkinson’s disease (PD) treatment. Our previous research revealed a decreased abundance of Akkermansia muciniphila (Akk) in PD mice; however, whether Akk is beneficial to PD is unknown. To answer this question, the mice received MPTP intraperitoneally to construct a subacute model of PD and were then supplemented with Akk orally for 21 consecutive days. Motor function, dopaminergic neurons, neuroinflammation, and neurogenesis were examined. In addition, intestinal inflammation, and serum and fecal short-chain fatty acids (SCFAs) analyses, were assessed. We found that Akk treatment effectively inhibited the reduction of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and partially improved the motor function in PD mice. Additionally, Akk markedly alleviated neuroinflammation in the striatum and hippocampus and promoted hippocampal neurogenesis. It also decreased the level of colon inflammation. Furthermore, these aforementioned changes are mainly accompanied by alterations in serum and fecal isovaleric acid levels, and lower intestinal permeability. Our research strongly suggests that Akk is a potential neuroprotective agent for PD therapy. Full article
(This article belongs to the Special Issue Molecular Mechanism and Pathology of Parkinson's Disease)
Show Figures

Figure 1

17 pages, 5819 KiB  
Article
Linalool, a Fragrance Compound in Plants, Protects Dopaminergic Neurons and Improves Motor Function and Skeletal Muscle Strength in Experimental Models of Parkinson’s Disease
by Wan-Hsuan Chang, Hung-Te Hsu, Chih-Cheng Lin, Li-Mei An, Chien-Hsing Lee, Horng-Huey Ko, Chih-Lung Lin and Yi-Ching Lo
Int. J. Mol. Sci. 2024, 25(5), 2514; https://doi.org/10.3390/ijms25052514 - 21 Feb 2024
Cited by 10 | Viewed by 3356
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by the gradual loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), resulting in reduced dopamine levels in the striatum and eventual onset of motor symptoms. Linalool (3,7-dimethyl-1,6-octadien-3-ol) is a monoterpene in [...] Read more.
Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by the gradual loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), resulting in reduced dopamine levels in the striatum and eventual onset of motor symptoms. Linalool (3,7-dimethyl-1,6-octadien-3-ol) is a monoterpene in aromatic plants exhibiting antioxidant, antidepressant, and anti-anxiety properties. The objective of this study is to evaluate the neuroprotective impacts of linalool on dopaminergic SH-SY5Y cells, primary mesencephalic and cortical neurons treated with 1-methyl-4-phenylpyridinium ion (MPP+), as well as in PD-like mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Cell viability, α-tubulin staining, western blotting, immunohistochemistry and behavioral experiments were performed. In MPP+-treated SH-SY5Y cells, linalool increased cell viability, reduced neurite retraction, enhanced antioxidant defense by downregulation of apoptosis signaling (B-cell lymphoma 2 (Bcl-2), cleaved caspase-3 and poly ADP-ribose polymerase (PARP)) and phagocyte NADPH oxidase (gp91phox), as well as upregulation of neurotrophic signaling (brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF)) and nuclear factor-erythroid 2 related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. In MPP+-treated primary mesencephalic neurons, linalool enhanced the expressions of tyrosine hydroxylase (TH), Sirtuin 1 (SirT1), and parkin. In MPP+-treated primary cortical neurons, linalool upregulated protein expression of SirT1, γ-Aminobutyric acid type A-α1 (GABAA-α1), and γ-Aminobutyric acid type B (GABAB). In PD-like mice, linalool attenuated the loss of dopamine neurons in SNpc. Linalool improved the motor and nonmotor behavioral deficits and muscle strength of PD-like mice. These findings suggest that linalool potentially protects dopaminergic neurons and improves the impairment symptoms of PD. Full article
Show Figures

