Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = SDRL

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1554 KiB  
Article
Coordinated Volt/VAR Control in Distribution Networks Considering Demand Response via Safe Deep Reinforcement Learning
by Dong Hua, Fei Peng, Suisheng Liu, Qinglin Lin, Jiahui Fan and Qian Li
Energies 2025, 18(2), 333; https://doi.org/10.3390/en18020333 - 14 Jan 2025
Cited by 1 | Viewed by 1302
Abstract
Volt–VAR control (VVC) is essential in maintaining voltage stability and operational efficiency in distribution networks, particularly with the increasing integration of distributed energy resources. Traditional methods often struggle to manage real-time fluctuations in demand and generation. First, various resources such as static VAR [...] Read more.
Volt–VAR control (VVC) is essential in maintaining voltage stability and operational efficiency in distribution networks, particularly with the increasing integration of distributed energy resources. Traditional methods often struggle to manage real-time fluctuations in demand and generation. First, various resources such as static VAR compensators, photovoltaic systems, and demand response strategies are incorporated into the VVC scheme to enhance voltage regulation. Then, the VVC scheme is formulated as a constrained Markov decision process. Next, a safe deep reinforcement learning (SDRL) algorithm is proposed, incorporating a novel Lagrange multiplier update mechanism to ensure that the control policies adhere to safety constraints during the learning process. Finally, extensive simulations with the IEEE-33 test feeder demonstrate that the proposed SDRL-based VVC approach effectively improves voltage regulation and reduces power losses. Full article
Show Figures

Figure 1

22 pages, 1044 KiB  
Article
The Efficiency of the New Extended EWMA Control Chart for Detecting Changes Under an Autoregressive Model and Its Application
by Kotchaporn Karoon and Yupaporn Areepong
Symmetry 2025, 17(1), 104; https://doi.org/10.3390/sym17010104 - 11 Jan 2025
Cited by 2 | Viewed by 1210
Abstract
Control charts are frequently used instruments for process quality monitoring. Another name for the NEEWMA control chart is the new extended exponentially weighted moving average (new extended EWMA) control chart. The lower control limit (LCL) and upper control limit (UCL) are equally spaced [...] Read more.
Control charts are frequently used instruments for process quality monitoring. Another name for the NEEWMA control chart is the new extended exponentially weighted moving average (new extended EWMA) control chart. The lower control limit (LCL) and upper control limit (UCL) are equally spaced from the center line, giving it a symmetrical design. Because of its symmetry, the NEEWMA chart is very good at identifying even the tiniest changes in operation by detecting deviations from the target in both upward and downward directions. This study derives an explicit formula for the average run length (ARL) of the NEEWMA control chart based on the autoregressive (AR) model with exponential white noise. The focus is on the zero-state performance of the NEEWMA control chart, which is derived using explicit formulas. Banach’s fixed-point theorem was used to prove existence and uniqueness of this formula. The accuracy of this formula is validated by comparing it to the numerical integral equation (NIE) method using percentage accuracy (%Acc). The results show that the NEEWMA control chart is more efficient than the ARL evaluated by the NIE method, particularly regarding computation time. The performance of the NEEWMA control chart is compared with the EWMA and extended EWMA control charts by evaluating both the ARL and standard deviation run length (SDRL). The NEEWMA control chart outperforms the others in detection performance, followed by the extended EWMA and EWMA control charts. Further verification of its superior performance is provided through comparisons using the average extra quadratic loss (AEQL) and the performance comparison index (PCI), which confirm that it outperforms both the EWMA and extended EWMA control charts across various parameters and shift sizes. Finally, an illustrative example using real-life economic data demonstrates its efficiency. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

27 pages, 450 KiB  
Article
Process Monitoring Using Truncated Gamma Distribution
by Sajid Ali, Shayaan Rajput, Ismail Shah and Hassan Houmani
Stats 2023, 6(4), 1298-1322; https://doi.org/10.3390/stats6040080 - 1 Dec 2023
Cited by 3 | Viewed by 2055
Abstract
The time-between-events idea is commonly used for monitoring high-quality processes. This study aims to monitor the increase and/or decrease in the process mean rapidly using a one-sided exponentially weighted moving average (EWMA) chart for the detection of upward or downward mean shifts using [...] Read more.
The time-between-events idea is commonly used for monitoring high-quality processes. This study aims to monitor the increase and/or decrease in the process mean rapidly using a one-sided exponentially weighted moving average (EWMA) chart for the detection of upward or downward mean shifts using a truncated gamma distribution. The use of the truncation method helps to enhance and improve the sensitivity of the proposed chart. The performance of the proposed chart with known and estimated parameters is analyzed by using the run length properties, including the average run length (ARL) and standard deviation run length (SDRL), through extensive Monte Carlo simulation. The numerical results show that the proposed scheme is more sensitive than the existing ones. Finally, the chart is implemented in real-world situations to highlight the significance of the proposed chart. Full article
(This article belongs to the Special Issue Advances in Probability Theory and Statistics)
Show Figures

