Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = SHPB experimental device

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10765 KiB  
Article
Investigating Stress Limitations in Dynamic Response of Coral Limestone Concrete: Integrated FDM-DEM Simulations and Experimental Validation
by Yuzhu Zhang, Haoran Hu, Yi Luo, Yi Gong and Jinrui Zhang
Materials 2025, 18(10), 2268; https://doi.org/10.3390/ma18102268 - 13 May 2025
Viewed by 399
Abstract
This study established a dynamic impact simulation system for a coral limestone cement composite subjected to bidirectional stress confinement conditions by using a coupled method of continuous medium FDM (a coupled continuum-discontinuum approach integrating finite difference continuum modeling (FDM) and the discrete [...] Read more.
This study established a dynamic impact simulation system for a coral limestone cement composite subjected to bidirectional stress confinement conditions by using a coupled method of continuous medium FDM (a coupled continuum-discontinuum approach integrating finite difference continuum modeling (FDM) and the discrete element method (DEM) granular analysis), and verified its accuracy through indoor experiments. The study first conducted dynamic mechanical performance tests on reef limestone concrete using an SHPB experimental device, exploring the effects of the strain-rate governed high-rate response, energy evolution, and failure modes. Subsequently, an FDM-DEM coupled model was used to simulate the impact-induced behavior of concrete at multiaxial stress conditions and constraint conditions, analyzing the strain-rate dependent performance of concrete exposed to biaxial monotonic loading. Test outcomes indicate that the increase in strain rate significantly enhanced the dynamic peak stress, and the collapse behavior shifted from type I to type II. As static loading in the σ2 direction increased, the dynamic peak stress in the σ1 direction decreased, while the dynamic peak stress in the σ2 direction increased, indicating that the constraint stress in the σ2 direction had an inhibitory effect on the sample’s failure. Through the time-history monitoring and analysis of cracks, it was found that the internal crack growth rate accelerated as the stress increased, while the crack growth tended to stabilize when the stress decreased. Additionally, this study explored the effect of stress constraints on the fragmentation patterns, revealing changes in the failure modes and crack distributions of the sample under different stress states, providing a theoretical basis and technical support for island and reef construction and engineering protection. Full article
Show Figures

Figure 1

17 pages, 25857 KiB  
Article
Dynamic Response of WMoZrNiFe Energetic Structural Material Based on SHPB
by Guiyan Pei, Zhe Peng, Xiaolu Bi, Qingjie Jiao, Rui Liu and Jianxin Nie
Metals 2025, 15(5), 516; https://doi.org/10.3390/met15050516 - 2 May 2025
Viewed by 337
Abstract
Energetic structural materials (ESMs) are widely studied due to their high energy density, which enhances their potential in various industrial and engineering applications, such as in energy absorption systems, safety devices, and structural components that need to withstand dynamic loading. A high-strength WMoZrNiFe [...] Read more.
Energetic structural materials (ESMs) are widely studied due to their high energy density, which enhances their potential in various industrial and engineering applications, such as in energy absorption systems, safety devices, and structural components that need to withstand dynamic loading. A high-strength WMoZrNiFe energetic structural material was prepared, and its mechanical properties and ignition behavior under dynamic loading were studied. Using the split-Hopkinson pressure bar (SHPB) experimental device, samples with different initial tilt angles of 0°, 30°, and 45° were dynamically loaded. The influence of the sample tilt angle on the ignition threshold was analyzed. The dynamic mechanical properties, failure modes, and ignition threshold based on the energy absorption of the WMoZrNiFe energetic structural material during the dynamic loading process were obtained. The results show that the material has a strain rate effect in the range of 1000 s−1~3000 s−1. The yield strength of the sample with a tilt angle of 0° increased from 1468 MPa to 1837 MPa, that of the sample with a tilt angle of 30° increased from 982 MPa to 1053 MPa, and that of the sample with an inclination angle of 45° increased from 420 MPa to 812 MPa. Through EDS elemental analysis, the ignition reaction mechanism of the WMoZrNiFe energetic structural material under dynamic compression was obtained. The violent reaction of the material occurred after the material fractured, and the active elements reacted with oxygen in the air. Full article
(This article belongs to the Special Issue Properties, Microstructure and Forming of Intermetallics)
Show Figures