Graphical abstract

19 pages, 7744 KiB  
Article
Levistilide A Exerts a Neuroprotective Effect by Suppressing Glucose Metabolism Reprogramming and Preventing Microglia Polarization Shift: Implications for Parkinson’s Disease
by Mingjie Zhang, Congyan Duan, Weifang Lin, Honghua Wu, Lu Chen, Hong Guo, Minyu Yu, Qi Liu, Yaling Nie, Hong Wang and Shaoxia Wang
Molecules 2024, 29(4), 912; https://doi.org/10.3390/molecules29040912 - 19 Feb 2024
Cited by 3 | Viewed by 2642
Abstract
The microglia, displaying diverse phenotypes, play a significant regulatory role in the development, progression, and prognosis of Parkinson’s disease. Research has established that glycolytic reprogramming serves as a critical regulator of inflammation initiation in pro-inflammatory macrophages. Furthermore, the modulation of glycolytic reprogramming has [...] Read more.
The microglia, displaying diverse phenotypes, play a significant regulatory role in the development, progression, and prognosis of Parkinson’s disease. Research has established that glycolytic reprogramming serves as a critical regulator of inflammation initiation in pro-inflammatory macrophages. Furthermore, the modulation of glycolytic reprogramming has the potential to reverse the polarized state of these macrophages. Previous studies have shown that Levistilide A (LA), a phthalide component derived from Angelica sinensis, possesses a range of pharmacological effects, including anti-inflammatory, antioxidant, and neuroprotective properties. In our study, we have examined the impact of LA on inflammatory cytokines and glucose metabolism in microglia induced by lipopolysaccharide (LPS). Furthermore, we explored the effects of LA on the AMPK/mTOR pathway and assessed its neuroprotective potential both in vitro and in vivo. The findings revealed that LA notably diminished the expression of M1 pro-inflammatory factors induced by LPS in microglia, while leaving M2 anti-inflammatory factor expression unaltered. Additionally, it reduced ROS production and suppressed IκB-α phosphorylation levels as well as NF-κB p65 nuclear translocation. Notably, LA exhibited the ability to reverse microglial glucose metabolism reprogramming and modulate the phosphorylation levels of AMPK/mTOR. In vivo experiments further corroborated these findings, demonstrating that LA mitigated the death of TH-positive dopaminergic neurons and reduced microglia activation in the ventral SNpc brain region of the midbrain and the striatum. In summary, LA exhibited neuroprotective benefits by modulating the polarization state of microglia and altering glucose metabolism, highlighting its therapeutic potential. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

14 pages, 1499 KiB  
Article
Sustained Systemic Antioxidative Effects of Intermittent Theta Burst Stimulation beyond Neurodegeneration: Implications in Therapy in 6-Hydroxydopamine Model of Parkinson’s Disease
by Milica Zeljkovic Jovanovic, Jelena Stanojevic, Ivana Stevanovic, Milica Ninkovic, Nadezda Nedeljkovic and Milorad Dragic
Antioxidants 2024, 13(2), 218; https://doi.org/10.3390/antiox13020218 - 8 Feb 2024
Cited by 2 | Viewed by 1966
Abstract
Parkinson’s disease (PD) is manifested by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and caudoputamen (Cp), leading to the development of motor and non-motor symptoms. The contribution of oxidative stress to the development and progression of PD [...] Read more.
Parkinson’s disease (PD) is manifested by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and caudoputamen (Cp), leading to the development of motor and non-motor symptoms. The contribution of oxidative stress to the development and progression of PD is increasingly recognized. Experimental models show that strengthening antioxidant defenses and reducing pro-oxidant status may have beneficial effects on disease progression. In this study, the neuroprotective potential of intermittent theta burst stimulation (iTBS) is investigated in a 6-hydroxydopamine (6-OHDA)-induced PD model in rats seven days after intoxication which corresponds to the occurrence of first motor symptoms. Two-month-old male Wistar rats were unilaterally injected with 6-OHDA to mimic PD pathology and were subsequently divided into two groups to receive either iTBS or sham stimulation for 21 days. The main oxidative parameters were analyzed in the caudoputamen, substantia nigra pars compacta, and serum. iTBS treatment notably mitigated oxidative stress indicators, simultaneously increasing antioxidative parameters in the caudoputamen and substantia nigra pars compacta well after 6-OHDA-induced neurodegeneration process was over. Serum analysis confirmed the systemic effect of iTBS with a decrease in oxidative markers and an increase in antioxidants. Prolonged iTBS exerts a modulatory effect on oxidative/antioxidant parameters in the 6-OHDA-induced PD model, suggesting a potential neuroprotective benefit, even though at this specific time point 6-OHDA-induced oxidative status was unaltered. These results emphasize the need to further explore the mechanisms of iTBS and argue in favor of considering it as a therapeutic intervention in PD and related neurodegenerative diseases. Full article
(This article belongs to the Special Issue Cellular ROS and Antioxidants: Physiological and Pathological Role)
Show Figures

