Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (172)

Search Parameters:
Keywords = SH waves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2075 KiB  
Article
Quantifying Polar Mesospheric Clouds Thermal Impact on Mesopause
by Arseniy Sokolov, Elena Savenkova, Andrey Koval, Nikolai Gavrilov, Karina Kravtsova, Kseniia Didenko and Tatiana Ermakova
Atmosphere 2025, 16(8), 922; https://doi.org/10.3390/atmos16080922 - 30 Jul 2025
Viewed by 278
Abstract
The article is focused on the quantitative assessment of the thermal impact of polar mesospheric clouds (PMCs) on the mesopause caused by the emission of absorbed solar and terrestrial infrared (IR) radiation by cloud particles. For this purpose, a parameterization of mesopause heating [...] Read more.
The article is focused on the quantitative assessment of the thermal impact of polar mesospheric clouds (PMCs) on the mesopause caused by the emission of absorbed solar and terrestrial infrared (IR) radiation by cloud particles. For this purpose, a parameterization of mesopause heating by PMC crystals has been developed, the main feature of which is to incorporate the thermal properties of ice and the interaction of cloud particles with the environment. Parametrization is based on PMCs zero-dimensional (0-D) model and uses temperature, pressure, and water vapor data in the 80–90 km altitude range retrieved from Solar Occultation for Ice Experiment (SOFIE) measurements. The calculations are made for 14 PMC seasons in both hemispheres with the summer solstice as the central date. The obtained results show that PMCs can make a significant contribution to the heat balance of the upper atmosphere, comparable to the heating caused, for example, by the dissipation of atmospheric gravity waves (GWs). The interhemispheric differences in heating are manifested mainly in the altitude structure: in the Southern Hemisphere (SH), the area of maximum heating values is 1–2 km higher than in the Northern Hemisphere (NH), while quantitatively they are of the same order. The most intensive heating is observed at the lower boundary of the minimum temperature layer (below 150 K) and gradually weakens with altitude. The NH heating median value is 5.86 K/day, while in the SH it is 5.24 K/day. The lowest values of heating are located above the maximum of cloud ice concentration in both hemispheres. The calculated heating rates are also examined in the context of the various factors of temperature variation in the observed atmospheric layers. It is shown in particular that the thermal impact of PMC is commensurate with the influence of dissipating gravity waves at heights of the mesosphere and lower thermosphere (MLT), which parameterizations are included in all modern numerical models of atmospheric circulation. Hence, the developed parameterization can be used in global atmospheric circulation models for further study of the peculiarities of the thermodynamic regime of the MLT. Full article
(This article belongs to the Special Issue Observations and Analysis of Upper Atmosphere (2nd Edition))
Show Figures

Figure 1

16 pages, 2709 KiB  
Perspective
Fentanyl Research: Key to Fighting the Opioid Crisis
by Cristina Rius, Antonio Eleazar Serrano-López, Rut Lucas-Domínguez, Andrés Pandiella-Dominique, Carlos García-Zorita and Juan Carlos Valderrama-Zurián
J. Clin. Med. 2025, 14(15), 5187; https://doi.org/10.3390/jcm14155187 - 22 Jul 2025
Viewed by 492
Abstract
Background/Objective: Fentanyl plays a pivotal role in the opioid epidemic, defined by four waves of overdose deaths. To analyse fentanyl research trends, examining its links to mental health, pharmaceutical development, healthcare, diseases, and pathophysiology within the broader social and health context of the [...] Read more.
Background/Objective: Fentanyl plays a pivotal role in the opioid epidemic, defined by four waves of overdose deaths. To analyse fentanyl research trends, examining its links to mental health, pharmaceutical development, healthcare, diseases, and pathophysiology within the broader social and health context of the time. Methods: To understand the evolution of scientific publications on fentanyl and its relationship to the opioid crisis, a search using Web of Science Core Collection and PubMed was conducted. A total of 53,670 documents were retrieved related to opioid scientific production, among which 1423 articles (3%) focused specifically on fentanyl. The 21,546 MeSH terms identified in these documents were analysed by publication year and specific fields: Psychiatry and Psychology, Chemicals and Drugs, Healthcare, Diseases, and Phenomena and Processes. R-statistical/FactoMineR libraries were used for the correspondence analysis. Results: In the first overdose death wave, research focused on improving therapies and reducing side effects. The second wave emphasised detoxification methods with naltrexone, methadone, and behavioural therapies. The third wave addressed psychological treatments and HIV-syringe-sharing prevention. The fourth wave prioritised less addictive analogues and understanding consumer profiles to combat the epidemic. Conclusions: Fentanyl research has evolved alongside real-world challenges, reinforcing the connection between patients’ needs, healthcare professionals’ roles, illicit users, policymakers, and the research community’s contributions to addressing both therapeutic use and its broader societal impact. These findings highlight the necessity for an interdisciplinary approach to scientific research integrating prevention, treatment, education, legal reform, and social support, emphasising the need for public health policies and collaborative research to mitigate its impact. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

