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Abstract: A memory-type control chart is an important tool of statistical process control for moni-
toring small to moderate shifts in the manufacturing process. Using the prior information by the
Bayesian approach is helpful in control charts. In this paper, a new hybrid exponentially weighted
moving average (HEWMA) control chart is suggested under the Bayesian theory using ranked set
sampling (RSS) schemes for posterior and posterior predictive distribution with informative prior
and different loss functions (LFs). The extensive Monto Carlo simulation is conducted to evaluate the
overall performance of the proposed Bayesian HEWMA control chart through average-run-length
(ARL) and standard-deviation of the run-length (SDRL). Finally, a numerical example of the hard-
bake process in semiconductor manufacturing is used to check the working and execution of the
proposed Bayesian HEWMA control-chart under different RSS schemes. The results reveal that
the suggested Bayesian HEWMA control-chart under RSS schemes is more sensitive in detecting
out-of-control signals than the Bayesian HEWMA and Bayesian AEWMA control-charts under simple
random sampling.

Keywords: Bayesian approach; loss function; RSS schemes; HEWMA; average-run-length;
control charts

1. Introduction

Statistical process control (SPC) offers a variety of tools for monitoring process param-
eters to maintain and improve the quality of the products by reducing variations in the
manufacturing process. There could be two types of variabilities, one is called a common or
natural source of variability, and the second is called an assignable source variability. Natu-
ral sources of variability are impossible to control without revising the whole process, so the
work under those conditions is considered to be in-control. If the production process has an
assignable source of variation, it is out-of-control. In manufacturing industries, variations
are integral components of the running processes. The statistical quality control charts are
the most important and powerful SPC technique that is commonly used in many service
industries to monitor manufacturing processes. The main objective of the statistical quality
control chart is to maintain the process stability by detecting the infrequent variations in
the production process, making it possible for the control system to take the necessary
corrections before the manufacturing of the non-conforming items. The fundamental fea-
tures of SPC are also the identification and monitoring of special causes of variation in
the production process, which improves the quality of the final product. In the 1920s the
concept of the quality control chart was first introduced by Walter A. Shewhart [1]. This
idea served as the foundation for the contemporary SPC, with some modifications made
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afterward. The cumulative sum (CUSUM) suggested by Page [2] and the exponentially
weighted moving average (EWMA) suggested by Roberts [3] control charts are the most
popular and sophisticated statistical process monitoring tools of SPC. The CUSUM and
EWMA charts are both memory-type control charts, whereas the classical Shewhart control
chart is a memoryless type control chart. Both memory-type and memoryless control charts
provide excellent detection of small/moderate and large changes in the process parame-
ter(s). Often, process and service industries use memory-type control charts to detect small
to moderate process disturbances, which can have serious financial consequences. The
Shewhart control chart is more effective than the CUSUM and EWMA control chart when
it comes to detecting large changes in the process parameters. Many authors have worked
on the memory-type control chart, such as Lucas and Crosier [4], Khoo [5], Khan et al. [6],
and Saghir et al. [7]. Adeoti et al. [8] studied the hybrid homogeneously weighted moving
average (HWMA) control chart for the process mean by combining two HWMA control
charts. The results show that the hybrid HWMA control chart is more sensitive than the
existing control charts. Arslan et al. [9] suggested an improved adaptive EWMA control
chart for monitoring the process location, the unknown shift is estimated by the HEWMA
statistic. They used the ARL, extra quadratic loss, and relative ARL for performance evalua-
tion and the comparison revealed the superiority of the proposed control chart. A Bayesian
multivariate control chart with different LFs was suggested by Tsui and Woodall [10].
Menzefricke [11] and Menzefricke [12] suggested the Bayesian control chart for the process
mean and dispersion, respectively. Tian and Wu [13] proposed a CUSUM control chart for
mean and variance to detect the variation in the production process. Serel [14] studied the
EWMA control chart for the mean and dispersion of a process with different LFs, such as
quadratic, linear, and exponential LFs. EWMA control chart under Bayesian approach for
posterior and posterior predictive distribution using different LFs and with informative and
non-informative prior distribution suggested by Riaz et al. [15]. Noor et al. [16] proposed
a Bayesian HEAWA control chart for monitoring the process mean using an informative
prior distribution with different LFs. The performance of the suggested control chart was
evaluated through the ARL and SDRL. Tang et al. [17] suggested a new risk priority model
using the belief Jensen–Shannon divergence and entropy measure in the evidence theory.
The effectiveness and partibility of the suggested method were verified by using a case
study on the sheet steel production process. Lin et al. [18] proposed the Bayesian EWMA
control chart to efficiently detect the process variance of a distribution-free process. They
explored the good sampling properties of the suggested statistic, which is suitable for
monitoring the time-varying process distribution, and showed the efficiency of the control
chart through a simulation study. The adaptive EWMA (AEWMA) control chart using the
Bayesian approach was suggested by Noor et al. [19], who also studied the effect of LFs on
the considered control charts by using ARLs and SDRLs.

