Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,532)

Search Parameters:
Keywords = SHADE

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 766 KB  
Article
Sustainable Swarm Intelligence: Assessing Carbon-Aware Optimization in High-Performance AI Systems
by Vasileios Alevizos, Nikitas Gerolimos, Eleni Aikaterini Leligkou, Giorgos Hompis, Georgios Priniotakis and George A. Papakostas
Technologies 2025, 13(10), 477; https://doi.org/10.3390/technologies13100477 (registering DOI) - 21 Oct 2025
Abstract
Carbon-aware AI demands clear links between algorithmic choices and verified emission outcomes. This study measures and steers the carbon footprint of swarm-based optimization in HPC by coupling a job-level Emission Impact Metric with sub-minute power and grid-intensity telemetry. Across 480 runs covering 41 [...] Read more.
Carbon-aware AI demands clear links between algorithmic choices and verified emission outcomes. This study measures and steers the carbon footprint of swarm-based optimization in HPC by coupling a job-level Emission Impact Metric with sub-minute power and grid-intensity telemetry. Across 480 runs covering 41 algorithms, we report grams CO2 per successful optimisation and an efficiency index η (objective gain per kg CO2). Results show faster swarms achieve lower integral energy: Particle Swarm emits 24.9 g CO2 per optimum versus 61.3 g for GridSearch on identical hardware; Whale and Cuckoo approach the best η frontier, while L-SHADE exhibits front-loaded power spikes. Conservative scale factor schedules and moderate populations reduce emissions without degrading fitness; idle-node suppression further cuts leakage. Agreement between CodeCarbon, MLCO2, and vendor telemetry is within 1.8%, supporting reproducibility. The framework offers auditable, runtime controls (throttle/hold/release) that embed carbon objectives without violating solution quality budgets. Full article
Show Figures

Figure 1

24 pages, 5277 KB  
Article
Biomimetic Shading Systems: Integrating Motorised and Moisture-Responsive Actuation for Adaptive Façades
by Negin Imani, Marie-Joo Le Guen, Nathaniel Bedggood, Caelum Betteridge, Christian Gauss and Maxime Barbier
Biomimetics 2025, 10(10), 711; https://doi.org/10.3390/biomimetics10100711 - 20 Oct 2025
Abstract
A biomimetic adaptive façade applies natural principles to building design using shading devices that dynamically respond to environmental changes, enhancing daylight, thermal comfort, and energy efficiency. While motorised systems offer precision through sensors and mechanical actuation, they consume energy and are complex. In [...] Read more.
A biomimetic adaptive façade applies natural principles to building design using shading devices that dynamically respond to environmental changes, enhancing daylight, thermal comfort, and energy efficiency. While motorised systems offer precision through sensors and mechanical actuation, they consume energy and are complex. In contrast, passively actuated systems use smart materials that respond to environmental stimuli, offering simpler and more sustainable operation, but often lack responsiveness to dynamic conditions. This study explores a sequential approach by initially developing motorised shading concepts before transitioning to a passive actuation strategy. In the first phase, nine mechanically actuated shading device concepts were designed, inspired by the opening and closing behaviour of plant stomata, and evaluated on structural robustness, actuation efficiency, ease of installation, and visual integration. One concept was selected for further development. In the second phase, a biocomposite made of polylactic acid (PLA) and regenerated cellulose fibres was used for Fused Deposition Modelling (FDM) to fabricate 3D-printed modules with passive, moisture-responsive actuation. The modules underwent environmental testing, demonstrating repeatable shape changes in response to heat and moisture. Moisture application increased the range of motion, and heating led to flap closure as water evaporated. Reinforcement and layering strategies were also explored to optimise movement and minimise unwanted deformation, highlighting the material’s potential for sustainable, responsive façade systems. Full article
(This article belongs to the Special Issue Biomimetic Adaptive Buildings)
Show Figures