19 pages, 6291 KiB  
Article
Quantitative Assessment of Bolt Looseness in Beam–Column Joints Using SH-Typed Guided Waves and Deep Neural Network
by Ru Zhang, Xiaodong Sui, Yuanfeng Duan, Yaozhi Luo, Yi Fang and Rui Miao
Appl. Sci. 2025, 15(12), 6425; https://doi.org/10.3390/app15126425 - 7 Jun 2025
Viewed by 444
Abstract
Bolt connections are the primary component of beam–column joints, which frequently become loose during their service life due to environmental factors. Assessing the tightness of bolts is essential for maintaining structural integrity and safety. Although the guided wave method has been proven effective [...] Read more.
Bolt connections are the primary component of beam–column joints, which frequently become loose during their service life due to environmental factors. Assessing the tightness of bolts is essential for maintaining structural integrity and safety. Although the guided wave method has been proven effective for detecting bolt looseness, the severe dispersion properties and complex structure of beam–column joints pose difficulties for the quantitative evaluation of bolt looseness. Therefore, a deep neural network model integrating a convolutional neural network (CNN), long short-term memory (LSTM), and multi-head self-attention mechanism (MHSA) is introduced to identify the degree of looseness in multiple bolts using SH-typed guided waves. The dispersion properties of the I-shaped steel beam were analyzed using the semi-analytical finite element method, and a mode weight coefficient was presented to clarify the mode distribution under different types of external loads. Two pairs of transducers arranged on the same side of the bolt-connected region were utilized to obtain the directly incoming and end-reflected wave packets from four wave propagation paths. The received signals were converted into time–frequency spectra, and the effective components were extracted to form the input pattern for the neural network. Numerical simulations were performed on a beam–column joint with eight bolts, and the number of training samples was increased using data augmentation techniques. The results indicate that the CNN-LSTM-MHSA model can accurately estimate the bolt looseness conditions better than other methods. Noise injection testing was also conducted to investigate the effect of measurement noise. Full article
Show Figures