All these works were created for classical and Bayesian approaches based on SRS. Our
motivation in this article is to propose a Bayesian HEWMA control chart using different
RSS schemes under two LFs, i.e., squared error LF (SELF) and linex LF (LLF) for posterior
and posterior predictive distribution. A Monto Carlo simulation study is performed to
evaluate the working and execution of the proposed Bayesian HEWMA control chart under
RSS schemes. Section 2 consists of an introduction to the Bayesian approach and LFs. The
different RSS schemes are discussed in Section 3. The construction of the proposed Bayesian
HEWMA control chart under different RSS schemes is discussed in Section 4. A simulation
study is included in Section 5, Section 6 gives a results discussion and the main findings of
the proposed Bayesian HEWMA control chart with Bayesian HEWMA and the Bayesian
AEWMA control chart under simple random sampling. Section 7 contains the real data
application of the proposed control chart. Section 8 of the article contains the conclusion.
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2. Bayesian Approach

The Bayesian approach is the method of estimation for unknown population param-
eters which utilizes both sample and prior information. The prior distribution is our
beliefs about the unknown population parameter before some information is taken into
account. The prior information is broadly divided into two-parts (i) informative prior and
(ii) non-informative prior. The prior distribution of the parameter that has some known
information regarding an unknown population parameter is called the informative prior, if
the prior and sampling distribution belongs to the same family of distribution it is called
the conjugate prior. In this study, the study variable X with mean θ and variance δ2 with
the in-control process and taking the conjugate prior (normal prior) with parameters θ0 and
δ2

0 is defined as follows:

p(θ) =
1√

2πδ2
0

exp

{
− 1

2δ2
0
(θ − θ0)

2

}
(1)

while if nothing is known about the population parameter, it is said to be a non-informative
prior, which has less effect on the posterior distribution, and in this case, the prior distribu-
tion is proportional to the uniform distribution. The probability function p(θ) represents
the uniform prior distribution given by

p(θ) ∝
√

n
δ2 = c

√
n
δ2 (2)

where c is the proportionality constant.
In the case of the uniform prior, the invariance property does not exist, thus Jeffrey [20]

proposed the prior function which is proportional to the Fisher information matrix. The
prior probability function suggested by Jeffrey is given below:

p(θ) ∝
√

I(θ) (3)

where I(θ) denotes the Fisher information matrix.
The posterior distribution which is based on the combination of a sample and a prior

distribution for a population parameter θ is defined as follows:

p(θ/x) =
p(x/θ)p(θ)∫
p(x/θ)p(θ)dθ

(4)

For a new data set Y, the posterior predictive distribution based on posterior distribu-
tion is given by

p(y/x) =
∫

p(y/θ)p(θ/x)dθ (5)

The LFs play a vital role in the Bayesian inference which is used to reduce the risk
related to the Bayes estimator. The two different LFs such as symmetric (SELF) and
asymmetric (LLF) have been used in this study.

2.1. Squared Error Loss Function

The SELF is a symmetric type of LF proposed by Gauss [21]. Consider the study
variable X and estimator θ̂ which is used to estimate the unknown population parameter θ,
then the SELF is defined as

L
(
θ, θ̂
)
=
(
θ − θ̂

)2
(6)

and the Bayes estimator based on SELF is given by

θ̂ = Eθ/x(θ) (7)
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2.2. Linex Loss Function

Varian [22] proposed the LLF as an asymmetric LF, which is used for the estimation
of location parameters more efficiently because it minimizes the risk associated with the
Bayes estimator. The LLF is given by

L
(
θ, θ̂
)
=
(

ec(θ−θ̂) − c
(
θ − θ̂

)
− 1
)

(8)

where θ̂ is a Bayes estimator for an unknown population parameter θ, defined as

θ̂ = −1
c

InEθ/x

(
e−cθ

)
(9)

3. Ranked Set Sampling

McIntyre [23] proposed a sampling design named a ranked set sampling scheme (RSS),
which is used to estimate population parameters more efficiently. In the RSS method, the
m2 units from the considered population are selected and distributed to m sets with similar
sizes m. The units of the study variable can be ordered (ranked) based on eye inspection
or with the help of an auxiliary variable without considering the actual measurement.
After ranking units in all sets, the first unit is picked from the first set and the second is
picked from the second set and measured, the process continues until the largest unit is
selected from the last set. This completes one cycle of RSS; if needed, the whole procedure
is repeated r times to complete the required sample n = rm. The procedure of the RSS is
demonstrated as Zi(j),r, i, j = 1, 2, 3 . . . m; r = 1, 2, 3 . . . c, be the jth order statistic in the ith
sample set with cycle r. The mean and variance of the ranked set sample estimator for c = 1
are as follows:

Z(RSS) =
1
m

m

∑
i=1

Zi(i) (10)

with variance

var
(

Z(RSS)

)
=

δ2

m
− 1

m2

m

∑
i=1

(
µ(i) − µ

)
(11)

3.1. Median Ranked Set Sampling

Muttalk [24] suggested a modified version of the RSS scheme called Median RSS
(MRSS), which efficiently estimates the population mean by minimizing error in ordering.
The complete procedure of MRSS is as follows:

Similar to RSS, we acquired m2 units from the underlying population randomly and
distributed them to m sets of the same size m and all the m units within each set are ordered
with the help of the variable under study.

In the second step, if m is odd, then draw middle units, i.e., ((m + 1)/2)th from all the
sets selected as samples. In case when m is even, select the lowest ordered units from the
two middle sampling units of the first (m/2)th sets and draw the largest ordered units from
the two middle sampling units remaining (m/2)th.

1. The above two steps complete one cycle of MRSS of size m; if needed, repeat the
whole method r times to meet the requirement.