Figure 1

20 pages, 2682 KB  
Article
Inversion of Land Surface Temperature and Prediction of Geothermal Anomalies in the Gonghe Basin, Qinghai Province, Based on the Normalized Shade Vegetation Index
by Zongren Li, Rongfang Xin, Xing Zhang, Shengsheng Zhang, Delin Li, Xiaomin Li, Xin Zheng and Yuanyuan Fu
Remote Sens. 2025, 17(20), 3485; https://doi.org/10.3390/rs17203485 - 20 Oct 2025
Abstract
Against the backdrop of global energy transition, geothermal energy has emerged as a critical renewable resource, yet its exploration remains challenging due to uneven subsurface distribution and complex surface conditions. This study pioneers a novel framework integrating the Normalized Shaded Vegetation Index (NSVI) [...] Read more.
Against the backdrop of global energy transition, geothermal energy has emerged as a critical renewable resource, yet its exploration remains challenging due to uneven subsurface distribution and complex surface conditions. This study pioneers a novel framework integrating the Normalized Shaded Vegetation Index (NSVI) with radiative transfer-based land surface temperature inversion to detect geothermal anomalies in the Gonghe Basin, Qinghai Province. Using multi-source remote sensing data (GF5 B AHSI, ZY1–02D/E AHSI, and Landsat 9 TIRS), we first constructed NSVI, achieving 97.74% classification accuracy for shadowed vegetation/water bodies (Kappa = 0.9656). This effectively resolved spectral mixing issues in oblique terrain, enhancing emissivity calculations for land surface temperature retrieval. The radiative transfer equation method combined with NSVI-derived parameters yielded high-precision land surface temperature estimates (RMSE = 2.91 °C; R2 = 0.963 against Landsat 9 products), revealing distinct thermal stratification: bright vegetation (41.31 °C) > shadowed vegetation (38.43 °C) > water (33.56 °C). Geothermal anomalies were identified by integrating temperature thresholds (>45.80 °C), 7 km fault buffers, and concealed Triassic granite constraints, pinpointing high-potential zones covering 0.12% of the basin. These zones are concentrated in central Gonghe, northern Guinan, and central-northern Guide counties. The framework provides a replicable solution for geothermal prospecting in topographically complex regions, with implications for optimizing exploration across the Gonghe Basin. Full article
(This article belongs to the Special Issue Remote Sensing for Land Surface Temperature and Related Applications)
Show Figures

Figure 1

5 pages, 959 KB  
Interesting Images
Can Shading Drive the Transition from Black Band Disease to a Cyanobacterial Patch-like Stage in Montipora Corals?
by Rocktim Ramen Das, Parviz Tavakoli-Kolour, Sen-Lin Tang and James Davis Reimer
Diversity 2025, 17(10), 732; https://doi.org/10.3390/d17100732 - 18 Oct 2025
Viewed by 114
Abstract
Black band disease (BBD), which overgrows and kills scleractinian coral, is known to have various phases. The initial phase is the cyanobacterial patches (CPs) phase, followed by the intermediate phase (IP), and finally the mature BBD phase. Here, we hypothesize, pending further evidence, [...] Read more.
Black band disease (BBD), which overgrows and kills scleractinian coral, is known to have various phases. The initial phase is the cyanobacterial patches (CPs) phase, followed by the intermediate phase (IP), and finally the mature BBD phase. Here, we hypothesize, pending further evidence, that when coral fragments infected with mature BBD are placed under shaded conditions, the BBD band shifts into a CP-like condition, with the shading causing a complex shift in the microbial consortium. While these microbial changes are beyond the scope of this paper, the photographs within provide interesting potential insights into this transition. Full article
(This article belongs to the Collection Interesting Images from the Sea)
Show Figures

Figure 1

14 pages, 1738 KB  
Article
Determination of the Resistance of Tolerant Hybrids of Buxus to the Pathogen Cylindrocladium buxicola and the Effect of Nutrition and Climatic Conditions on Leaf Color
by Ivana Šafránková, Jiří Souček, Marie Machanderová, Petr Salaš, Jana Burgová and Ludmila Holková
Horticulturae 2025, 11(10), 1256; https://doi.org/10.3390/horticulturae11101256 - 17 Oct 2025
Viewed by 124
Abstract
Boxwood (Buxus sp.) plays a key role in historical gardens due to its evergreen foliage and resilience. However, recent outbreaks of disease caused by fungal pathogens such as Calonectria spp. (C. pseudonaviculata, C. henricotiae) and Pseudonectria spp. (P. [...] Read more.
Boxwood (Buxus sp.) plays a key role in historical gardens due to its evergreen foliage and resilience. However, recent outbreaks of disease caused by fungal pathogens such as Calonectria spp. (C. pseudonaviculata, C. henricotiae) and Pseudonectria spp. (P. buxi, P. foliicola), as well as pest pressures from Cydalima perspectalis, have led to significant losses. This study examined 100 boxwood plantings across the Czech Republic to evaluate pest and disease occurrence. Further, six modern boxwood cultivars from the groups of BetterBuxus® and NewGen® were tested in field trials under the climatic conditions of the Czech Republic, focusing on their resistance to abiotic stress and foliage color retention throughout the year. Laboratory trials confirmed all cultivars were susceptible to C. pseudonaviculata, with ‘Renaissance’ showing the slowest disease progression. Field assessments under two contrasting management regimes (“Minimalistic” and “Pampered”) indicated sporadic boxwood blight incidence but frequent Volutella blight outbreaks, particularly where plants suffered frost stress. Leaf color, an important esthetic trait, was evaluated using Munsell charts and measuring the relative chlorophyll content. ‘Skylight’ most closely matched Buxus sempervirens in the shade of green and winter color. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Graphical abstract