Figure 1

23 pages, 12136 KiB  
Article
The Alpha/Beta-Hydrolase Fold Superfamily in Brassica napus: Expression Profiles and Functional Implications of Clade-3 BnABH Proteins in Response to Abiotic Stress
by Yahui Ding, Lianqiang Feng, Pu Li, Xindeng Yang, Muzi Li, Hanxuan Liu, Jiamin Xu, Jitong Zhang, Shouwu Sun, Xiaona Zhou, Wenfang Hao, Yanfeng Zhang and Chang-Gen Xie
Int. J. Mol. Sci. 2025, 26(10), 4746; https://doi.org/10.3390/ijms26104746 - 15 May 2025
Cited by 1 | Viewed by 680
Abstract
Alpha/beta hydrolase (ABHs) fold esterase/lipase proteins represent a prominent family within the serine hydrolase (SH) superfamily that includes esterases and lipases and other catalytic and non-catalytic proteins. ABHs play crucial roles in both the fundamental and secondary metabolic pathways, including the synthesis and [...] Read more.
Alpha/beta hydrolase (ABHs) fold esterase/lipase proteins represent a prominent family within the serine hydrolase (SH) superfamily that includes esterases and lipases and other catalytic and non-catalytic proteins. ABHs play crucial roles in both the fundamental and secondary metabolic pathways, including the synthesis and degradation of triacylglycerols (TAGs), key components of plant oils. Despite their importance in oil production, the ABH gene family in the oil crop Brassica napus has not been comprehensively analyzed. In the present study, we identified 777 BnABH genes in the B. napus cultivar ‘Zhongshuang 11’ (ZS11). Phylogenetic analysis categorized these BnABH genes into 10 distinct groups. Twenty-four BnABHs were identified through esterase activity staining and mass spectrometry, 11 of which were classified into clade C3. Examination of the gene and protein structures, expression patterns, and cis-elements of the BnABHs in clade C3 suggested diverse functional roles across different tissues and in response to various environmental stresses. In particular, BnABH205 was highly induced by high temperatures. Subcellular localization analysis revealed that the BnABH205 protein was localized to the plastid. Further analysis revealed five haplotypes within the coding and 3′ untranslated regions of BnABH205 that were significantly associated with seed oil content (SOC). Overall, this study provides a comprehensive understanding of BnABHs and introduces a robust methodology for identifying potential esterase/lipase genes that regulate seed oil content (SOC) in response to environmental hazards, especially heat waves during seed maturation. Full article
(This article belongs to the Special Issue Plant and Environmental Interactions (Abiotic Stress))
Show Figures

Figure 1

10 pages, 7380 KiB  
Communication
Far-Field Topological Structure of the Second Harmonic from Higher-Order Poincaré Sphere Beam
by Yangyang Li, Ziping Zhu, Yuanxiang Wang, Jiantai Dou, Li Fan, Bo Li and Youyou Hu
Photonics 2025, 12(5), 407; https://doi.org/10.3390/photonics12050407 - 24 Apr 2025
Viewed by 422
Abstract
In this paper, the far-field topological structures (FFTSs) of the second harmonic (SH) from higher-order Poincaré sphere (HOPS) beams, including circularly polarized vortex beams (VBs), cylindrically vector beams (CVBs) and elliptically polarized CVBs (EPCVBs), were demonstrated and reported. To begin with, the hidden [...] Read more.
In this paper, the far-field topological structures (FFTSs) of the second harmonic (SH) from higher-order Poincaré sphere (HOPS) beams, including circularly polarized vortex beams (VBs), cylindrically vector beams (CVBs) and elliptically polarized CVBs (EPCVBs), were demonstrated and reported. To begin with, the hidden FFTSs of the SH after propagating the twice Rayleigh range were simulated based on the vectorial coupled wave equations and the Collins formula. Then, the experimental setup was established to achieve the SH from the HOPS by applying two orthogonal 5% MgO: PPLN crystals, the FFTSs of which were demonstrated. The theoretical and experimental results indicate that for the circularly polarized VBs, the FFTSs of the SH still exhibit the 135°-linearly polarized VBs, which is similar to that of the SH in-source plane, because the SH is the eigen-mode of free space, while for the CVBs, the FFTSs of the SH generally show the disappearance of the central dark core, replaced by the maximum light intensity at the center due to the topological phase transition during propagation. Especially of note, for the EPCVBs, the FFTSs of the SH display the maximum light intensity at the center, but the FFTSs in the horizontal and vertical directions reveal rotational symmetry related to the chirality of the EPCVBs. The results reveal the evolution mechanisms of the SH from the HOPS in the far field, which may facilitate the applications of the SH from HOPS beam. Full article
(This article belongs to the Special Issue Fundamentals and Applications of Vortex Beams)
Show Figures