Figure 1

19 pages, 42233 KiB  
Article
Strength, Deformation and Fracture Properties of Hard Rocks Embedded with Tunnel-Shaped Openings Suffering from Dynamic Loads
by Hao Wu and Yongsheng Jia
Appl. Sci. 2024, 14(8), 3175; https://doi.org/10.3390/app14083175 - 10 Apr 2024
Viewed by 1166
Abstract
In rock engineering, the dynamic loads caused by mechanical action and rock blasting have an extremely significant influence on the stableness of surrounding rock masses. To examine the impact of dynamic load on the mechanical properties and fracturing characteristics of hard rocks as [...] Read more.
In rock engineering, the dynamic loads caused by mechanical action and rock blasting have an extremely significant influence on the stableness of surrounding rock masses. To examine the impact of dynamic load on the mechanical properties and fracturing characteristics of hard rocks as well as the failure responses of underground openings, a number of prismatic samples with holes of different numbers and configurations were prepared for dynamic tests employing an SHPB loading device. The experimental results demonstrate that the order of dynamic compressive strength of each group of samples under the impact nitrogen pressure of 0.45 MPa is: G3 > G2 > G5 > G4 > G7 > G6, and the dynamic deformation process of the samples is parted into three phases: linear elastic deformation, plastic deformation and post-peak deformation. A total of three categories of cracks, i.e., spalling cracks, shear cracks and tensile cracks, occur in the specimens. The failure mode of the samples having one or two holes arranged in a vertical direction is controlled by shear cracks, whilst that of the rest groups of pre-holed specimens belongs to tensile-shear failure. The existence of the fabricated holes in the samples significantly weakens the mechanical properties and affects the fracture evolution characteristics, which rely on the quantity and layout of the cavities in the specimens. The interesting results are also discussed and explained, and could supply some insight in the mechanisms of tunnel surrounding rock failure and rock dynamic hazards such as rock burst. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

15 pages, 3444 KiB  
Article
Dynamic Splitting Performance and Energy Dissipation of Fiber-Reinforced Concrete under Impact Loading
by Dashun Cui, Limin Wang, Chunwei Zhang, Huiting Xue, Dianwei Gao and Fanxiu Chen
Materials 2024, 17(2), 421; https://doi.org/10.3390/ma17020421 - 14 Jan 2024
Cited by 50 | Viewed by 6794
Abstract
In this paper, the influence of different fiber materials on the dynamic splitting mechanical properties of concrete was investigated. Brazil disc dynamic splitting tests were conducted on plain concrete, palm fiber-reinforced concrete, and steel fiber-reinforced concrete specimens using a split Hopkinson pressure bar [...] Read more.
In this paper, the influence of different fiber materials on the dynamic splitting mechanical properties of concrete was investigated. Brazil disc dynamic splitting tests were conducted on plain concrete, palm fiber-reinforced concrete, and steel fiber-reinforced concrete specimens using a split Hopkinson pressure bar (SHPB) test device with a 100 mm diameter and a V2512 high-speed digital camera. The Digital Image Correlation (DIC) technique was used to analyze the fracture process and crack propagation behavior of different fiber-reinforced concrete specimens and obtain their dynamic tensile properties and energy dissipation. The experimental results indicate that the addition of fibers can enhance the impact toughness of concrete, reduce the occurrence of failure at the loading end of specimens due to stress concentration, delay the time to failure of specimens, and effectively suppress the expansion of cracks. Steel fibers exhibit a better crack-inhibiting effect on concrete compared to palm fibers. The incident energy for the three types of concrete specimens is roughly the same under the same impact pressure. Compared with plain concrete, the energy absorption rate of palm fiber concrete is decreased, while that of steel fiber concrete is increased. Palm fiber-reinforced concrete and steel fiber-reinforced concrete have lower peak strains than plain concrete under the same loading duration. The addition of steel fibers significantly impedes the internal cracking process of concrete specimens, resulting in a relatively slow growth of damage variables. Full article
Show Figures