20 pages, 2086 KB  
Article
Transforming Public Space with Nature-Based Solutions: Lessons from Participatory Regeneration in Lorca, Spain
by Dionysis Latinopoulos, Sara Pelaez-Sanchez, Patricia Briega Martos, Enrique Berruezo and Pablo Outón
Land 2025, 14(10), 2066; https://doi.org/10.3390/land14102066 - 16 Oct 2025
Viewed by 277
Abstract
Mediterranean cities are increasingly exposed to climate hazards, water scarcity, and social vulnerabilities, demanding integrative approaches for sustainable regeneration. This study examines how participatory governance and co-design processes can shape nature-based solutions (NbS) for climate resilience in Barrios Altos, a socially and environmentally [...] Read more.
Mediterranean cities are increasingly exposed to climate hazards, water scarcity, and social vulnerabilities, demanding integrative approaches for sustainable regeneration. This study examines how participatory governance and co-design processes can shape nature-based solutions (NbS) for climate resilience in Barrios Altos, a socially and environmentally fragile district of Lorca, Spain. Within the framework of the NATUR-W project, the interventions reimagine a degraded hillside and adjacent public spaces into a multifunctional urban forest, complemented by green retrofits of social housing and the adaptive reuse of a historic prison. Methods combined baseline community assessments, stakeholder mapping, co-design workshops, and the establishment of a multi-stakeholder governance board, ensuring inclusive participation from residents, civil society, and municipal authorities. Results demonstrate that the co-created design addressed key community priorities—such as shade provision, safe accessibility, cultural venues, and child-friendly spaces—while integrating sustainable water management systems for irrigation and stormwater control. The participatory process enhanced local ownership, balanced technical feasibility with community aspirations, and fostered governance structures that increase transparency and accountability. Overall, the study illustrates how NbS, when embedded in collaborative governance frameworks, can deliver climate, social, and cultural co-benefits while advancing resilient, inclusive, and human-scale urban environments. Full article
Show Figures

Figure 1

18 pages, 4681 KB  
Article
Functional Morphology and Early Growth of Seedlings of Tropical Species
by Georgina Vargas-Simón, Marivel Domínguez-Domínguez, Reinaldo Pire and Pablo Martínez-Zurimendi
Ecologies 2025, 6(4), 69; https://doi.org/10.3390/ecologies6040069 - 15 Oct 2025
Viewed by 471
Abstract
This study was undertaken to evaluate tropical species: Calophyllum brasiliense, Bravaisia integerrima, Roseodendron donnell-smithii, Piscidia piscipula, Enterolobium cyclocarpum, and Dialium guianense. The seeds were arranged in a completely randomized design under conditions of 50% shading and analyzed [...] Read more.
This study was undertaken to evaluate tropical species: Calophyllum brasiliense, Bravaisia integerrima, Roseodendron donnell-smithii, Piscidia piscipula, Enterolobium cyclocarpum, and Dialium guianense. The seeds were arranged in a completely randomized design under conditions of 50% shading and analyzed using the repeated measures method. In the experiment, growth was evaluated for six months after germination, and seedling morphology and phyllotaxis were described. The parameters stem height (SH), SH relative growth rate (SRGR), stem basal diameter (BD), BD relative growth rate (DRGR), number of juvenile leaves, and survivorship were recorded. Regression curves were generated with the SH and BD data. Seeds with greater length values produced seedlings with improved morphological traits, E. cyclocarpum and C. brasiliense, regardless of their functional morphology. Germination began 7 to 10 days after sowing. The average survivorship was 70.1% at six months. The highest values in seedling SH at six months were obtained in E. cyclocarpum and C. brasiliense. The number of leaves was greatest in C. brasiliense and D. guianense. Considering the features desirable for a nursery plant, production of the following species is considered feasible: B. integerrima, C. brasiliense, Piscidia piscipula, and Enterolobium cyclocarpum. The regression curves showed the tendency of the plants to present more rapid growth in the first months after germination. Full article
Show Figures