Figure 1

31 pages, 933 KiB  
Review
Modifiable Factors Influencing Disease Flares in Inflammatory Bowel Disease: A Literature Overview of Lifestyle, Psychological, and Environmental Risk Factors
by Lola J. M. Koppelman, Aroha A. Oyugi, P. W. Jeroen Maljaars and Andrea E. van der Meulen-de Jong
J. Clin. Med. 2025, 14(7), 2296; https://doi.org/10.3390/jcm14072296 - 27 Mar 2025
Viewed by 1715
Abstract
Background: A significant concern for patients with Inflammatory Bowel Disease (IBD) is predicting and managing disease flares. While healthcare providers rely on biomarkers, providing conclusive patient advice remains challenging. This review explores the role of lifestyle, psychological health, and environmental exposures in the [...] Read more.
Background: A significant concern for patients with Inflammatory Bowel Disease (IBD) is predicting and managing disease flares. While healthcare providers rely on biomarkers, providing conclusive patient advice remains challenging. This review explores the role of lifestyle, psychological health, and environmental exposures in the prediction and management of IBD flares. Methods: This review followed PRISMA guidelines (2020). A structured search was conducted in PubMed for articles published between 2012 and 2024, using free and Medical Subject Heading (MeSH) terms for predicting factors in IBD. Inclusion criteria included studies reporting primary data on modifiable clinical or environmental predictors of IBD relapse, excluding studies on post-operative investigations, treatment cessation, and pediatric or pregnant populations. The Mixed Method Appraisal Tool (MMAT) was used to assess the quality of the studies. Results: Out of 2287 identified citations, 58 articles were included. Several modifiable factors influencing disease flares were identified, including psychological stress, sleep disturbances, smoking, and nutrition. Poor sleep quality and mental health were linked to increased flare risks, while smoking was associated with higher relapse rates in Crohn’s disease. Environmental exposures, such as heat waves and high-altitude regions, also contributed. Predictive models integrating clinical, lifestyle, and psychological factors showed promising accuracy but require further refinement. Limitations of this review include the potential for publication bias, variability in flare definitions, and limited sample sizes Conclusions: Key predictors of IBD flares include dietary factors, psychological stress, poor sleep quality, and pharmacological influences. Personalized approaches integrating these predictors can optimize disease control and improve patient outcomes. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Show Figures

Figure 1

16 pages, 7015 KiB  
Article
Laterally Excited Bulk Acoustic Wave Resonators with Rotated Electrodes Using X-Cut LiNbO3 Thin-Film Substrates
by Jieyu Liu, Wenjuan Liu, Zhiwei Wen, Min Zeng, Yao Cai and Chengliang Sun
Sensors 2025, 25(6), 1740; https://doi.org/10.3390/s25061740 - 11 Mar 2025
Viewed by 1049
Abstract
With the development of piezoelectric-on-insulator (POI) substrates, X-cut LiNbO3 thin-film resonators with interdigital transducers are widely investigated due to their adjustable resonant frequency (fs) and effective electromechanical coupling coefficient (Keff2). This paper presents [...] Read more.
With the development of piezoelectric-on-insulator (POI) substrates, X-cut LiNbO3 thin-film resonators with interdigital transducers are widely investigated due to their adjustable resonant frequency (fs) and effective electromechanical coupling coefficient (Keff2). This paper presents an in-depth study of simulations and measurements of laterally excited bulk acoustic wave resonators based on an X-cut LiNbO3/SiO2/Si substrate and a LiNbO3 thin film to analyze the effects of electrode angle rotation (θ) on the modes, fs, and Keff2. The rotated θ leads to different electric field directions, causing mode changes, where the resonators without cavities are longitudinal leaky SAWs (LLSAWs, θ = 0°) and zero-order shear horizontal SAWs (SH0-SAWs, θ = 90°) and the resonators with cavities are zero-order-symmetry (S0) lateral vibrating resonators (LVRs, θ = 0°) and SH0 plate wave resonators (PAW, θ = 90°). The resonators are fabricated based on a 400 nm X-cut LiNbO3 thin-film substrate, and the measured results are consistent with those from the simulation. The fabricated LLSAW and SH0-SAW without cavities show a Keff2 of 1.62% and 26.6% and a Bode-Qmax of 1309 and 228, respectively. Meanwhile, an S0 LVR and an SH0-PAW with cavities present a Keff2 of 4.82% and 27.66% and a Bode-Qmax of 3289 and 289, respectively. In addition, the TCF with a different rotated θ is also measured and analyzed. This paper systematically analyzes resonators on X-cut LiNbO3 thin-film substrates and provides potential strategies for multi-band and multi-bandwidth filters. Full article
(This article belongs to the Special Issue Advanced Flexible Electronics for Sensing Application)
Show Figures