The estimator for the population mean of MRSS of one cycle when the sample size is
odd is defined as follows:

Z(MRSS)O =
1
m

(
m

∑
i=1

Zi(m+1
2 )

)
(12)

with variance

var
(

Z(MRSS)O

)
=

1
m

(
δ2
(m+1

2 )

)
. (13)
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In a situation when the sample size is even, the estimator of a population mean of
MRSS with one cycle is

Z(MRSS)O =
1
m

(
m/2

∑
i=1

Zi(m
2 )

+
m/2

∑
i=1

Z m
2 +i(m+1

2 )

)
(14)

with variance

var
(

Z(MRSS)O

)
=

1
m

(
δ2
(m

2 )
+ δ2

(m+2
2 )

)
. (15)

3.2. Extreme Ranked Set Sampling

Another modified RSS scheme, Extreme RSS (ERSS), was suggested by Samawi
et al. [25]. The ERSS scheme is useful when selecting an ordered unit is a hard task
rather than an extreme unit. The complete method for selecting ERSS is as follows:

1. We drew m2 units randomly from the available population and allocated all these
units into m sets with the same set size m, units in each set are ranked with the help of
the study variable.

2. If m is even, then select the lowest units for measurement from the first (m/2) ordered
sets and the largest units from the last ranked sets, if m is odd then draw the lowest
units from the first (m− 1/2) ordered sets and the largest units from the remaining
ordered sets and from the last set the median units is selected.

The above two steps complete one cycle of ERSS; if required, repeat r times to complete
the required sample of size n = rm.

In the case of an odd sample size with one cycle of ERSS, the mean estimator is defined
as follows:

Z(ERSS)O =
1
m

(m−1
2 )

∑
i=1

Zi(1) +
(m−1

2 )

∑
i=1

Z(m−1
2 )+i(l) + Zm(m+1

2 )

 (16)

with variance

var
(

Z(ERSS)O

)
=

1
2m2

(
δ2
(1) + δ2

(m)

)
+

1
l2

(
δ2
(m+1

2 )

)
(17)

The mean estimator of ERSS in case of an even sample size with one cycle is given by
the following:

Z(ERSS)e =
1
m

(m
2 )

∑
i=1

Zi(1) +
(m

2 )

∑
i=1

Z m
2 +i(l)

 (18)

with variance

var
(

Z(ERSS)e

)
=

1
2m

(
δ2
(1) + δ2

(m)

)
(19)

4. Proposed Bayesian Hybrid EWMA (HEWMA) Control Chart

Let be independent and identically normally distributed random variables with un-
known mean and constant variance δ2, i.e., Xt ∼ N

(
µ, δ2). From the sequence {Xt}, we

defined another new sequence HE1, HE2, HE3, . . . , HEt utilizing the recurrence formula
given by

HEt = λ1Et + (1− λ1)HEt−1, 0 < λ1 < 1 (20)

where

Et = λ2Xt + (1− λ2)Et−1, 0 < λ2 < 1 (21)
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The mean and standard deviation of the proposed Bayesian HEWMA is defined as

E(HEt) = µ and SD(HEt) =
√

ηδ2 (22)

where

η =

(
λ1λ2

λ1 − λ2

)2
 2

∑
i=1

(1− λi)
2
(

1− (1− λi)
2t
)

(
1− (1− λi)

2
) −

2(1− λ1)(1− λ2)
{

1− (1− λ1)
2(1− λ2)

2
}

1− (1− λ1)(1− λ2)

 (23)

The proposed Bayesian HEWMA statistic under different RSS schemes (RSS, MRSS,
ERSS) for posterior and posterior predictive distribution with different LFs is given by the
following:

HEt(RSS)LF = λ1Et + (1− λ1)HEt−1(RSS)LF, 0 < λ1 < 1 (24)

where

Et(RSS)LF = λ2

(
θ̂(RSS)LF

)
+ (1− λ2)Et−1, 0 < λ2 < 1 (25)

The control limit for the suggested HEWMA control chart under the Bayesian approach
using RSS schemes is given below:

LCL = E
(

θ̂(RSS)LF

)
− L

√
V
(

HEt(RSS)LF

)
(26)

CL = E
(

θ̂(RSS)LF

)
(27)

UCL = E
(

θ̂(RSS)LF

)
+ L

√
V
(

HEt(RSS)LF

)
(28)

4.1. Posterior-Based Control Limits under Normal Prior Distribution

The probability function of posterior distribution based on the likelihood function and
informative normal prior is given by

P(θ/x) =
1

√
2π

√
δ2δ2

0
δ2+nδ2

0

exp

−1
2

 θ −
n
∑

i=1

xiδ
2
0+θ0δ2

0
δ2+nδ2

0√
δ2δ2

0
δ2+nδ2

0


 (29)

The posterior distribution is distributed normally with mean and variance δ2
n,

i.e., θ/x ∼ N
(
θn, δ2

n
)
, where θn =

nxδ2
0+δ2θ0

δ2+nδ2
0

and δ2
n =

δ2δ2
0

δ2+nδ2
0
. The control limits of the

suggested Bayesian HEWMA control chart using RSS schemes with different LFs for
posterior distribution are given.