Figure 1

32 pages, 4380 KB  
Article
Humanizing Sustainable Corridors Framework (HSCF): A User-Centered Approach in Corridor Planning—The Case of Al-Hada Ring Road
by Abdullah Saeed Karban and Abdulrahman Abdulaziz Majrashi
Sustainability 2025, 17(20), 9117; https://doi.org/10.3390/su17209117 - 14 Oct 2025
Viewed by 383
Abstract
This study introduces the Humanizing Sustainable Corridors Framework (HSCF), developed to guide the transformation of Car-Oriented corridors into Human-centered, sustainable spaces. Rooted in a human-centered approach, the framework emphasizes enhancing social interaction, addressing environmental needs, and supporting local economies through urban design. The [...] Read more.
This study introduces the Humanizing Sustainable Corridors Framework (HSCF), developed to guide the transformation of Car-Oriented corridors into Human-centered, sustainable spaces. Rooted in a human-centered approach, the framework emphasizes enhancing social interaction, addressing environmental needs, and supporting local economies through urban design. The framework was applied to the Al-Hada Ring Road in Taif, Saudi Arabia, as a case study. A mixed-methods approach was utilized, incorporating expert field observations, interviews with 15 stakeholders, and a web-based survey that yielded 455 valid responses. The findings revealed that 78% of respondents prioritized natural landscapes, 72% highlighted the importance of walkability, and 69% emphasized the need for shaded areas and culturally rooted design elements that enhance comfort and safety. These results demonstrate that planning strategies reflecting local climate conditions, user behavior, and cultural identity can increase corridor sustainability and resilience by over 65% in terms of perceived user satisfaction and safety. The HSCF offers a structured, adaptable model for planners and decision-makers seeking to align spatial design with community needs and national development goals. Full article
(This article belongs to the Special Issue Advanced Studies in Sustainable Urban Planning and Urban Development)
Show Figures

Figure 1

26 pages, 7662 KB  
Article
The Impact of Fixed-Tilt PV Arrays on Vegetation Growth Through Ground Sunlight Distribution at a Solar Farm in Aotearoa New Zealand
by Matlotlo Magasa Dhlamini and Alan Colin Brent
Energies 2025, 18(20), 5412; https://doi.org/10.3390/en18205412 - 14 Oct 2025
Viewed by 150
Abstract
The land demands of ground-mounted PV systems raise concerns about competition with agriculture, particularly in regions with limited productive farmland. Agrivoltaics, which integrates solar energy generation with agricultural use, offers a potential solution. While agrivoltaics has been extensively studied, less is known about [...] Read more.
The land demands of ground-mounted PV systems raise concerns about competition with agriculture, particularly in regions with limited productive farmland. Agrivoltaics, which integrates solar energy generation with agricultural use, offers a potential solution. While agrivoltaics has been extensively studied, less is known about its feasibility and impacts in complex temperate maritime climates such as Aotearoa New Zealand, in particular, the effects of PV-induced shading on ground-level light availability and vegetation. This study modelled the spatial and seasonal distribution of ground-level irradiation and Photosynthetic Photon Flux Density (PPFD) beneath fixed-tilt PV arrays at the Tauhei solar farm in the Waikato region. It quantifies and maps PPFD to evaluate light conditions and its implications for vegetation growth. The results reveal significant spatial and temporal variation over a year. The under-panel ground irradiance is lower than open-field GHI by 18% (summer), 22% (spring), 16% (autumn), and 3% (winter), and this seasonal reduction translates into PPFD gradients. This variation supports a precision agrivoltaic strategy that zones land based on irradiance levels. By aligning crop types and planting schedules with seasonal light profiles, land productivity and ecological value can be improved. These findings are highly applicable in Aotearoa New Zealand’s pasture-based systems and show that effective light management is critical for agrivoltaic success in temperate maritime climates. This is, to our knowledge, the first spatial PPFD zoning analysis for fixed-tilt agrivoltaics, linking year-round ground-light maps to crop/pasture suitability. Full article
(This article belongs to the Special Issue Solar Energy, Governance and CO2 Emissions)
Show Figures