Figure 1

12 pages, 21482 KiB  
Article
Mathematical Modeling of Dynamic Stress Concentration in Piezoelectric Materials with Elliptical Openings Under SH Waves
by Peng Lu, Yabo Wang, Rong Liu, Changyong Chu, Zhenyu Wang and Weihua Zhou
Actuators 2025, 14(3), 121; https://doi.org/10.3390/act14030121 - 3 Mar 2025
Viewed by 674
Abstract
This paper presents a targeted study on the dynamic stress concentration (DSC) in piezoelectric materials induced by SH waves, focusing on the impact of elliptical openings. By using the elliptic cylindrical coordinate system and Mathieu functions, the wave fields are decomposed into functional [...] Read more.
This paper presents a targeted study on the dynamic stress concentration (DSC) in piezoelectric materials induced by SH waves, focusing on the impact of elliptical openings. By using the elliptic cylindrical coordinate system and Mathieu functions, the wave fields are decomposed into functional series. Through the establishment of a set of infinite equations with mode coefficients based on the boundary conditions, the distribution of the dynamic stress concentration coefficient is visualized via numerical simulation. Furthermore, the impact of incident wave frequency, incident angle, and elliptic eccentricity on the stress concentration coefficient is analyzed. The results demonstrate a strong correlation between these parameters and the dynamic stress concentration coefficient. These findings hold significant implications for enhancing the strength and fatigue life of piezo-electric materials, as well as for selecting appropriate nondestructive testing methods. Full article
Show Figures

Figure 1

17 pages, 5098 KiB  
Article
Dynamic Impact of the Southern Annular Mode on the Antarctic Ozone Hole Area
by Jae N. Lee and Dong L. Wu
Remote Sens. 2025, 17(5), 835; https://doi.org/10.3390/rs17050835 - 27 Feb 2025
Viewed by 805
Abstract
This study investigates the impact of dynamic variability of the Southern Hemisphere (SH) polar middle atmosphere on the ozone hole area. We analyze the influence of the southern annular mode (SAM) and planetary waves (PWs) on ozone depletion from 19 years (2005–2023) of [...] Read more.
This study investigates the impact of dynamic variability of the Southern Hemisphere (SH) polar middle atmosphere on the ozone hole area. We analyze the influence of the southern annular mode (SAM) and planetary waves (PWs) on ozone depletion from 19 years (2005–2023) of aura microwave limb sounder (MLS) geopotential height (GPH) measurements. We employ empirical orthogonal function (EOF) analysis to decompose the GPH variability into distinct spatial patterns. EOF analysis reveals a strong relationship between the first EOF (representing the SAM) and the Antarctic ozone hole area (γ = 0.91). A significant negative lag correlation between the August principal component of the second EOF (PC2) and the September SAM index (γ = −0.76) suggests that lower stratospheric wave activity in August can precondition the polar vortex strength in September. The minor sudden stratospheric warming (SSW) event in 2019 is an example of how strong wave activity can disrupt the polar vortex, leading to significant temperature anomalies and reduced ozone depletion. The coupling of PWs is evident in the lag correlation analysis between different altitudes. A “bottom-up” propagation of PWs from the lower stratosphere to the mesosphere and a potential “top-down” influence from the mesosphere to the lower stratosphere are observed with time lags of 21–30 days. These findings highlight the complex dynamics of PW propagation and their potential impact on the SAM and ozone layer. Further analysis of these correlations could improve one-month lead predictions of the SAM and the ozone hole area. Full article
Show Figures

