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Abstract: The control charts based on X̄ and S are widely used to monitor the mean and variability
of variables and can help quality engineers identify and investigate causes of the process variation.
The usual requirement behind these control charts is that the sample sizes from the process are
all equal, whereas this requirement may not be satisfied in practice due to missing observations,
cost constraints, etc. To deal with this situation, several conventional methods were proposed.
However, some methods based on weighted average approaches and an average sample size
often result in degraded performance of the control charts because the adopted estimators are
biased towards underestimating the true population parameters. These observations motivate us to
investigate the existing methods with rigorous proofs and we provide a guideline to practitioners for
the best selection to construct the X̄ and S control charts when the sample sizes are not equal.
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1. Introduction

Control charts, also known as Shewhart control charts [1–3], have been used to determine if a
manufacturing process is in a state of control. In particular, the X̄ and S charts have been widely used
to monitor or detect the mean and variability of variables. Here, a variable is a quality characteristic
measured on a numerical scale. For example, variables include continuous measurement process data
such as length, pressure, width, temperature, and volume, in a time-ordered sequence.

Due to their importance and usefulness in real life applications, these traditional types of
univariate and control charts have still received much attention in the literature. We observe that
these control charts are usually adopted for continuously monitoring numerous data and for solving
the problem of process control in the Industry 4.0 framework; see, for example [4–6], among others.
Of particular note is that [7] developed a nice qcr package in R to generate Shewhart-type charts and
obtained numerical results of interest for a process quality control. More recently, based on the concept
of data depth, Ref. [8] proposed a novel alternative way for constructing control charts when the
critical to quality (CTQ) variables of the process are functional and also developed the Phase I and II
control charts for stabilizing and monitoring the processes, respectively.

It deserves mentioning that these traditional Shewhart control charts mentioned above consist of
the upper and lower control limits (for short, UCL and LCL) and the center line (CL). It is noteworthy
that the American Standard is based on CL± 3 · SE control limits with an ideal false alarm rate (FAR)
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of 0.27% while the British Standard is based on CL± 3.09 · SE with an ideal FAR of 0.20%, where SE
denotes the standard error.

The usual requirement behind these control charts is that the sample sizes from the process are all
equal. In practice, however, it is often the case that this requirement can not be met due to wrong or
missing observations in collecting them. In such setting, the three conventional approaches below are
widely used to deal with unequal sample sizes:

(i) A weighted average approach in calculating ¯̄X and S̄2.
(ii) Control limits based on an average sample size.

(iii) A weighted average in calculating S̄.

For more details, see Subsection 6.3.2 of Montgomery [9] and Subsection 3.8.B of ASTM [10].
The first approach uses variable-width control limits which are determined by the sample-specific
values such as ni, A3, B3, and B4. To estimate the scale parameter, a weighted average of sample
variances is calculated first and then its square-root is taken to estimate the scale parameter. The second
approach uses fixed-width control limits which is based on the average of the sample sizes. For more
details on these two methods, see Subsection 6.3.2 of Montgomery [9]. The third approach is very
similar to calculating S̄2 in the first approach. However, it uses a weighted average of sample standard
deviations directly to estimate the scale parameter. For more details, see Subsection 3.8.B of ASTM [10].
It is known that these three approaches may be satisfactory when the sample sizes are not very different.
Given that the average of the sample sizes is not necessarily an integer in general, a practical alternative
to the second approach is the use of a modal sample size.

However, when using these ad hoc approaches above, the parameter estimators are biased
and they actually underestimate the true population parameters as will be shown in Remark 2 in
Section 2 and Remarks 3 and 4 in Section 3. These underestimating ad hoc approaches could result in
degraded performance of the control charts. Nonetheless, these biased methods are widely covered in
many popular textbooks. These observations motivate us to clarify these conventional methods and
investigate other existing methods, especially when the samples are not equal in size. Through the
rigorous proofs, we provide a guideline for the best selection of the methods to construct the X̄ and S
control charts.

This paper is organized as follows. In Section 2, we provide two location estimators and four scale
estimators with unequal sample sizes and show that they are all unbiased. In Section 3, we provide
the variances of the estimators considered in this paper and show the inequality relations among
them. In Section 4, we provide the relative efficiency of the methods and conduct simulation results
to compare the performance of the location and scale estimators. In Section 5, we illustrate how
to construct various Shewhart-type control charts (i.e., S, S2, and X̄ charts) using the provided
estimators. In Section 6, we provide the empirical estimates of the average run length (ARL) and the
standard deviation of the run length (SDRL) through using the extensive Monte Carlo simulations.
Three real-data examples are presented in Section 7 for illustrative purposes. Some concluding remarks
are given in Section 8.