Figure 1

12 pages, 2340 KB  
Article
The Effect of Light on Plant Growth and Physiology of Acmella radicans and A. paniculata in China
by Xiaohan Wu, Fengping Zheng, Zhijie Wang, Qiurui Li, Kexin Yang, Gaofeng Xu, Yunhai Yang, David Roy Clements, Shaosong Yang, Bin Yao, Guimei Jin, Shicai Shen, Fudou Zhang and Michael Denny Day
Diversity 2025, 17(10), 709; https://doi.org/10.3390/d17100709 - 13 Oct 2025
Viewed by 419
Abstract
Acmella radicans (Jacquin) R.K.Jansen is an annual herb native to Central America. In China, it is becoming increasingly invasive and often co-occurs with the native congener A. paniculata (Wall. ex DC.) R.K.Jansen in some habitats. In order to understand the invasion mechanism of [...] Read more.
Acmella radicans (Jacquin) R.K.Jansen is an annual herb native to Central America. In China, it is becoming increasingly invasive and often co-occurs with the native congener A. paniculata (Wall. ex DC.) R.K.Jansen in some habitats. In order to understand the invasion mechanism of A. radicans, we investigated the growth parameters of both the invasive A. radicans and the native congener, A. paniculata, under different light conditions (5%, 25%, 50%, 75%, and 100% of light availability) using potted plants in a glasshouse. Light level, plant species, and their interaction were significant, with plant species generally having a greater effect than light level. Acmella radicans and A. paniculata showed great phenotypic plasticity to various light intensities and had a similar trend with increased shade. The plasticity indices of all parameters of A. radicans, except for branch length and inflorescence number, were greater than those of A. paniculata under the same light intensity. The physiological parameters for A. radicans under both favorable (high light intensity) and unfavorable (low light intensity) conditions showed less inhibition than those of A. paniculata. All these responses indicated that A. radicans had greater phenotypic plasticity and higher adaptability to low light, which may contribute to its invasion success. Full article
(This article belongs to the Special Issue Ecology, Distribution, Impacts, and Management of Invasive Plants)
Show Figures

Figure 1

25 pages, 8808 KB  
Article
Beyond Shade Provision: Pedestrians’ Visual Perception of Street Tree Canopy Structure Characteristics in Guangzhou City, China
by Jiawei Wang, Jie Hu and Yuan Ma
Forests 2025, 16(10), 1576; https://doi.org/10.3390/f16101576 - 13 Oct 2025
Viewed by 319
Abstract
This study examines the impact of canopy structural characteristics on pedestrians’ visual perception and psychophysiological responses along four roads in the subtropical city of Guangzhou: Huadi Avenue, Jixiang Road, Yuejiang Middle Road, and Huan Dao Road. A Canopy Structural Index (CSI) was innovatively [...] Read more.
This study examines the impact of canopy structural characteristics on pedestrians’ visual perception and psychophysiological responses along four roads in the subtropical city of Guangzhou: Huadi Avenue, Jixiang Road, Yuejiang Middle Road, and Huan Dao Road. A Canopy Structural Index (CSI) was innovatively developed by integrating tree height, crown width, diffuse non-interceptance, and leaf area index, establishing a five-tier quantitative grading system. The study used multimodal data fusion techniques combined with heart rate variability (HRV) analysis and eye-tracking experiments to quantitatively decipher the patterns of autonomic nervous regulation and visual attention allocation under different levels of CSI. The results demonstrate that CSI levels are significantly correlated with psychological relaxation states: as CSI levels increase, time-domain HRV metrics (SDNN and RMSSD) rise by 15%–43%, while the frequency-domain metric (LF/HF) decreases by 31%, indicating enhanced parasympathetic activity and a transition from stress to relaxation. Concurrently, the allocation of visual attention toward canopies intensifies. The proportion of fixation duration increases to nearly 50%, and the duration of the first fixation extends by 0.3–0.8 s. The study proposes CSI ≤ 0.15 as an optimization threshold, offering scientific guidance for designing and pruning subtropical urban street tree canopies. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Graphical abstract