4.1.1. Control Limits under SELF Using RSS Schemes

θ̂(SELF) =
nx(RSSi)

δ2
0 + δ2θ0

δ2 + nδ2
0

(30)

Here, the Bayes estimator based on SELF using RSS schemes for normal distribution
with informative prior is derived as follows:

E
(

θ̂(SELF)

)
=

nθ1δ2
0 + δ2θ0

δ2 + nδ2
0

(31)
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The mean and variance of the Bayes estimator θ̂(SELF) are given as and

var
(

θ̂(SELF)

)
=

nδ2
(RSSi)

δ4
0

δ2 + nδ2
0

(32)

The asymptotic control limits of the suggested HEWMA control chart under the
Bayesian approach utilizing RSS schemes with SELF are given below:

LCLRSSi = E
(

θ̂(SELF)

)
− Lη

√
var
(

θ̂(SELF)

)
(33)

CLRSSi = E
(

θ̂(SELF)

)
(34)

UCLRSSi = E
(

θ̂(SELF)

)
+ Lη

√
var
(

θ̂(SELF)

)
(35)

where i = 1, 2, 3.
RSS1 = RSS
RSS2 = MRSS
RSS3 = ERSS

4.1.2. Control Limits under LLF Using RSS Schemes

Here, the LLF is used for the construction of control limits of suggested Bayesian
HEWMA control chart with the help of Bayes estimator of θ is derived under RSS schemes
and using LLF with LFs is given by

θ̂LLF =
nx(RSSi)

δ2
0 + δ2θ0

δ2 + nδ2
0

− C′

2
δ2

n (36)

The mean and variance of the θ̂LLF are given as

E
(
θ̂LLF

)
=

nθ1δ2
0 + δ2θ0

δ2 + nδ2
0
− C′

2
(37)

and

var
(
θ̂LLF

)
=

nδ2
(RSSi)

δ4
0(

δ2 + nδ2
0
)2 (38)

The control limits using LLF and RSS schemes of the suggested Bayesian HEWMA are
given as

LCLRSSi = E
(

θ̂(LLF)

)
− Lη

√
var
(

θ̂(LLF)

)
(39)

CLRSSi = E
(

θ̂(LLF)

)
(40)

UCLRSSi = E
(

θ̂(LLF)

)
+ Lη

√
var
(

θ̂(LLF)

)
(41)

4.2. Posterior Predictive Distribution under Normal Prior Distribution

The proposed Bayesian HEWMA control chart based on the posterior predictive distri-
bution have been constructed in this section. Let y1, y2, . . . , yh be the feature observations
of size h, then the posterior predictive distribution y/x is given as
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p(y/x) =
1√

2πδ2
1

exp

{
− 1

2δ2
1
(Y− θn)

2

}
(42)

The posterior predictive distribution is also normally distributed with mean and

variance δ2
1 , where δ2

1 is given as δ2
1 = δ2 +

δ2δ2
0

δ2+nδ2
0

, the control limits using RSS schemes and

under LLF for proposed Bayesian HEWMA are given.

Control Limits under LLF Using RSS Schemes

The LLF is utilized to construct the control limits for the Bayesian HEWMA control
chart under RSS schemes, and the using LLF is derived as

θ̂LLF =
nx(RSSi)

δ2
0 + δ2θ0

δ2 + nδ2
0

− C′

2

∼
δ

2

1 (43)

where
∼
δ

2

1 = δ2

k +
δ2δ2

0
δ2+nδ2

0
.

The mean and variance of the Bayes estimator are given below:

E
(
θ̂LLF

)
=

nθ1δ2
0 + δ2θ0

δ2 + nδ2
0
− C′

2

∼
δ

2

1 (44)

and

var
(
θ̂LLF

)
=

nδ2
(RSSi)

δ4
0(

δ2 + nδ2
0
)2 (45)

The control limits for the Bayesian HEWMA control chart with LLF using RSS schemes
are given below:

LCLRSSi = E
(

θ̂(LLF)

)
− Lη

√
var
(

θ̂(LLF)

)
(46)

CLRSSi = E
(

θ̂(LLF)

)
(47)

UCLRSSi = E
(

θ̂(LLF)

)
+ Lη

√
var
(

θ̂(LLF)

)
(48)

5. Simulation Study

The performance of the suggested Bayesian HEWMA control chart under RSS schemes
is evaluated through the Monte Carlo simulation method based on the ARL and SDRL
measures. The different smoothing constants λ1 = 0.10 or 0.25, and λ2 = 0.05 is used to
check the effect of the proposed Bayesian HEWMA control chart using RSS schemes under
different LFs, at the specified in-control process 370. The simulation steps for the suggested
Bayesian HEWMA control chart are given below:

Step 1: Setting in-control ARL

• The sampling and prior distribution are taken as normal distribution, determine the

mean and standard deviation for various LFs, i.e., E
(

θ̂(LF)

)
and δLF.

• We choose the specified value of smoothing constants (λ1, λ2), for a fixed value of
ARLo = 370.

• Generate the different ranked set sampling schemes of size n from an in-control process
from a normal distribution.
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• Compute the proposed Bayesian HEWMA statistic and evaluate the process according
to the suggested method.

• If the process appears to be in-control, then repeat the above three steps until the
process is stated as out-of-control, and record the number of run-length for the in-
control process.

Step 2: For out-of-control ARL

1. Select the ranked set sampling schemes from a normal distribution for the shifted

process, i.e., X ∼ N
(

E
(
θ̂LF
)
+ σ δ√

n , δ
)

.

2. Compute the suggested Bayesian HEWMA statistic and evaluate the process according
to the design.

3. Repeat the above two steps if the process is stated to be in-control, and record the run
length of the in-control process.