Figure 1

20 pages, 823 KiB  
Article
Analytical Explicit Formulas of Average Run Length of Homogenously Weighted Moving Average Control Chart Based on a MAX Process
by Rapin Sunthornwat, Saowanit Sukparungsee and Yupaporn Areepong
Symmetry 2023, 15(12), 2112; https://doi.org/10.3390/sym15122112 - 24 Nov 2023
Cited by 5 | Viewed by 1844
Abstract
Statistical process control (SPC) is used for monitoring and detecting anomalies in processes in the areas of manufacturing, environmental studies, economics, and healthcare, among others. Herein, we introduce an innovative SPC approach via mathematical modeling and report on its application via simulation studies [...] Read more.
Statistical process control (SPC) is used for monitoring and detecting anomalies in processes in the areas of manufacturing, environmental studies, economics, and healthcare, among others. Herein, we introduce an innovative SPC approach via mathematical modeling and report on its application via simulation studies to examine its suitability for monitoring processes involving correlated data running on advanced control charts. Specifically, an approach for detecting small to moderate shifts in the mean of a process running on a homogenously weighted moving average (HWMA) control chart, which is symmetric about the center line with upper and lower control limits, is of particular interest. A mathematical model for the average run length (ARL) of a moving average process with exogenous variables (MAX) focused only on the zero-state performance of the HWMA control chart is derived based on explicit formulas. The performance of our approach was investigated in terms of the ARL, the standard deviation of the run length (SDRL), and the median run length (MRL). Numerical examples are given to illustrate the efficacy of the proposed method. A detailed comparative analysis of our method for processes on HWMA and cumulative sum (CUSUM) control charts was conducted for process mean shifts in many situations. For several values of the design parameters, the performances of these two control charts are also compared in terms of the expected ARL (EARL), expected SDRL (ESDRL), and expected MRL (EMRL). It was found that the performance of the HWMA control chart was superior to that of the CUSUM control chart for several process mean shift sizes. Finally, the applicability of our method on a HWMA control chart is provided based on a real-world economic process. Full article
Show Figures

Figure 1

20 pages, 4902 KiB  
Article
Performance Analysis of Interval Type-2 Fuzzy X¯ and R Control Charts
by Túlio S. Almeida, Amanda dos Santos Mendes, Paloma M. S. Rocha Rizol and Marcela A. G. Machado
Appl. Sci. 2023, 13(20), 11594; https://doi.org/10.3390/app132011594 - 23 Oct 2023
Cited by 4 | Viewed by 1434
Abstract
Statistical process control (SPC) is one of the most powerful techniques for improving quality, as it is able to detect special causes of problems in processes, products and services with a remarkable degree of accuracy. Among SPC tools, X¯ and R control [...] Read more.
Statistical process control (SPC) is one of the most powerful techniques for improving quality, as it is able to detect special causes of problems in processes, products and services with a remarkable degree of accuracy. Among SPC tools, X¯ and R control charts are widely employed in process monitoring. However, scenarios involving vague, imprecise and even subjective data require a type-2 fuzzy set approach. Thus, X¯ and R control charts should be coupled with interval type-2 triangular fuzzy numbers (IT2TFN) in order to add further information to traditional control charts. This paper proposes a performance analysis of IT2TFN and X¯ and R control charts by means of average run length (ARL), standard deviation of the run length (SDRL) and RL percentile. Computer simulations were carried out considering 10,000 runs to obtain ARL, SDRL and the 5th, 25th, 50th, 75th and 95th RL percentiles. Simulation results reveal that the proposed control charts increased fault detection capability (speed of response) and slightly reduced the number of false alarms in processes under control. Moreover, it was observed that, in addition to superior performance, IT2TFN X¯-R control charts proved to be more robust and flexible when compared to traditional control charts. Full article
(This article belongs to the Section Applied Industrial Technologies)
Show Figures