2. Estimation of Process Parameters with Unequal Sample Sizes

In this section, we provide two location estimators and three scale estimators for the process
parameters under the assumption that each sample has different sample sizes. In parametric
statistical quality control, the underlying distribution is used to construct the control charts. A quality
characteristic is assumed to be normally distributed, which is most widely used in most practical cases.
Under this assumption, we show that the estimators provided in this section are all unbiased.

We assume that we have m samples and that each sample has different sample sizes. Let Xij be
the ith sample (subgroup) of size ni from a stable manufacturing process, where i = 1, 2, . . . , m and
j = 1, 2, . . . , ni. We also assume that Xij are independent and identically distributed as normal with
mean µ and variance σ2.
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2.1. Location Parameter

Using the ith sample above, the sample mean and the sample variance are given by

X̄i =
1
ni

ni

∑
j=1

Xij, and S2
i =

1
ni − 1

ni

∑
j=1

(Xij − X̄i)
2,

where i = 1, 2, . . . , m. Montgomery [9] provides two location estimators of the population mean
parameter µ in Equations (6.2) and (6.30) in his book, which are given by

¯̄XA =
X̄1 + X̄2 + · · ·+ X̄m

m
=

1
m

m

∑
i=1

X̄i (1)

and

¯̄XB =
n1X̄1 + n2X̄2 + · · ·+ nmX̄m

n1 + n2 + . . . + nm
=

1
N

m

∑
i=1

niX̄i, (2)

where ni ≥ 2 and N = ∑m
i=1 ni.

These grand averages can be used as the CL on the X̄ chart. Since E(X̄i) = µ for i = 1, 2, . . . , m,
it is easily seen that E( ¯̄XA) = µ and E( ¯̄XB) = µ, showing that these two estimators are unbiased.
In addition, the variances of ¯̄XA and ¯̄XB are given by Var( ¯̄XA) = σ2 ∑m

i=1 n−1
i /m2 and Var( ¯̄XB) = σ2/N,

which results in Var( ¯̄XA) ≥ Var( ¯̄XB). Thus, ¯̄XB is preferred to ¯̄XA. It should be noted that, for the case
of an equal sample size, we have ¯̄XA = ¯̄XB = ¯̄X, where ¯̄X = ∑m

i=1 X̄i/m.

2.2. Scale Parameter

It is well known that S2
i is an unbiased estimator of σ2. However, Si is not an unbiased estimator

of σ as below. Since (ni − 1)S2
i /σ2 is distributed as the gamma with shape (ni − 1)/2 and scale 2,

we have

E

[{ (ni − 1)S2
i

σ2

}1/2
]
=

21/2 · Γ(ni/2)
Γ((ni − 1)/2)

.

Then, we have

E[Si] =

√
2

ni − 1
Γ(ni/2)

Γ((ni − 1)/2)
· σ = c4(ni) · σ, (3)

where

c4(ni) =

√
2

ni − 1
Γ(ni/2)

Γ((ni − 1)/2)
. (4)

This shows that Si/c4(ni) is actually an unbiased estimator of σ. Note that c4(·) is the
normal-consistent unbiasing factor, which is a function of the sample size and this c4 notation was
originally used in ASQC [11] to the best of our knowledge. For more details on c4(·), the interested
reader is referred to Vardeman [12]. In Appendix A, we also provide an approximate calculation of
c4(·) which can be used for practically easier calculation.

Thus, we can estimate σ using Si/c4(ni) which are are all unbiased. Analogous to Equation (1),
one can use

S̄A =
S1/c4(n1) + S2/c4(n2) + · · ·+ Sm/c4(nm)

m
=

1
m

m

∑
i=1

Si
c4(ni)

, (5)

which is clearly unbiased for σ. Since ∑m
i=1 E[Si] = ∑m

i=1 c4(ni) · σ from Equation (3), the estimator below

S̄B =
S1 + S2 + · · ·+ Sm

c4(n1) + c4(n2) + · · ·+ c4(nm)
=

∑m
i=1 Si

∑m
i=1 c4(ni)

(6)
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is also unbiased for σ. In addition, we consider the following unbiased estimator proposed by Burr [13]

S̄C =

m

∑
i=1

c4(ni)Si
1− c4(ni)2

m

∑
i=1

c4(ni)
2

1− c4(ni)2

. (7)

This estimator is actually the best linear unbiased estimator (BLUE) and we provide the
proof below.

Theorem 1. The estimator S̄C in Equation (7) is the BLUE.

Proof. First, we consider a linear unbiased estimator in the form of ∑m
i=1 wiSi. Then, its variance and

expectation are given by

Var

(
m

∑
i=1

wiSi

)
=

m

∑
i=1

w2
i {1− c4(ni)

2}σ2 and E

(
m

∑
i=1

wiSi

)
=

m

∑
i=1

wic4(ni)σ.