Figure 1

17 pages, 4382 KiB  
Article
Dynamic Stress Analysis of a Strip Plate with Elliptical Holes Subjected to Incident Shear Horizontal Waves
by Yuzhen Cheng, Yuanbo Zhao and Kun Han
Symmetry 2025, 17(2), 154; https://doi.org/10.3390/sym17020154 - 21 Jan 2025
Viewed by 681
Abstract
The dynamic stress analysis of a strip plate with elliptical holes under the action of an incident SH wave was performed using a complex function method and a successive mirror method. Firstly, a complex plane coordinate system of elliptic holes was established by [...] Read more.
The dynamic stress analysis of a strip plate with elliptical holes under the action of an incident SH wave was performed using a complex function method and a successive mirror method. Firstly, a complex plane coordinate system of elliptic holes was established by using the complex variable function method and integral transformation method. The elliptic hole wave field and stress were established using the wave function expansion method. Then, the relation between the argument angle of any point on the edge of the ellipse hole and the angle between the vertical line and the coordinate axis was established. Using boundary conditions to solve the unknown coefficients in the equation, finally, the integral equation was simplified to a linear equation by means of the effective truncation method, and the steady-state response of dynamic stress under different parameters was analyzed. In addition, by comparing the finite element solution with the numerical solution, the accuracy of the results was effectively verified. The results show that the studied geometric model can provide solid theoretical support for the inspection of plate and shell structures, which is of great significance in practical engineering. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

19 pages, 4176 KiB  
Article
Influence of Site Effects on Scaling Relation Between Rotational and Translational Signals Produced by Anthropogenic Seismicity
by Dariusz Nawrocki, Maciej J. Mendecki, Grzegorz Mutke and Lesław Teper
Appl. Sci. 2025, 15(1), 102; https://doi.org/10.3390/app15010102 - 26 Dec 2024
Cited by 1 | Viewed by 783
Abstract
The measurements of rotational and translational seismic signals were carried out at the Imielin and Planetarium stations located in the central part of the Upper Silesian Coal Basin, Southern Poland. Local seismicity, produced by the surrounding hard coal mines, allowed the collection of [...] Read more.
The measurements of rotational and translational seismic signals were carried out at the Imielin and Planetarium stations located in the central part of the Upper Silesian Coal Basin, Southern Poland. Local seismicity, produced by the surrounding hard coal mines, allowed the collection of 130 seismic events. This study aimed to analyze the influence of site effects on rotational ground motion using the horizontal-to-vertical spectral ratio method. We performed the analysis using two approaches: obtaining the spectral ratio of the rotational motion and investigating the impact of the site effect on the scaling relation. The spectral ratio comparison between rotations and translations shows that the value of the rotational amplification coefficient is almost three times lower than that for the translations, and the resonance frequency of rotational motion is higher than that of translations. The comparisons of the scaling relation models, obtained for raw data and corrected by the amplification factor data, revealed that removing the site effect from the signals increases the data to model approximation, reducing the value of the SH-wave phase velocity almost three times. The studies suggest that the local site conditions independently affect the rotational and translational motions. Full article
(This article belongs to the Special Issue Advanced Research in Seismic Monitoring and Activity Analysis)
Show Figures