Figure 1

18 pages, 10777 KiB  
Article
Immunization Effects of a Novel α-Synuclein-Based Peptide Epitope Vaccine in Parkinson’s Disease-Associated Pathology
by Jun Sung Park, Riaz Ahmad, Kyonghwan Choe, Min Hwa Kang, Tae Ju Park and Myeong Ok Kim
Vaccines 2023, 11(12), 1820; https://doi.org/10.3390/vaccines11121820 - 5 Dec 2023
Cited by 4 | Viewed by 3631 | Correction
Abstract
Parkinson’s disease (PD) is a chronic neurodegenerative disease that affects the central nervous system, specifically the motor system. It is mainly caused by the loss of dopamine due to the accumulation of α-synuclein (α-syn) protein in the striatum and substantia nigra pars compacta [...] Read more.
Parkinson’s disease (PD) is a chronic neurodegenerative disease that affects the central nervous system, specifically the motor system. It is mainly caused by the loss of dopamine due to the accumulation of α-synuclein (α-syn) protein in the striatum and substantia nigra pars compacta (SNpc). Previous studies have reported that immunization may be a potential preventive strategy for neurodegenerative diseases such as Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). Therefore, the aim of the study was to design an α-syn specific epitope vaccine and investigate its effect in PD-related pathophysiology using an α-syn-induced mouse model. We used an in silico model to identify and design a non-toxic α-syn-based peptide epitope vaccine and, to overcome poor immunogenicity, the vaccine was coupled with immunogenic carrier proteins, i.e., ovalbumin (OVA) and keyhole limpet haemocyanin (KLH). Our results showed that vaccinated PD mouse models, especially with vaccines with carrier proteins, improved in motor functions compared with the non-vaccinated PD model. Additionally, the vaccinated groups showed increased immunoglobulin G (IgG) levels in the spleen and plasma as well as decreased interleukin-10 (IL-10) levels in the plasma. Furthermore, vaccinated groups, especially OVA and KLH groups, showed decrease in α-syn levels and increased dopamine-related markers, i.e., tyrosine hydroxylase (TH), vesicle monoamine transporter 2 (VMAT2), and dopamine transporter (DAT), and autophagy activities in the striatum and SNpc. Lastly, our data showed decreased neuroinflammation by reducing the activation of microglia and astrocytes and pro-inflammatory cytokines in the immunized groups, especially with OVA and KLH carrier proteins. Overall, these results suggest that vaccination, especially with immunogenic carrier proteins, is effective in reducing the accumulation of α-syn aggregates in the brain and ameliorate PD-related pathophysiology. Hence, further development of this approach might have a potential role in preventing the development of PD. Full article
(This article belongs to the Special Issue Design of Multi-Epitope Subunit Vaccine and Immunization Strategies)
Show Figures

Figure 1

26 pages, 2957 KiB  
Review
Marine-Derived Components: Can They Be a Potential Therapeutic Approach to Parkinson’s Disease?
by Joana Silva, Celso Alves, Francisca Soledade, Alice Martins, Susete Pinteus, Helena Gaspar, Amparo Alfonso and Rui Pedrosa
Mar. Drugs 2023, 21(8), 451; https://doi.org/10.3390/md21080451 - 16 Aug 2023
Cited by 15 | Viewed by 3711
Abstract
The increase in the life expectancy average has led to a growing elderly population, thus leading to a prevalence of neurodegenerative disorders, such as Parkinson’s disease (PD). PD is the second most common neurodegenerative disorder and is characterized by a progressive degeneration of [...] Read more.
The increase in the life expectancy average has led to a growing elderly population, thus leading to a prevalence of neurodegenerative disorders, such as Parkinson’s disease (PD). PD is the second most common neurodegenerative disorder and is characterized by a progressive degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNpc). The marine environment has proven to be a source of unique and diverse chemical structures with great therapeutic potential to be used in the treatment of several pathologies, including neurodegenerative impairments. This review is focused on compounds isolated from marine organisms with neuroprotective activities on in vitro and in vivo models based on their chemical structures, taxonomy, neuroprotective effects, and their possible mechanism of action in PD. About 60 compounds isolated from marine bacteria, fungi, mollusk, sea cucumber, seaweed, soft coral, sponge, and starfish with neuroprotective potential on PD therapy are reported. Peptides, alkaloids, quinones, terpenes, polysaccharides, polyphenols, lipids, pigments, and mycotoxins were isolated from those marine organisms. They can act in several PD hallmarks, reducing oxidative stress, preventing mitochondrial dysfunction, α-synuclein aggregation, and blocking inflammatory pathways through the inhibition translocation of NF-kB factor, reduction of human tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6). This review gathers the marine natural products that have shown pharmacological activities acting on targets belonging to different intracellular signaling pathways related to PD development, which should be considered for future pre-clinical studies. Full article
(This article belongs to the Special Issue Neuroprotective Effects of Marine Natural Products 2022)
Show Figures

Figure 1

Back to TopTop