Figure 1

18 pages, 1262 KiB  
Article
Integration of Bayesian Adaptive Exponentially Weighted Moving Average Control Chart and Paired Ranked-Based Sampling for Enhanced Semiconductor Manufacturing Process Monitoring
by Botao Liu, Muhammad Noor-ul-Amin, Imad Khan, Emad A. A. Ismail and Fuad A. Awwad
Processes 2023, 11(10), 2893; https://doi.org/10.3390/pr11102893 - 30 Sep 2023
Cited by 4 | Viewed by 1930
Abstract
Exponentially weighted moving average (EWMA) and Shewhart control charts are commonly utilized to detect the small to moderate and large shifts in the process mean, respectively. This article introduces a novel Bayesian AEWMA control chart that employs various loss functions (LFs), including square [...] Read more.
Exponentially weighted moving average (EWMA) and Shewhart control charts are commonly utilized to detect the small to moderate and large shifts in the process mean, respectively. This article introduces a novel Bayesian AEWMA control chart that employs various loss functions (LFs), including square error loss function (SELF) and LINEX loss function (LLF). The control chart incorporates an informative prior for posterior and posterior predictive distributions. Additionally, the control chart utilizes various paired ranked set sampling (PRSS) schemes to improve its accuracy and effectiveness. The average run length (ARL) and standard deviation of run length (SDRL) are used to evaluate the performance of the suggested control chart. Monte Carlo simulations are conducted to compare the performance of the proposed approach to other control charts. The results show that the proposed method outperforms in identifying out-of-control signals, particularly under PRSS schemes compared to simple random sampling (SRS). The proposed CCs effectiveness was validated using a real-life semiconductor manufacturing application, utilizing different PRSS schemes. The performance of the Bayesian AEWMA CC was evaluated, demonstrating its superiority in detecting out-of-control signs compared to existing CCs. This study introduces an innovative method incorporating various LFs and PRSS schemes, providing an enhanced and efficient approach for identifying shifts in the process mean. Full article
(This article belongs to the Special Issue Monitoring and Control of Processes in the Context of Industry 4.0)
Show Figures

Figure 1

17 pages, 865 KiB  
Article
Hybrid EWMA Control Chart under Bayesian Approach Using Ranked Set Sampling Schemes with Applications to Hard-Bake Process
by Imad Khan, Dost Muhammad Khan, Muhammad Noor-ul-Amin, Umair Khalil, Huda M. Alshanbari and Zubair Ahmad
Appl. Sci. 2023, 13(5), 2837; https://doi.org/10.3390/app13052837 - 22 Feb 2023
Cited by 17 | Viewed by 1850
Abstract
A memory-type control chart is an important tool of statistical process control for monitoring small to moderate shifts in the manufacturing process. Using the prior information by the Bayesian approach is helpful in control charts. In this paper, a new hybrid exponentially weighted [...] Read more.
A memory-type control chart is an important tool of statistical process control for monitoring small to moderate shifts in the manufacturing process. Using the prior information by the Bayesian approach is helpful in control charts. In this paper, a new hybrid exponentially weighted moving average (HEWMA) control chart is suggested under the Bayesian theory using ranked set sampling (RSS) schemes for posterior and posterior predictive distribution with informative prior and different loss functions (LFs). The extensive Monto Carlo simulation is conducted to evaluate the overall performance of the proposed Bayesian HEWMA control chart through average-run-length (ARL) and standard-deviation of the run-length (SDRL). Finally, a numerical example of the hard-bake process in semiconductor manufacturing is used to check the working and execution of the proposed Bayesian HEWMA control-chart under different RSS schemes. The results reveal that the suggested Bayesian HEWMA control-chart under RSS schemes is more sensitive in detecting out-of-control signals than the Bayesian HEWMA and Bayesian AEWMA control-charts under simple random sampling. Full article
Show Figures