4. Repeat steps (i–iii) 100,000 times and calculate the ARL and SDRL.

6. Results, Discussion, and Findings

The suggested Bayesian HEWMA control chart based on various RSS schemes with
two different LFs is compared with the Bayesian HEMWA and Bayesian AEWMA control
chart under simple random sampling (SRS) with the same value of the smoothing con-
stants for posterior and posterior predictive distribution with different LFs is presented in
Tables 1–6. Tables 1 and 2 indicate the ARL and SDRL results of the suggested Bayesian
HEWMA control chart using RSS schemes with informative prior under SELF and Bayesian
HEWMA, and Bayesian AEWMA control chart with SRS. The results indicate that the
suggested Bayesian HEWMA control chart using RSS schemes more efficiently detects
out-of-control signals then the existing Bayesian HEWMA and Bayesian AEWMA control
chart under SRS. For example, the ARL results of the HEWMA control chart using the
Bayesian approach under SRS with SELF for posterior and posterior predictive distribution
at smoothing constants λ1 = 0.10, λ2 = 0.05, and different shifts, i.e., σ = 0.0, 0.30, 0.50,
0.80, 1.50, and 4 are 371.67, 45.28, 19.77, 9.08, and 1.02; under the same case the ARL values
for the Bayesian AEWMA control chart with SRS are 370.98, 35.40, 13.55, 5.62, 2.25, and
1.01. In a similar situation, the ARL results of the suggested Bayesian HEWMA control
chart using RSS are 370.17, 19.73, 8.51, 3.80, 1.47, and 1 and 368.36, 16.67, 7.04, 3.20, 1.29,
and 1 for MRSS. ARL values for ERSS are 371.51, 22.04, 9.50, 4.34, 1.61, and 1. The results
indicate that the suggested HEWMA control chart using RSS schemes at each shift gives
smaller ARL values than the Bayesian HEWMA and Bayesian AEWMA control chart using
SRS, which shows that the suggested Bayesian HEWMA control chart using RSS schemes
is more sensitive than the Bayesian HEWMA using SRS. Similarly, under LLF, Table 6 gives
the comparison of the suggested control chart with the Bayesian HEWMA control chart
using SRS utilizing informative prior distribution. The ARL values for Bayesian HEWMA
using SRS at λ1 = 0.25, λ2 = 0.05 and shift σ = 0.0, 0.30, 0.50, 0.80, 1.50, and 4 are 370.35,
48.07, 20.77, 9.58, 3.35, and 1.04. Further, 368.67, 54.92, 25.97, 12.79, 4.94, and 1.09 are the
ARL values of the Bayesian AEWMA with SRS. The ARL results of the suggested Bayesian
HEWMA control chart using RSS are 370.12, 20.89, 8.98, 4.13, 1.58, and 1; for MRSS, the
ARL values are 369.24, 16.83, 7.31, 3.34, 1.36, and 1. The ARL values for ERSS are 369.89,
23.28, 10.20, 4.65, 1.71, and 1. The values for the suggested Bayesian HEWMA control chart
under RSS schemes at the larger shifts rapidly decrease, which shows that the proposed
control chart efficiently detects the out-of-control signals more than the Bayesian HEWMA
and Bayesian AEWMA control charts under SRS. Tables 1–6 show the computed results
of the suggested HEWMA control chart using Bayesian theory under RSS schemes with
informative prior distribution utilizing different LFs such that SELF and LLF for posterior
and posterior predictive distribution. The main findings of the suggested HEWMA control
under the Bayesian approach are discussed below:
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• The performance of the suggested Bayesian HEWMA control chart using RSS schemes
is observed with the changes in the values of the smoothing constants, i.e., λ1 and λ2.
The effect of the proposed control chart takes the fixed value of the λ2 with different
values of the observed. Tables 1 and 2 present the results of ARL and SDRL for the
suggested Bayesian HEWMA control chart using informative prior under SELF for
posterior and posterior predictive distribution; the results show that for a smaller
value, the proposed Bayesian HEWMA control chart performed well. For example,
at ARL0 = 370, λ1 = 0.10, λ2 = 0.05, and shift δ = 0.20 the ARL value is 29.40, and for
λ1 = 0.25 the ARL value is 38.87 using RSS. The values are 28.90 and 28.93 for MRSS,
and for ERSS the ARL values are 29.78 and 33.75.

• As the values of shift increase for the suggested HEWMA control chart under the
Bayesian approach using RSS schemes it rapidly decreases more than the Bayesian
HEWMA and Bayesian AEWMA control chart using SRS. For example, Tables 3 and 4
at ARL0 = 370, λ1 = 0.10, and λ2 = 0.25, the ARL results at σ = 0.30 is 19.91 and 3.83
at σ = 0.80 using RSS. They are 16.36 and 3.18 using MRSS, and the ARL values in
the same situation using ERSS are 22.06 and 4.31. The results show that the proposed
Bayesian control chart is more efficient.

• The results are given in Tables 5 and 6 for posterior and posterior predictive distri-
bution under LLF using informative prior, the values of ARL at ARL0 = 370, σ = 20,
λ1 = 0.10, and λ2 = 0.05 are 37.38 and at the ARL value, the result is 40.61 utilizing
RSS. the ARL values for the same case using MRSS are 25.15 and 33.61. For ERSS, the
ARL values are 40.76 and 46.01, which shows that the results presented in Tables 3–6
for posterior distribution under LLF are almost the same as the posterior and posterior
predictive distribution under LLF.

Table 1. The ARL and SDRL values of Bayesian HEWMA and Bayesian AEWMA control charts for
posterior and posterior predictive distribution under SELF, for λ1 = 0.10 and λ2 = 0.05, n = 5.