Figure 1

21 pages, 2310 KiB  
Review
Review of SHPB Dynamic Load Impact Test Characteristics and Energy Analysis Methods
by Yuchen Yang, Qingwen Li and Lan Qiao
Processes 2023, 11(10), 3029; https://doi.org/10.3390/pr11103029 - 21 Oct 2023
Cited by 21 | Viewed by 5155
Abstract
Since the split-Hopkinson pressure bar (SHPB) test technology was proposed, it has played an important role in the study of dynamic mechanical properties of materials under the impact of dynamic load. It is a major test technology for the study of dynamic mechanical [...] Read more.
Since the split-Hopkinson pressure bar (SHPB) test technology was proposed, it has played an important role in the study of dynamic mechanical properties of materials under the impact of dynamic load. It is a major test technology for the study of dynamic mechanical properties of materials. The expansion of the range of materials studied has also posed a challenge to the SHPB test technique, requiring some improvements to the conventional SHPB test apparatus and analysis methods to meet the test conditions and ensure the accuracy of its results. Based on a systematic review of the development of the SHPB test technique and the test principles, the main factors that influence the test’s ability to meet the two basic assumptions at this stage are analyzed, and the ways to handle them are summarized. The stress wave dispersion phenomenon caused by the transverse inertia effect of the pressure bar means that the test no longer satisfies the one-dimensional stress wave assumption, while the pulse-shaping technique effectively reduces the wave dispersion phenomenon and also has the effect of achieving constant strain rate loading and promoting the dynamic stress equilibrium of the specimen. Impedance matching between the pressure bar and specimen effectively solves the problem of the test’s difficulty because the transmitted signal is weak, and the assumption that the stress/strain is uniformly distributed along the length of the specimen is not satisfied when studying low-wave impedance material with the conventional SHPB test device. The appropriate pressure bar material can be selected according to the value of the wave impedance of the test material. According to the wave impedance values of different materials, the corresponding suggestions for the selection of pressure bar materials are given. Moreover, a new pressure bar material (modified gypsum) for materials with very-low-wave impedance is proposed. Finally, for some materials (foamed concrete, aluminum honeycomb, porous titanium, etc.) that cannot meet the two basic assumptions of the test, the Lagrangian analysis method can be combined with SHPB test technology application. Based on the analysis and calculation of the energy conservation equation, the dynamic constitutive relationship of the materials can be obtained without assuming the constitutive relationship of the experimental materials. Full article
Show Figures

Figure 1

18 pages, 20311 KiB  
Article
Study on Dynamic Mechanical Properties of Carbon Fiber-Reinforced Polymer Laminates at Ultra-Low Temperatures
by Wenhao Zhao, Sanchun Lin, Wenfeng Wang, Yifan Yang, Xuan Yan and Heng Yang
Materials 2023, 16(7), 2654; https://doi.org/10.3390/ma16072654 - 27 Mar 2023
Cited by 6 | Viewed by 2300
Abstract
This study uses experimental methods, theoretical research, and numerical prediction to study the dynamic mechanical properties and damage evolution of CFRP laminates at ultra-low temperatures. Based on the Split Hopkinson Pressure Bar (SHPB) device, we set up an ultra-low temperature dynamic experimental platform [...] Read more.
This study uses experimental methods, theoretical research, and numerical prediction to study the dynamic mechanical properties and damage evolution of CFRP laminates at ultra-low temperatures. Based on the Split Hopkinson Pressure Bar (SHPB) device, we set up an ultra-low temperature dynamic experimental platform with a synchronous observation function; the dynamic mechanical properties of laminates were tested, and the damage evolution process was observed. The experimental results are as follows: The compression strength and modulus increase linearly with the increase in strain rate and show a quadratic function trend of increasing and then decreasing with the decrease in temperature. The damage degree of the dynamic bending sample increases obviously with the impact velocity and decreases first and then increases with the decrease in temperature. Based on the low-temperature dynamic damage constitutive, failure criterion, and interlayer interface damage constitutive of the laminates, a numerical model was established to predict the dynamic mechanical properties and damage evolution process of CFRP laminates at ultra-low temperatures, and the finite element analysis (FEA) results are consistent with the experimental results. The results of this paper strongly support the application and safety evaluation of CFRP composites in extreme environments, such as deep space exploration. Full article
(This article belongs to the Special Issue Carbon Fiber Reinforced Polymers (2nd Edition))
Show Figures