Figure 1

16 pages, 2546 KiB  
Article
Water Particles Monitoring in the Atacama Desert: SPC Approach Based on Proportional Data
by Anderson Fonseca, Paulo Henrique Ferreira, Diego Carvalho do Nascimento, Rosemeire Fiaccone, Christopher Ulloa-Correa, Ayón García-Piña and Francisco Louzada
Axioms 2021, 10(3), 154; https://doi.org/10.3390/axioms10030154 - 13 Jul 2021
Cited by 22 | Viewed by 4207
Abstract
Statistical monitoring tools are well established in the literature, creating organizational cultures such as Six Sigma or Total Quality Management. Nevertheless, most of this literature is based on the normality assumption, e.g., based on the law of large numbers, and brings limitations towards [...] Read more.
Statistical monitoring tools are well established in the literature, creating organizational cultures such as Six Sigma or Total Quality Management. Nevertheless, most of this literature is based on the normality assumption, e.g., based on the law of large numbers, and brings limitations towards truncated processes as open questions in this field. This work was motivated by the register of elements related to the water particles monitoring (relative humidity), an important source of moisture for the Copiapó watershed, and the Atacama region of Chile (the Atacama Desert), and presenting high asymmetry for rates and proportions data. This paper proposes a new control chart for interval data about rates and proportions (symbolic interval data) when they are not results of a Bernoulli process. The unit-Lindley distribution has many interesting properties, such as having only one parameter, from which we develop the unit-Lindley chart for both classical and symbolic data. The performance of the proposed control chart is analyzed using the average run length (ARL), median run length (MRL), and standard deviation of the run length (SDRL) metrics calculated through an extensive Monte Carlo simulation study. Results from the real data applications reveal the tool’s potential to be adopted to estimate the control limits in a Statistical Process Control (SPC) framework. Full article
Show Figures

Figure 1

28 pages, 453 KiB  
Article
A Study on the X ¯ and S Control Charts with Unequal Sample Sizes
by Chanseok Park and Min Wang
Mathematics 2020, 8(5), 698; https://doi.org/10.3390/math8050698 - 2 May 2020
Cited by 6 | Viewed by 4035
Abstract
The control charts based on X ¯ and S are widely used to monitor the mean and variability of variables and can help quality engineers identify and investigate causes of the process variation. The usual requirement behind these control charts is that the [...] Read more.
The control charts based on X ¯ and S are widely used to monitor the mean and variability of variables and can help quality engineers identify and investigate causes of the process variation. The usual requirement behind these control charts is that the sample sizes from the process are all equal, whereas this requirement may not be satisfied in practice due to missing observations, cost constraints, etc. To deal with this situation, several conventional methods were proposed. However, some methods based on weighted average approaches and an average sample size often result in degraded performance of the control charts because the adopted estimators are biased towards underestimating the true population parameters. These observations motivate us to investigate the existing methods with rigorous proofs and we provide a guideline to practitioners for the best selection to construct the X ¯ and S control charts when the sample sizes are not equal. Full article
(This article belongs to the Special Issue Statistical Simulation and Computation)
Show Figures

Figure 1

26 pages, 4819 KiB  
Article
Refining Network Lifetime of Wireless Sensor Network Using Energy-Efficient Clustering and DRL-Based Sleep Scheduling
by Ramadhani Sinde, Feroza Begum, Karoli Njau and Shubi Kaijage
Sensors 2020, 20(5), 1540; https://doi.org/10.3390/s20051540 - 10 Mar 2020
Cited by 76 | Viewed by 6923
Abstract
Over the recent era, Wireless Sensor Network (WSN) has attracted much attention among industrialists and researchers owing to its contribution to numerous applications including military, environmental monitoring and so on. However, reducing the network delay and improving the network lifetime are always big [...] Read more.
Over the recent era, Wireless Sensor Network (WSN) has attracted much attention among industrialists and researchers owing to its contribution to numerous applications including military, environmental monitoring and so on. However, reducing the network delay and improving the network lifetime are always big issues in the domain of WSN. To resolve these downsides, we propose an Energy-Efficient Scheduling using the Deep Reinforcement Learning (DRL) (E2S-DRL) algorithm in WSN. E2S-DRL contributes three phases to prolong network lifetime and to reduce network delay that is: the clustering phase, duty-cycling phase and routing phase. E2S-DRL starts with the clustering phase where we reduce the energy consumption incurred during data aggregation. It is achieved through the Zone-based Clustering (ZbC) scheme. In the ZbC scheme, hybrid Particle Swarm Optimization (PSO) and Affinity Propagation (AP) algorithms are utilized. Duty cycling is adopted in the second phase by executing the DRL algorithm, from which, E2S-DRL reduces the energy consumption of individual sensor nodes effectually. The transmission delay is mitigated in the third (routing) phase using Ant Colony Optimization (ACO) and the Firefly Algorithm (FFA). Our work is modeled in Network Simulator 3.26 (NS3). The results are valuable in provisions of upcoming metrics including network lifetime, energy consumption, throughput and delay. From this evaluation, it is proved that our E2S-DRL reduces energy consumption, reduces delays by up to 40% and enhances throughput and network lifetime up to 35% compared to the existing cTDMA, DRA, LDC and iABC methods. Full article
(This article belongs to the Special Issue Energy-Efficient Sensing in Wireless Sensor Networks)
Show Figures

Figure 1

Back to TopTop