Shift

Bayesian HEWMA
SRS

Bayesian
AEWMA SRS

Bayesian HEWMA
RSS

Bayesian
HEWMA MRSS

Bayesian
HEWMA ERSS

ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

L = 2.099 h = 0.0856 L = 2.085 L = 2.081 L = 2.0864

0.00 371.67 408.54 370.86 537.77 370.17 409.83 368.36 425.51 371.51 423.98
0.10 196.95 205.05 179.91 247.52 108.18 104.56 92.75 91.50 92.21 114.53
0.20 82.93 80.72 70.61 91.12 29.40 27.80 27.49 24.31 41.77 36.00
0.30 45.28 40.19 35.40 44.53 19.73 15.67 16.67 13.38 22.04 17.86
0.40 28.25 23.64 21.15 26.36 12.41 9.53 10.47 8.05 13.88 10.71
0.50 19.77 15.92 13.55 16.69 8.51 6.55 7.04 5.30 9.50 7.24
0.60 14.70 11.43 9.46 11.23 6.14 4.59 5.19 3.81 7.13 5.40
0.70 11.55 8.90 7.08 7.70 4.90 3.59 3.98 2.88 5.47 4.07
0.75 10.16 7.84 6.15 6.43 4.24 3.06 3.59 2.57 4.84 3.63
0.80 9.08 6.86 5.62 5.82 3.80 2.73 3.20 2.21 4.34 3.16
0.90 7.50 5.65 4.51 4.18 3.15 2.22 2.68 1.79 3.51 2.53
1.00 6.33 4.75 3.85 3.20 2.64 1.81 2.19 1.42 2.96 2.05
1.50 3.19 2.25 2.25 1.29 1.47 0.76 1.29 0.57 1.61 0.88
2.00 1.98 1.23 1.66 0.78 1.11 0.34 1.05 0.23 1.17 0.42
2.50 1.46 0.75 1.36 0.56 1.02 0.14 1 0 1.03 0.19
3.00 1.21 0.47 1.17 0.39 1 0 1 0 1 0
4.00 1.02 0.16 1.01 0.14 1 0 1 0 1 0
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Table 2. The ARL and SDRL values of Bayesian HEWMA and Bayesian AEWMA control chart for
posterior and posterior predictive distribution under SELF, for λ1 = 0.25 and λ2 = 0.05. n = 5.

Shift

Bayesian HEWMA
SRS

Bayesian
AEWMA SRS

Bayesian HEWMA
RSS

Bayesian
HEWMA MRSS

Bayesian
HEWMA ERSS

ARL SDRL ARL SDRL ARL ARL SDRL ARL SDRL ARL

L = 2.2709 h = 0.241 L = 2.2656 L = 2.2644 L = 2.2654

0.00 370.10 389.87 369.00 367.39 369.48 390.26 371.03 375.35 369.48 424.80
0.10 205.54 213.07 210.23 195.27 109.64 104.51 101.67 97.65 109.65 107.20
0.20 89.63 85.75 97.04 80.91 38.87 33.86 28.90 25.84 32.77 31.97
0.30 48.08 42.64 55.71 42.80 20.42 15.94 17.16 13.25 23.43 18.51
0.40 30.28 24.88 36.15 25.09 13.10 9.65 10.75 7.65 14.49 10.78
0.50 20.84 16.41 25.95 17.04 8.97 6.46 7.41 5.25 10.06 7.19
0.60 15.42 11.65 19.80 12.20 6.54 4.54 5.41 3.72 7.46 5.24
0.70 12.00 8.80 15.41 9.09 5.18 3.55 4.21 2.83 5.76 4.00
0.75 10.67 7.73 14.11 8.17 4.52 3.05 3.80 2.49 5.14 3.56
0.80 9.54 6.92 12.87 7.26 4.13 2.78 3.40 2.23 4.64 3.16
0.90 7.94 5.65 10.76 5.97 3.41 2.22 2.80 1.78 3.81 2.52
1.00 6.60 4.63 9.17 4.96 2.84 1.79 2.39 1.47 3.18 2.06
1.50 3.41 2.22 4.90 2.77 1.56 0.80 1.36 0.61 1.71 0.93
2.00 2.14 1.27 2.98 1.83 1.14 0.38 1.08 0.28 1.21 0.47
2.50 1.56 0.81 1.98 1.15 1.02 0.16 1 0 1.05 0.22
3.00 1.26 0.52 1.48 0.72 1 0 1 0 1 0
4.00 1.04 0.20 1 0 1 0 1 0 1 0

Table 3. The ARL and SDRL values of Bayesian HEWMA and Bayesian AEWMA control chart for
posterior distribution using under LLF, for λ1 = 0.10 and λ2 = 0.05, n = 5.