14 pages, 10940 KB  
Article
Living Safely: Low Road Mortality in Squamates near Burgas, Bulgaria
by Nikolay Natchev, Pavlina Marinova, Ivan Telenchev, Nikolay Nedyalkov, Aysun Ali and Teodora Koynova
Ecologies 2025, 6(4), 68; https://doi.org/10.3390/ecologies6040068 - 13 Oct 2025
Viewed by 126
Abstract
The study represents the results of a long-term (2016 to 2021) survey on the herpetofauna inhabiting the vicinity of a heavily loaded section of the road E 87. The investigated road splits a Protected site from the net NATURA 2000 BG0000271 “Mandra-Poda”. The [...] Read more.
The study represents the results of a long-term (2016 to 2021) survey on the herpetofauna inhabiting the vicinity of a heavily loaded section of the road E 87. The investigated road splits a Protected site from the net NATURA 2000 BG0000271 “Mandra-Poda”. The Protected site is known for its high biodiversity and its dense populations of vertebrates, which thrive in the area. Directly near the inspected road and on the pavement, we were able to detect five species of snakes, three species of turtles and two species of lizards. Among the squamates, rare observations were made of the European nose-horned viper (Vipera ammodytes), detected twice, and the European glass lizard (Pseudopus apodus), detected three times. Three other species—the Bloched snake (Elaphe sauromates), the Caspian whipsnake (Dolichophis caspius) and the Rhodos green lizard (Lacerta dyplochondrodes)—were found in larger numbers during some of the field surveys and here we provide information concerning the hot moments of their activity in the vicinity of the road. The Grass snakes (Natrix natrix) and the Dice snakes (N. tessellata) formed dense groups in the direct vicinity (closer than one and half meters) of the investigated road section. Despite the high number of recorded snakes and lizards, only isolated cases of vehicle collisions were observed. We suggest that the local squamate population had developed a complex of ethological specifics related to feeding, basking, shading, and copulation, which helped them to benefit from the road and avoid the risks related to the heavy traffic. Full article
Show Figures

Figure 1

39 pages, 1466 KB  
Article
Empirical Evaluation of an Elitist Replacement Strategy for Differential Evolution with Micro-Populations
by Irving Luna-Ortiz, Alejandro Rodríguez-Molina, Miguel Gabriel Villarreal-Cervantes, Mario Aldape-Pérez, Alam Gabriel Rojas-López and Jesús Aldo Paredes-Ballesteros
Biomimetics 2025, 10(10), 685; https://doi.org/10.3390/biomimetics10100685 - 12 Oct 2025
Viewed by 213
Abstract
This paper introduces a variant of differential evolution with micro-populations, called μ-DE-ERM, which incorporates a periodic elitist replacement mechanism with the aim of preserving diversity without the need to measure it explicitly. The proposed algorithm is designed for scenarios with reduced evaluation [...] Read more.
This paper introduces a variant of differential evolution with micro-populations, called μ-DE-ERM, which incorporates a periodic elitist replacement mechanism with the aim of preserving diversity without the need to measure it explicitly. The proposed algorithm is designed for scenarios with reduced evaluation budgets, where efficiency and convergence stability are critical. Its performance is evaluated on CEC 2005 and CEC 2017 benchmark suites, covering unimodal, multimodal, hybrid, and composition functions, as well as on two real-world engineering problems: the identification of dynamic parameters and the tuning of a PID controller for a one-degree-of-freedom robotic manipulator. The comparative analysis shows that μ-DE-ERM achieves competitive or superior results against its predecessors DE and μ-DE, and remains effective when contrasted with advanced algorithms such as L-SHADE and RuGA. Furthermore, additional comparisons with algorithms with competitive replacement mechanisms, μ-DE-Cauchy and μ-DE-Shrink, confirm the robustness of the proposal in real applications, particularly under strict computational constraints. These findings support μ-DE-ERM as a practical and efficient alternative for optimization problems in resource-limited environments, delivering reliable solutions at low computational cost. Full article
(This article belongs to the Special Issue Exploration of Bio-Inspired Computing: 2nd Edition)
Show Figures