Figure 1

16 pages, 7005 KiB  
Article
Mechanical Properties of the Combination of Surrounding Rock and Primary Support under Impacting Load
by Zhouyuan Ye, Liling Zhang, Zhihua Zhou, Kun Pan, Xubin Liu, Wenhui Liu and Qiuhong Wu
Sustainability 2023, 15(5), 4410; https://doi.org/10.3390/su15054410 - 1 Mar 2023
Cited by 5 | Viewed by 1734
Abstract
The SHPB experimental device was adopted to carry out the uniaxial impact tests in studying the failure characteristics of the combination of surrounding rocks and primary support for the tunnel, so as to explore the key factors affecting its dynamic strength and deforming [...] Read more.
The SHPB experimental device was adopted to carry out the uniaxial impact tests in studying the failure characteristics of the combination of surrounding rocks and primary support for the tunnel, so as to explore the key factors affecting its dynamic strength and deforming properties. To simplify the practice model of the tunnel construction, the specimens combined by the surrounding rock and primary support were simulated by the concentric annular sandstone and cement mortar in this paper. The results indicate that the thickness of the primary support, the thickness of the surrounding rock and the proportion of the thickness of the primary support are the key factors affecting the dynamic strength of the combination of the surrounding rock and the primary support. The influence of dynamic loads on tunnel construction can be weakened by adjusting the above three factors, so that to improve the supporting capacity. The research has a significant reference for the designing of tunnel engineering under complex loads. Full article
(This article belongs to the Special Issue The Development of Underground Projects in Urban Areas)
Show Figures

Figure 1

16 pages, 9068 KiB  
Article
Study on Mechanical Properties of Ring Sandstone Specimen under Temperature and Water Coupling Dynamic Compression
by Qi Ping, Qi Gao and Shiwei Wu
Minerals 2023, 13(1), 119; https://doi.org/10.3390/min13010119 - 12 Jan 2023
Cited by 2 | Viewed by 2410
Abstract
The excavation of hard rock roadways in coal mines is often in the environment of underground water and high ground temperature, and it is easy to be affected by the dynamic load, which leads to roadway destruction and increases the difficulty of roadway [...] Read more.
The excavation of hard rock roadways in coal mines is often in the environment of underground water and high ground temperature, and it is easy to be affected by the dynamic load, which leads to roadway destruction and increases the difficulty of roadway support. The ring sandstone specimens with different inner diameters (0~25 mm) were treated with temperature and water coupled, and the dynamic compression test was produced by the Hopkinson pressure rod device (SHPB). The experimental results indicate that the coupling effect of temperature and water reduces the dynamic performance of sandstone specimens. XRD test results showed that the composition of sandstone specimens did not change before and after warm water coupling, and no new substances were found. Dynamic properties of ring sandstone specimens with different inner diameters weaken with the increase in inner diameters. With the increasing inner diameter of ring sandstone specimens, the energy dissipation per unit volume increases the dynamic compressive strength decreases, and the degree of breakage increases. Fracture morphology, average strain rate, and dynamic peak strain of ring sandstone specimens increase with inner diameter. Full article
Show Figures