Shift

Bayesian HEWMA
SRS

Bayesian
AEWMA SRS

Bayesian
HEWMA RSS

Bayesian
HEWMA MRSS

Bayesian
HEWMA ERSS

ARL SDRL ARL SDRL ARL ARL SDRL ARL SDRL ARL
L = 2.096 h = 0.086 L = 2.092 L = 2.095 L = 2.097

0.00 369.17 401.10 370.98 539.06 369.74 411.30 370.48 401.71 371.46 407.25
0.10 195.13 204.24 184.38 254.91 108.54 111.68 92.76 93.98 117.72 116.86
0.20 84.79 82.17 71.98 92.48 38.12 33.31 28.93 25.62 29.78 29.10
0.30 45.13 40.36 36.26 45.49 19.91 15.95 16.36 13.01 22.06 17.88
0.40 28.22 23.51 21.09 26.30 12.46 9.69 10.14 7.81 13.89 10.78
0.50 19.78 15.96 13.71 16.73 8.48 6.40 6.95 5.28 9.70 7.42
0.60 14.67 11.44 9.53 11.25 6.21 4.67 5.15 3.81 7.02 5.33
0.70 11.28 8.66 7.09 7.86 4.83 3.56 3.96 2.84 5.40 4.06
0.75 10.07 7.77 6.20 6.50 4.33 3.19 3.52 2.49 4.83 3.54
0.80 9.23 6.97 5.54 5.54 3.83 2.77 3.18 2.26 4.31 3.13
0.90 7.49 5.67 4.52 4.17 3.19 2.24 2.61 1.75 3.54 2.51
1.00 6.23 4.65 3.83 3.20 2.64 1.79 2.20 1.43 2.97 2.09
1.50 3.15 2.21 2.26 1.27 1.47 0.75 1.28 0.56 1.61 0.91
2.00 1.98 1.23 1.66 0.78 1.11 0.34 1.05 0.23 1.17 0.43
2.50 1.46 0.75 1.34 0.55 1.01 0.13 1 0 1.03 0.19
3.00 1.21 0.47 1.16 0.39 1 0 1 0 1 0
4.00 1.02 0.16 1.02 0.15 1 0 1 0 1 0
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Table 4. The ARL and SDRL values of Bayesian HEWMA and Bayesian AEWMA control chart for
posterior distribution using under LLF, for λ1 = 0.25 and λ2 = 0.05, n =5.

Shift

Bayesian HEWMA
SRS

Bayesian
AEWMA SRS

Bayesian
HEWMA RSS

Bayesian
HEWMA MRSS

Bayesian
HEWMA ERSS

ARL SDRL ARL SDRL ARL ARL SDRL ARL SDRL ARL

L = 2.2716 h = 0.242 L = 2.2777 L = 2.2644 L = 2.2785

0.00 371.51 399.34 370.14 434.88 370.33 413.48 371.31 402.39 369.64 455.17
0.10 204.28 211.60 212.09 198.42 122.91 129.19 102.44 104.20 131.00 127.63
0.20 91.17 87.08 86.77 83.25 32.08 30.09 33.95 28.40 33.75 28.30
0.30 48.54 42.98 55.44 42.26 20.70 15.98 17.45 13.26 24.01 18.96
0.40 30.32 24.92 36.76 25.98 13.00 9.75 10.79 7.87 14.68 11.01
0.50 20.10 16.24 25.86 16.88 8.84 6.30 7.43 5.31 10.10 7.31
0.60 15.32 11.44 19.65 12.16 6.71 4.71 5.53 3.74 7.54 5.24
0.70 11.88 8.71 15.62 9.17 5.15 3.52 4.22 2.83 5.80 3.97
0.75 10.67 7.69 14.23 8.29 4.56 3.11 3.83 2.52 5.19 3.56
0.80 9.64 6.90 12.83 7.30 4.11 2.77 3.41 2.21 4.69 3.17
0.90 7.83 5.59 10.79 5.90 3.39 2.22 2.84 1.81 3.87 2.56
1.00 6.67 4.62 9.25 5.00 2.87 1.82 2.39 1.46 3.21 2.09
1.50 3.39 2.23 4.95 2.80 1.57 0.82 1.36 0.62 1.73 0.95
2.00 2.15 1.29 2.97 1.81 1.15 0.39 1.07 0.26 1.23 0.49
2.50 1.56 0.80 1.97 1.13 1.02 0.16 1 0 1.05 0.23
3.00 1.26 0.52 1.48 0.73 1 0 1 0 1 0
4.00 1.04 0.20 1.09 0.30 1 0 1 0 1 0

Table 5. The ARL and SDRL values of Bayesian HEWMA and Bayesian AEWMA control chart for
posterior predictive distribution using under LLF, for λ1 = 0.10 and λ2 = 0.05, n = 5.

Shift

Bayesian HEWMA
SRS

Bayesian
AEWMA SRS

Bayesian
HEWMA RSS

Bayesian
HEWMA MRSS

Bayesian
HEWMA ERSS

ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

L = 2.097 h = 0.0856 L = 2.096 L = 2.093 L = 2.092

0.00 371.01 407.30 369.58 524.70 370.91 386.10 371.20 425.62 369.87 381.21
0.10 196.48 206.11 178.57 250.19 114.59 118.41 92.18 89.24 122.70 125.56
0.20 85.44 82.91 70.53 91.22 37.38 32.25 25.15 24.87 40.76 37.20
0.30 45.52 40.27 35.71 45.25 20.07 15.97 16.18 12.74 22.11 17.96
0.40 28.57 23.83 21.24 26.29 12.48 9.59 10.32 7.88 14.02 10.95
0.50 19.65 15.64 13.66 16.90 8.38 6.35 6.91 5.21 9.46 7.28
0.60 14.81 11.55 9.46 11.08 6.27 4.79 5.12 3.77 7.03 5.37
0.70 11.38 8.82 6.94 7.70 4.86 3.57 3.95 2.88 5.43 4.01
0.75 10.19 7.82 6.22 6.53 4.28 3.16 3.55 2.54 4.86 3.58
0.80 9.17 6.96 5.50 5.58 3.82 2.77 3.20 2.26 4.33 3.20
0.90 7.53 5.66 4.52 4.15 3.15 2.20 2.58 1.76 3.55 2.50
1.00 6.28 4.74 3.77 3.17 2.65 1.79 2.20 1.42 2.97 2.07
1.50 3.13 2.19 2.26 1.29 1.47 0.76 1.28 0.56 1.62 0.90
2.00 1.97 1.21 1.66 0.78 1.11 0.34 1.03 0.16 1.17 0.43
2.50 1.46 0.75 1.35 0.55 1.02 0.14 1 0 1.03 0.19
3.00 1.21 0.47 1.16 0.39 1 0 1 0 1 0
4.00 1.02 0.17 1.02 0.15 1 0 1 0 1 0
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Table 6. The ARL and SDRL values of Bayesian HEWMA and Bayesian AEWMA control chart for
posterior predictive distribution under LLF, for λ1 = 0.25 and λ2 = 0.05, n = 5.