To obtain the BLUE, we need to minimize Var (∑m
i=1 wiSi) with the unbiasedness condition

E (∑m
i=1 wiSi) = σ. Thus, our objective is to minimize

m

∑
i=1

w2
i {1− c4(ni)

2} subject to
m

∑
i=1

wic4(ni) = 1,

which can be easily solved by using the method of Lagrange multipliers. The auxiliary function with
the Lagrange multiplier λ is given by

Ψ =
m

∑
i=1

w2
i {1− c4(ni)

2} − λ

{
m

∑
i=1

wic4(ni)− 1

}
.

It is immediate from ∂Ψ/∂wk that 2wk{1− c4(nk)
2} − λc4(nk) = 0, which results in

wk =
λc4(nk)

2{1− c4(nk)2} . (8)

Multiplying c4(nk) to Equation (8) and then making the sum of the two sides, we have

m

∑
i=1

wic4(ni) =
λ

2

m

∑
i=1

c4(ni)
2

1− c4(ni)2 .

Since ∑m
i=1 wic4(ni) = 1, we first solve the above for λ and then substitute it into Equation (8),

which provides

wk =

c4(nk)

1− c4(nk)2

m

∑
i=1

c4(ni)
2

1− c4(ni)2

,

which results in S̄C = ∑m
i=1 wiSi. This completes the proof.

Remark 1. It should be noted that, for the case of an equal sample size (n1 = n2 = · · · = nm = n), we can
easily show that S̄A = S̄B = S̄C = S̄/c4(n), where S̄ = ∑m

i=1 Si/m.
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One can also incorporate the pooled sample variance in estimating σ given by

S2
p =

m

∑
i=1

(ni − 1)S2
i

N −m
, (9)

where N = ∑m
i=1 ni again. However, Sp is not unbiased for σ although S2

p is. This is because

E[Sp] = c4(N −m + 1)σ. (10)

Based on this, Burr [13] suggested the following unbiased estimator of σ,

S̄D =
Sp

c4(N −m + 1)
. (11)

Remark 2. The weighted average approach introduced in Subsection 6.3.2 of Montgomery [9] uses the pooled
sample standard deviation Sp from Equation (9) to estimate σ. However, since c4(x) < 1, which will be shown
in Lemma 1, it is immediate from Equation (10) that Sp clearly underestimates the true parameter σ.

We have introduced the four unbiased scale estimators of σ which are denoted by S̄A, S̄B, S̄C,
and S̄D. A natural question appears: which of the four estimators should be recommended for
estimating σ in practical applications? In the following section, we clarify this question by providing a
guideline in terms of inequalities of their variances of the estimators under consideration.

3. Inequalities of the Variances of the Scale Estimators

We first obtain the variance of S̄A in Equation (5), which is obtained as

Var(S̄A) =
1

m2

m

∑
i=1

1
c4(ni)2 Var(Si). (12)

Using Equation (3) and the unbiasedness property of S2
i , we have

Var(Si) = E(S2
i )− E(Si)

2 = σ2 − c4(ni)
2σ2 = σ2{1− c4(ni)

2}. (13)

Substituting Equation (13) into (12), we have

Var(S̄A) =
σ2

m2

m

∑
i=1

{ 1
c4(ni)2 − 1

}
. (14)

Similarly, the variance of S̄B in Equation (6) is easily obtained as

Var(S̄B) =
∑m

i=1 Var(Si)

{∑m
i=1 c4(ni)}2 = σ2 · ∑m

i=1
{

1− c4(ni)
2}{

∑m
i=1 c4(ni)

}2 (15)

and that of S̄C in Equation (7) is also obtained as

Var(S̄C) =
σ2

m

∑
i=1

c4(ni)
2

1− c4(ni)2

. (16)

Finally, for the case of S̄D, we have

Var(S̄D) = E(S̄2
D)− E(S̄D)

2. (17)
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Using Equation (11) and the unbiasedness property of S̄D, we can rewrite Equation (17) as

Var(S̄D) =
1

c4(N −m + 1)2 E(S2
p)− σ2.

Since S2
p is also unbiased for σ2, we have

Var(S̄D) = σ2
{ 1

c4(N −m + 1)2 − 1
}

. (18)

Next, as aforementioned, we here answer the question of how to choose the best one among
the four estimators by comparing their variances of these four scale estimators. To be more specific,
we prove the inequality relations among the four scale estimators as follows.

Lemma 1. The function c4(x) defined in Equation (4) is monotonically increasing and√
2x− 3
2x− 2

< c4(x) < 1.