Figure 1

19 pages, 4828 KiB  
Project Report
Research on Seismic Wave Quality Factor of Marble Jointed Rock Mass under SHPB Impact
by Changkun Sun, Changhong Li and Xiaoming Wei
Appl. Sci. 2022, 12(21), 10875; https://doi.org/10.3390/app122110875 - 26 Oct 2022
Cited by 7 | Viewed by 2183
Abstract
In order to quantitatively describe the energy dissipation law of jointed rock mass, we obtained the jointed cores in laboratory conditions using marble from the roof and floor of Jinchanghe Lead–zinc mine in Baoshan. The dissipative degree of stress wave in marble jointed [...] Read more.
In order to quantitatively describe the energy dissipation law of jointed rock mass, we obtained the jointed cores in laboratory conditions using marble from the roof and floor of Jinchanghe Lead–zinc mine in Baoshan. The dissipative degree of stress wave in marble jointed rock mass is measured by introducing quality factor Qs parameter. Based on the experimental principle of Split Hopkinson Pressure rod loading device (SHPB), we proposed a three-wave energy method of incident wave, reflected wave and projected wave for calculating jointed rock samples’ quality factor Qs based on stress wave energy. Using the SHPB test system for multiple specimens taken from the same piece of rock mass shock compression experiment, the three groups of specimens under different loading conditions gained incident wave and reflected wave and transmission wave experimental data, using the method of stress wave energy to deal with stress wave data, and calculate the joint sample maximum storage energy, dissipation energy and Qs quality factors. The results show that: ① The non-destructive breaking time–history strain of Dali rock mass under impact load is obtained by SHPB dynamic test system; combined with the deformation energy and dissipation energy calculation principle of quality factor, six groups of Qs experimental values are obtained. Although the Qs experimental values are discrete, the overall deviation is small with an average of 43.07. ② AUTODYN-Code was used to simulate the damage and fracture characteristics of rock mass with different quality factors under explosive dynamic load. The results showed that the radius of rock mass compression shear damage area gradually increased with the increase in porosity, but it was not obvious. Full article
Show Figures

Figure 1

15 pages, 4265 KiB  
Article
Research on Dynamic Strength and Inertia Effect of Concrete Materials Based on Large-Diameter Split Hopkinson Pressure Bar Test
by Bi Sun, Rui Chen, Yang Ping, ZhenDe Zhu, Nan Wu and Zhenyue Shi
Materials 2022, 15(9), 2995; https://doi.org/10.3390/ma15092995 - 20 Apr 2022
Cited by 16 | Viewed by 2681
Abstract
The Split Hopkinson Pressure Bar (SHPB) test device is an important tool to study the dynamic characteristics of concrete materials. Inertial effect is one of the main factors that cause inaccurate results in SHPB tests of concrete materials. To solve this problem, Large-diameter [...] Read more.
The Split Hopkinson Pressure Bar (SHPB) test device is an important tool to study the dynamic characteristics of concrete materials. Inertial effect is one of the main factors that cause inaccurate results in SHPB tests of concrete materials. To solve this problem, Large-diameter SHPB tests on concrete and mortar were performed. A dynamic increase factor (DIF) model considering strain rate effect and inertia effect was established. This model provides a scientific reference for studying the dynamic mechanical properties of concrete materials. The experimental results indicate that the strain rate effect of concrete is more sensitive than that of mortar, but the inertia effect of mortar is more sensitive than that of concrete. Under the same strain rate, the energy utilization rate, average fragment size, and impact potentiality of mortar are higher than concrete. Full article
Show Figures

Figure 1

18 pages, 5005 KiB  
Article
Experimental Investigation of the Dynamic Tensile Properties of Naturally Saturated Rocks Using the Coupled Static–Dynamic Flattened Brazilian Disc Method
by Xinying Liu, Feng Dai, Yi Liu, Pengda Pei and Zelin Yan
Energies 2021, 14(16), 4784; https://doi.org/10.3390/en14164784 - 6 Aug 2021
Cited by 17 | Viewed by 2599
Abstract
In a naturally saturated state, rocks are likely to be in a stress field simultaneously containing static and dynamic loads. Since rocks are more vulnerable to tensile loads, it is significant to characterize the tensile properties of naturally saturated rocks under coupled static–dynamic [...] Read more.
In a naturally saturated state, rocks are likely to be in a stress field simultaneously containing static and dynamic loads. Since rocks are more vulnerable to tensile loads, it is significant to characterize the tensile properties of naturally saturated rocks under coupled static–dynamic loads. In this study, dynamic flattened Brazilian disc (FBD) tensile tests were conducted on naturally saturated sandstone under static pre-tension using a modified split-Hopkinson pressure bar (SHPB) device. Combining high-speed photographs with digital image correlation (DIC) technology, we can observe the variation of strain applied to specimens’ surfaces, including the central crack initiation. The experimental results indicate that the dynamic tensile strength of naturally saturated specimens increases with an increase in loading rate, but with the pre-tension increases, the dynamic strength at a certain loading rate decreases accordingly. Moreover, the dynamic strength of naturally saturated sandstone is found to be lower than that of natural sandstone. The fracture behavior of naturally saturated and natural specimens is similar, and both exhibit obvious tensile cracks. The comprehensive micromechanism of water effects concerning the dynamic tensile behavior of rocks with static preload can be explained by the weakening effects of water on mechanical properties, the water wedging effect, and the Stefan effect. Full article
Show Figures