Figure 1

26 pages, 13796 KiB  
Article
The BIRDIES Experiment: Measuring Beryllium Isotopes to Resolve Dynamics in the Stratosphere
by Sonia Wharton, Alan J. Hidy, Thomas S. Ehrmann, Wenbo Zhu, Shaun N. Skinner, Hassan Beydoun, Philip J. Cameron-Smith, Marisa Repasch, Nipun Gunawardena, Jungmin M. Lee, Ate Visser, Matthew Griffin, Samuel Maddren and Erik Oerter
Atmosphere 2024, 15(12), 1502; https://doi.org/10.3390/atmos15121502 - 17 Dec 2024
Viewed by 1329
Abstract
Cosmogenic beryllium-10 and beryllium-7, and the ratio of the two (10Be/7Be), are powerful atmospheric tracers of stratosphere–troposphere exchange (STE) processes; however, measurements are sparse for altitudes well above the tropopause. We present a novel high-altitude balloon campaign aimed to measure these isotopes in [...] Read more.
Cosmogenic beryllium-10 and beryllium-7, and the ratio of the two (10Be/7Be), are powerful atmospheric tracers of stratosphere–troposphere exchange (STE) processes; however, measurements are sparse for altitudes well above the tropopause. We present a novel high-altitude balloon campaign aimed to measure these isotopes in the mid-stratosphere called Beryllium Isotopes for Resolving Dynamics in the Stratosphere (BIRDIES). BIRDIES targeted gravity waves produced by tropopause-overshooting convection to study their propagation and impact on STE dynamics, including the production of turbulence in the stratosphere. Two custom-designed payloads called FiSH and GASP were flown at altitudes approaching 30 km to measure in situ turbulence and beryllium isotopes (on aerosols), respectively. These were flown on nine high-altitude balloon flights over Kansas, USA, in summer 2022. The atmospheric samples were augmented with a ground-based rainfall collection targeting isotopic signatures of deep convection overshooting. Our GASP samples yielded mostly negligible amounts of both 10Be and 7Be collected in the mid-stratosphere but led to design improvements to increase aerosol capture in low-pressure environments. Observations from FiSH and the precipitation collection were more fruitful. FiSH showed the presence of turbulent velocity, temperature, and acoustic fluctuations in the stratosphere, including length scales in the infra-sonic range and inertial subrange that indicated times of elevated turbulence. The precipitation collection, and subsequent statistical analysis, showed that large spatial datasets of 10Be/7Be can be measured in individual rainfall events with minimum terrestrial contamination. While the spatial patterns in rainfall suggested some evidence for overshooting convection, inter-event temporal variability was clearly observed and predicted with good agreement using the 3D chemical transport model GEOS-CHEM. Full article
(This article belongs to the Special Issue Feature Papers in Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

19 pages, 12447 KiB  
Article
Characteristics of Strong Cooling Events in Winter of Northeast China and Their Association with 10–20 d Atmosphere Low-Frequency Oscillation
by Qianhao Wang and Liping Li
Atmosphere 2024, 15(12), 1486; https://doi.org/10.3390/atmos15121486 (registering DOI) - 12 Dec 2024
Cited by 1 | Viewed by 1155
Abstract
In the past 42 years from 1980 to 2021, 103 regional strong cooling events (RSCEs) occurred in winter in Northeast China, and the frequency has increased significantly in the past 10 years, averaging 2.45 per year. The longest (shortest) duration is 10 (2) [...] Read more.
In the past 42 years from 1980 to 2021, 103 regional strong cooling events (RSCEs) occurred in winter in Northeast China, and the frequency has increased significantly in the past 10 years, averaging 2.45 per year. The longest (shortest) duration is 10 (2) days. The minimum temperature series in 60 events exists in 10–20 d of significant low-frequency (LF) periods. The key LF circulation systems affecting RSCEs include the Lake Balkhash–Baikal ridge, the East Asian trough (EAT), the robust Siberian high (SH) and the weaker (stronger) East Asian temperate (subtropical) jet, with the related anomaly centers moving from northwest to southeast and developing into a nearly north–south orientation. The LF wave energy of the northern branch from the Atlantic Ocean disperses to Northeast China, which excites the downstream disturbance wave train. The corresponding LF positive vorticity enhances and moves eastward, leading to the formation of deep EAT. The enhanced subsidence motion behind the EAT leads to SH strengthening. The cold advection related to the northeast cold vortex is the main thermal factor causing the local temperature to decrease. The Scandinavian Peninsula is the primary cold air source, and the Laptev Sea is the secondary one, with cold air from the former along northwest path via the West Siberian Plain and Lake Baikal, and from the latter along the northern path via the Central Siberian Plateau, both converging towards Northeast China. Full article
Show Figures