Shift

Bayesian HEWMA
SRS

Bayesian
AEWMA SRS

Bayesian
HEWMA RSS

Bayesian
HEWMA MRSS

Bayesian
HEWMA ERSS

ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

L = 2.2717 h = 0.2414 L = 2.2771 L = 2.2649 L = 2.2781

0.00 372.35 391.96 368.67 359.45 380.12 396.83 369.24 386.76 368.89 436.27
0.10 206.32 211.24 210.29 197.72 112.72 122.32 100.70 99.31 130.03 128.34
0.20 90.30 86.01 98.16 83.24 40.61 34.92 33.61 28.40 46.01 40.51
0.30 48.07 42.86 54.92 41.45 20.89 16.36 16.83 12.79 23.28 18.24
0.40 30.54 25.30 36.19 25.48 13.04 9.68 10.75 7.84 14.57 10.91
0.50 20.77 16.28 25.97 17.13 8.98 6.42 7.31 5.21 10.20 7.32
0.60 15.39 11.51 19.68 12.21 6.64 4.59 5.46 3.75 7.47 5.22
0.70 11.94 8.73 15.56 9.19 5.12 3.49 4.21 2.85 5.82 4.03
0.75 10.68 7.72 14.18 8.26 4.61 3.12 3.73 2.51 5.21 3.57
0.80 9.58 6.78 12.79 7.24 4.13 2.78 3.34 2.19 4.65 3.15
0.90 7.83 5.53 10.74 5.93 3.41 2.23 2.80 1.78 3.82 2.53
1.00 6.65 4.67 9.20 4.98 2.88 1.82 2.32 1.43 3.22 2.09
1.50 3.35 2.21 4.94 2.79 1.58 0.82 1.36 0.62 1.71 0.91
2.00 2.16 1.28 2.95 1.81 1.14 0.38 1.07 0.26 1.23 0.48
2.50 1.56 0.80 1.98 1.14 1.02 0.17 1 0 1.05 0.23
3.00 1.26 0.52 1.48 0.72 1 0 1 0 1 0
4.00 1.04 0.20 1.09 0.30 1 0 1 0 1 0

Tables 1–6 present the results of the suggested Bayesian HEWMA control chart under
RSS schemes for posterior and posterior predictive distribution by using informative prior,
and utilizing both LFs, i.e., SELF and LLF. The suggested Bayesian HEWMA control
chart under MRSS can trigger out-of-control signals more efficiently compared to other
RSS schemes.

7. Real Data Applications

Inside the SPC literature, a standard exercise that has been used by many analysts
is to clarify the execution and overall performance of the control charts using actual and
simulated datasets. In this article, we use a real dataset to explain the work and execution
of the proposed Bayesian AEWMA control chart under different RSS schemes utilizing
two different LFs for posterior and posterior predictive distribution. The dataset is taken
from Montgomery [26], which includes 45 samples, each of size 5 wafers. In semiconductor
manufacturing, conjunction with photolithography is used with the hard-bake process. For
measurement of the flow width microns are used, and a one hour time interval is taken
between the samples. Consider the initial 30 samples from the in-control process (phase-I),
while the remaining 15 samples from the out-of-control process (phase-II). Moreover, all the
observation in the phase-II dataset is obtained by adding 0.017, which shows an ascending
shift in the core process mean.

The HEWMA and AEWMA control charts under the Bayesian approach based on SRS
by using SELF for posterior and posterior predictive distribution are shown in
Figures 1 and 2, respectively, which indicates that the process is out-of-control on the
42nd and 40th samples, respectively. Figures 2–4 show the proposed Bayesian HEWMA
control chart using SELF based on RSS schemes for posterior and posterior predictive
distribution, the process shows out-of-control signals on the 36th, 35th, and 37th sample for
RSS, MRSS, and ERSS, respectively. Based on Figures 1–5, the suggested Bayesian HEWMA
control charts using RSS schemes are more sensitive in detecting out-of-control signals than
the Bayesian HEWMA and Bayesian AEWMA control charts using SRS.
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Figure 1. Bayesian HEWMA control chart using posterior and posterior predictive distribution under
SELF for SRS.

Figure 2. Bayesian AEWMA control chart using posterior and posterior predictive distribution under
SELF for SRS.
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Figure 3. Bayesian HEWMA control chart using posterior and posterior predictive distribution under
SELF for RSS.

Figure 4. Bayesian HEWMA control chart using posterior and posterior predictive distribution under
SELF for MRSS.
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Figure 5. Bayesian HEWMA control chart using posterior and posterior predictive distribution under
SELF for ERSS.

8. Conclusions

In this article, a new Bayesian HEWMA control chart using different RSS schemes
based on the informative prior distribution and with two LFs has been proposed for the
process mean of the posterior and posterior predictive distribution. The results given in
Tables 1–6 show the efficiency of the suggested Bayesian HEWMA control chart using
RSS schemes over the Bayesian HEWMA and Bayesian AEWMA control chart using
SRS. The performance of the suggested control chart is also evaluated through different
figures, which shows that the proposed control chart is faster in detecting out-of-control
signals than an existing control chart. The current study is extended for different sampling
schemes, LFs, and also for non-normal distribution, i.e., Weibull distribution or exponential
distribution, etc.
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