Graphical abstract

16 pages, 6941 KiB  
Article
Investigation of Mixed-Mode I/II Fracture under Impact Loading Using Split-Hopkinson Pressure Bar
by Fei Wang, Zheming Zhu, Meng Wang, Hao Qiu, Lei Zhou, Ruifeng Liu and Peng Ying
Appl. Sci. 2020, 10(20), 7149; https://doi.org/10.3390/app10207149 - 14 Oct 2020
Cited by 8 | Viewed by 2792
Abstract
Mixed-mode fracture of construction building materials under impact loading is quite common in civil engineering. The investigation of mixed-mode crack propagation behavior is an essential work for fundamental research and engineering application. A variable angle single cleavage semi-circle (VASCSC) specimen was proposed with [...] Read more.
Mixed-mode fracture of construction building materials under impact loading is quite common in civil engineering. The investigation of mixed-mode crack propagation behavior is an essential work for fundamental research and engineering application. A variable angle single cleavage semi-circle (VASCSC) specimen was proposed with which the dynamic fracture test was conducted by using a Split-Hopkinson pressure bar (SHPB). Notably, the mixed-mode crack propagation velocity could be detected by the synchronized crack velocity measuring system. With experimental results, the dynamic initiation stress intensity factors KI and KII were calculated by the experimental-numerical method. Additionally, the crack path of mixed-mode I/II fracture can be predicated precisely by using numerical method. Thus, a comprehensive approach of investigation on mixed-mode I/II fracture under impact loading was illustrated in this paper. The study demonstrates that the mixed-mode I/II crack would transform from complicated mode I/II to pure mode I during crack propagation, and several velocity decelerations induced crack deflection. The dynamic initiation fracture toughness of mixed-mode crack was determined by the experimental-numerical method. The VASCSC specimen has a great potential in investigating mixed-mode fracture problems with the SHPB device. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

18 pages, 4333 KiB  
Article
Study on Dynamic Mechanical Properties and Constitutive Model Construction of TC18 Titanium Alloy
by Changming Zhang, Anle Mu, Yun Wang and Hui Zhang
Metals 2020, 10(1), 44; https://doi.org/10.3390/met10010044 - 25 Dec 2019
Cited by 24 | Viewed by 3578
Abstract
In order to investigate the static and dynamic mechanical properties of TC18 titanium alloy, the quasi-static stress–strain curve of TC18 titanium alloy under room temperature was obtained by DNS 100 electronic universal testing machine (Changchun Institute of Mechanical Science Co., Ltd., Changchun, China). [...] Read more.
In order to investigate the static and dynamic mechanical properties of TC18 titanium alloy, the quasi-static stress–strain curve of TC18 titanium alloy under room temperature was obtained by DNS 100 electronic universal testing machine (Changchun Institute of Mechanical Science Co., Ltd., Changchun, China). Meanwhile, the flow stress–strain curves under different temperatures and strain rates are analyzed by split Hopkinson pressure bar (SHPB) device with synchronous assembly system. On the basis of the two experimental data, the JC constitutive model under the combined action of high temperature and impact load is established using the linear least squares method. The results show the following: the yield strength and flow stress of TC18 titanium alloy increase slowly with the increase of the strain rate, and the strain value corresponding to the yield strength is reduced. With the increase of strain, the flow stress increases at first and then decreases at different temperatures. The strain value corresponding to the transition point rises with the temperature increase, and the corresponding stress value remains basically unchanged. With the increase of experimental temperature, the flow stress shows a downward trend, and the JC constitutive model can predict the plastic flow stress well. Full article
Show Figures