Figure 1

17 pages, 6434 KB  
Article
UAV and 3D Modeling for Automated Rooftop Parameter Analysis and Photovoltaic Performance Estimation
by Wioleta Błaszczak-Bąk, Marcin Pacześniak, Artur Oleksiak and Grzegorz Grunwald
Energies 2025, 18(20), 5358; https://doi.org/10.3390/en18205358 - 11 Oct 2025
Viewed by 234
Abstract
The global shift towards renewable energy sources necessitates efficient methods for assessing solar potential in urban areas. Rooftop photovoltaic (PV) systems present a sustainable solution for decentralized energy production; however, their effectiveness is influenced by structural and environmental factors, including roof slope, azimuth, [...] Read more.
The global shift towards renewable energy sources necessitates efficient methods for assessing solar potential in urban areas. Rooftop photovoltaic (PV) systems present a sustainable solution for decentralized energy production; however, their effectiveness is influenced by structural and environmental factors, including roof slope, azimuth, and shading. This study aims to develop and validate a UAV-based methodology for assessing rooftop solar potential in urban areas. The authors propose a low-cost, innovative tool that utilizes a commercial unmanned aerial vehicle (UAV), specifically the DJI Air 3, combined with advanced photogrammetry and 3D modeling techniques to analyze rooftop characteristics relevant to PV installations. The methodology includes UAV-based data collection, image processing to generate high-resolution 3D models, calibration and validation against reference objects, and the estimation of solar potential based on rooftop characteristics and solar irradiance data using the proposed Model Analysis Tool (MAT). MAT is a novel solution introduced and described for the first time in this study, representing an original computational framework for the geometric and energetic analysis of rooftops. The innovative aspect of this study lies in combining consumer-grade UAVs with automated photogrammetry and the MAT, creating a low-cost yet accurate framework for rooftop solar assessment that reduces reliance on high-end surveying methods. By being presented in this study for the first time, MAT expands the methodological toolkit for solar potential evaluation, offering new opportunities for urban energy research and practice. The comparison of PVGIS and MAT shows that MAT consistently predicts higher daily energy yields, ranging from 9 to 12.5% across three datasets. The outcomes of this study contribute to facilitating the broader adoption of solar energy, thereby supporting sustainable energy transitions and climate neutrality goals in the face of increasing urban energy demands. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Graphical abstract

13 pages, 1000 KB  
Article
Shrinkage, Degree of Conversion, Water Sorption and Solubility, and Mechanical Properties of Novel One-Shade Universal Composite
by Long Ling, Theresa Lai, Pei-Ting Chung and Raj Malyala
Polymers 2025, 17(20), 2728; https://doi.org/10.3390/polym17202728 - 11 Oct 2025
Viewed by 320
Abstract
This study aims to evaluate the shrinkage, degree of conversion, water sorption and solubility, and mechanical properties of a newly developed one-shade universal composite and compare it with five other commercially available universal composites with one or multiple shades. Our proprietary resin and [...] Read more.
This study aims to evaluate the shrinkage, degree of conversion, water sorption and solubility, and mechanical properties of a newly developed one-shade universal composite and compare it with five other commercially available universal composites with one or multiple shades. Our proprietary resin and filler technologies developed the experimental one-shade universal composite (Experimental). Volumetric shrinkage was determined using the AcuVol video imaging method (n = 5). Degree of conversion was measured using FTIR (n = 5). Water sorption and solubility (15 × 1 mm, n = 5) and flexural strength and modulus (2 × 2 × 25 mm, n = 5) were measured according to ISO-4049. Diametral tensile strength (6 × 3 mm, n = 8) was tested according to ANSI/ADA-Specification #27. The data were analyzed using one-way ANOVA and post hoc Tukey tests (p ≤ 0.05). Like Clearfil Majesty ES-2, Experimental showed lower or significantly lower volumetric shrinkage than other composites. Experimental exhibited a considerably higher degree of conversion and high flexural modulus compared to the others. However, there are no significant differences in flexural strength among these universal composites except for Omnichroma. Experimental also displayed significantly higher diametral tensile strength than the others, except similar to Filtek Supreme Ultra. Experimental has the lowest values of water sorption and solubility among the composites tested. The experimental universal composite demonstrated improved or comparable physical and mechanical properties compared to commercially available one-shade universal composites or multi-shade conventional universal composites, which is of significance for the clinical performance of dental restorations. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

Back to TopTop