Figure 1

13 pages, 3147 KiB  
Article
The Improvement in Sleep Quality by Zizyphi Semen in Rodent Models Through GABAergic Transmission Regulation
by Mijin Kim, YuJaung Kim, Hyang Woon Lee, Kyung-Mi Kim, Singeun Kim and Seikwan Oh
Nutrients 2024, 16(24), 4266; https://doi.org/10.3390/nu16244266 - 11 Dec 2024
Cited by 1 | Viewed by 1648
Abstract
Background: Sleep, a process physiologically vital for mental health, faces disruptions in various sleep disorders linked to metabolic and neurodegenerative risks. Zizyphus seed (Zizy) has long been recognized for its diverse pharmacological attributes, including analgesic, sedative, insomnia, and anxiety alleviation. Objectives: [...] Read more.
Background: Sleep, a process physiologically vital for mental health, faces disruptions in various sleep disorders linked to metabolic and neurodegenerative risks. Zizyphus seed (Zizy) has long been recognized for its diverse pharmacological attributes, including analgesic, sedative, insomnia, and anxiety alleviation. Objectives: In this study, the sleep-prolonging effects of Zizy extract (100, 200 mg/kg), along with their characterizing compounds jujuboside A (JuA) (5, 10 mg/kg), were evaluated in a mouse model under a pentobarbital-induced sleep. Additionally, the efficacy of Zizy extract was examined on caffeine-induced insomnia in mice. Methods: To confirm the efficacy of Zizy extract on the structure and quality of sleep, an electroencephalogram (EEG) analysis of rats was performed using the MATLAB algorithm. Additionally, Western blot analysis and measurement of intracellular chloride influx were performed to confirm whether these effects acted through the gamma-aminobutyric acid (GABA)ergic system. Administration of Zizy extract showed no effect on the locomotor performance of mice, but the extract and their characteristic compounds significantly prolonged sleep duration in comparison to the pentobarbital alone group in the pentobarbital-induced sleep mouse model. Furthermore, this extract alleviated caffeine-induced insomnia in mice. Results: The administration of Zizy extract extended non-rapid eye movement sleep (NREMS) duration without inducing significant changes in the brain wave frequency. Zizy extract regulated the expression of GABAA receptor subunits and GAD65/67 in specific brain regions (frontal cortex, hippocampus, and hypothalamus). JuA increased intracellular chloride influx in human SH-SY5Y cells, and it was reduced by GABAA receptor antagonists. These results suggest that the sleep-maintaining effects of Zizy extract may entail GABAergic regulation. In summary, Zizy extract demonstrated sleep-prolonging properties, improved insomnia, and regulated sleep architecture through GABAergic system modulation. Conclusions: These findings suggest that Zizy extract has potential as a therapeutic agent for stress-related neuropsychiatric conditions such as insomnia. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

22 pages, 1347 KiB  
Article
Semi-Empirical Approach to Evaluating Model Fit for Sea Clutter Returns: Focusing on Future Measurements in the Adriatic Sea
by Bojan Vondra
Entropy 2024, 26(12), 1069; https://doi.org/10.3390/e26121069 - 9 Dec 2024
Cited by 1 | Viewed by 860
Abstract
A method for evaluating Kullback–Leibler (KL) divergence and Squared Hellinger (SH) distance between empirical data and a model distribution is proposed. This method exclusively utilises the empirical Cumulative Distribution Function (CDF) of the data and the CDF of the model, avoiding data processing [...] Read more.
A method for evaluating Kullback–Leibler (KL) divergence and Squared Hellinger (SH) distance between empirical data and a model distribution is proposed. This method exclusively utilises the empirical Cumulative Distribution Function (CDF) of the data and the CDF of the model, avoiding data processing such as histogram binning. The proposed method converges almost surely, with the proof based on the use of exponentially distributed waiting times. An example demonstrates convergence of the KL divergence and SH distance to their true values when utilising the Generalised Pareto (GP) distribution as empirical data and the K distribution as the model. Another example illustrates the goodness of fit of these (GP and K-distribution) models to real sea clutter data from the widely used Intelligent PIxel processing X-band (IPIX) measurements. The proposed method can be applied to assess the goodness of fit of various models (not limited to GP or K distribution) to clutter measurement data such as those from the Adriatic Sea. Distinctive features of this small and immature sea, like the presence of over 1300 islands that affect local wind and wave patterns, are likely to result in an amplitude distribution of sea clutter returns that differs from predictions of models designed for oceans or open seas. However, to the author’s knowledge, no data on this specific topic are currently available in the open literature, and such measurements have yet to be conducted. Full article
Show Figures

Figure 1

Back to TopTop