Figure 1

17 pages, 4497 KiB  
Article
Effect of Silica Fume in Concrete on Mechanical Properties and Dynamic Behaviors under Impact Loading
by Shijun Zhao and Qing Zhang
Materials 2019, 12(19), 3263; https://doi.org/10.3390/ma12193263 - 7 Oct 2019
Cited by 23 | Viewed by 3770
Abstract
The effect of silica fume (SF) in concrete on mechanical properties and dynamic behaviors was experimentally studied by split Hopkinson pressure bar (SHPB) device with pulse shaping technique. Three series of concrete with 0, 12%, and 16% SF as a cement replacement by [...] Read more.
The effect of silica fume (SF) in concrete on mechanical properties and dynamic behaviors was experimentally studied by split Hopkinson pressure bar (SHPB) device with pulse shaping technique. Three series of concrete with 0, 12%, and 16% SF as a cement replacement by weight were produced firstly. Then the experimental procedure for dynamic tests of concrete specimens with SF under a high loading rate was presented. Considering the mechanical performance and behaviors of the concrete mixtures, those tests were conducted under five different impact velocities. The experimental results clearly show concrete with different levels of SF is a strain-rate sensitive material. The tensile strength under impact loading of the tested specimens was generally improved with the increasing content of SF levels in concrete. Additionally, the tensile strength under impact loading of the concrete enhances with the increase of the strain rates. Finally, failure modes, dynamic tensile strength, dynamic increase factor (DIF), and critical strain are discussed and analyzed. These investigations are useful to improve the understanding of the effect of SF in concrete and guide the design of concrete structures. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

15 pages, 8741 KiB  
Article
Modification of Residual Stresses in Laser Additive Manufactured AlSi10Mg Specimens Using an Ultrasonic Peening Technique
by Xiaodong Xing, Xiaoming Duan, Xiaojing Sun, Haijun Gong, Liquan Wang and Fengchun Jiang
Materials 2019, 12(3), 455; https://doi.org/10.3390/ma12030455 - 1 Feb 2019
Cited by 35 | Viewed by 5190
Abstract
Ultrasonic peening treatment (UPT) has been proved to be an effective way of improving residual stresses distribution in weld structures. Thus, it shows a great potential in stress modification for metal parts fabricated by additive manufacturing technology. In this paper, an investigation into [...] Read more.
Ultrasonic peening treatment (UPT) has been proved to be an effective way of improving residual stresses distribution in weld structures. Thus, it shows a great potential in stress modification for metal parts fabricated by additive manufacturing technology. In this paper, an investigation into the ultrasonic treatment process of AlSi10Mg specimens fabricated by selective laser melting (SLM) process was conducted by means of experimental and numerical simulation. The specimens were prepared using a SLM machine, and UPT on their top surface was carried out. The residual stresses were measured with an X-ray stress diffraction device before and after UPT. Meanwhile, a finite element simulation method for analyzing the influence of UPT on the residual stress field of specimens was proposed and validated by experiments. Firstly, the thermal mechanical coupling numerical simulation of the SLM process of the specimen was carried out in order to obtain the residual stress distribution in the as-fabricated specimen. Then, the transient dynamic finite element simulation model of the UPT process of the specimen was established, and the UPT effect analysis was implemented. In the UPT simulation, the residual stress was applied as a pre-stress on the specimen, and the specimen’s material mechanical property was described by the Johnson–Cook model, whose parameters were determined by Split Hopkinson Pressure Bar (SHPB) experiment. The residual stress distribution before and after UPT predicted by the finite element model agree well with the measurement results. This paper concludes with a discussion of the effects of ultrasonic peening time, as well as the frequency and amplitude of the peening needle on residual stress. Full article
Show Figures

Figure 1

Back to TopTop