Proof. Using (x− 1)/2 · Γ((x− 1)/2) = Γ((x + 1)/2), we can rewrite c4(·) in Equation (4) as

c4(x) =
√

2
x− 1

Γ(x/2)
Γ((x− 1)/2)

=

[
Γ(x/2)2

Γ((x− 1)/2)Γ((x + 1)/2)

]1/2

, (19)

where x ≥ 2. Watson [14] showed that the function

θ(x) = −x + x
Γ(x)Γ(x + 1)
Γ(x + 1/2)2 (20)

is monotonically decreasing. It is noteworthy that the function θ(x) was motivated by Wallis’ famous
infinite fraction for π [15]. We can rewrite c4(x) using θ(x) in Equation (20) as

c4(x) =
1√

θ((x− 1)/2)
(x− 1)/2

+ 1

. (21)

Since both θ((x− 1)/2) and 1/{(x− 1)/2} are positive and monotonically decreasing,

1
c4(x)

=

√
θ((x− 1)/2) · 1

(x− 1)/2
+ 1

is also decreasing. Thus, c4(x) is monotonically increasing. Watson [14] and Mortici [16] also showed that√
x +

1
4
<

Γ(x + 1)
Γ(x + 1

2 )
≤
√

x +
1
π

.

Multiplying
√

2/(2x + 1) on each of the above terms, some algebra shows that√
4x + 1
4x + 2

< c4(2x + 2) ≤
√

2x + 2/π

2x + 1
< 1.

For convenience, we let x∗ = 2x + 2. Then, we have√
2x∗ − 3
2x∗ − 2

< c4(x∗) < 1,
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which completes the proof.

Lemma 2 (Chebyshev’s sum inequality). If a1 ≥ a2 ≥ · · · ≥ am and b1 ≥ b2 ≥ · · · ≥ bm, then we have

m
m

∑
i=1

aibi ≥
m

∑
i=1

ai ·
m

∑
i=1

bi.

Similarly, if a1 ≤ a2 ≤ · · · ≤ am and b1 ≥ b2 ≥ · · · ≥ bm, then we have

m
m

∑
i=1

aibi ≤
m

∑
i=1

ai ·
m

∑
i=1

bi.

Proof. First, we will consider the case where both ai and bi are increasing. In this case, both (ai − aj)

and (bi − bj) have the same sign, or at least one of them can have the zero value. Then, the value of
(ai − aj)(bi − bj) is positive or zero for any i and j, which results in

m

∑
i=1

m

∑
j=1

(ai − aj)(bi − bj) ≥ 0.

After the tedious algebra of the above, we have

m
m

∑
i=1

aibi ≥
m

∑
i=1

ai ·
m

∑
i=1

bi.

Next, we consider the case when ai is increasing and bi is decreasing. In this case, (ai − aj)

and (bi − bj) have different signs, or at least one of them can have the zero value. Then, the value of
(ai− aj)(bi− bj) is negative or zero for any i and j. Similar to the above approach, we have ∑m

i=1 ∑m
j=1(ai−

aj)(bi − bj) ≤ 0, which results in m ∑m
i=1 aibi ≤ ∑m

i=1 ai ·∑m
i=1 bi. This completes the proof.

It should be noted that the above inequality name is coined after Pafnuty Lvovich Chebyshev
(1821–1894) who mentioned it in a brief note [17]. He provided it in an integral form and his original
proof can be found in Chebyshev [18]. For more details, the readers are also referred to Besenyei [19]
and Section 2.17 of Hardy et al. [20].

Theorem 2. We have
Var(S̄A) ≥ Var(S̄B).

Proof. For convenience, we rearrange the sample sizes so that n1 ≤ n2 ≤ · · · ≤ nm. Then, it is
immediate from Equations (14) and (15) that it suffices to show

1
m2

m

∑
i=1

{ 1
c4(ni)2 − 1

}
≥ ∑m

i=1
{

1− c4(ni)
2}{

∑m
i=1 c4(ni)

}2 .

Since c4(x) is increasing from Lemma 1, it is easily seen that 1/c4(x)2 − 1 is decreasing.
For convenience, let ai = c4(ni) and bi = 1/c4(ni)

2 − 1. Then, we have a1 ≤ a2 ≤ · · · ≤ am

and b1 ≥ b2 ≥ · · · ≥ bm. Thus, we observe from Lemma 2 that

m

∑
i=1

c4(ni) ·
m

∑
i=1

{
1

c4(ni)2 − 1
}
≥ m ·

m

∑
i=1

{
1

c4(ni)
− c4(ni)

}
. (22)

Applying Lemma 2 again with ai = c4(ni) (increasing) and bi = 1/c4(ni)− c4(ni) (decreasing),
we have
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m

∑
i=1

c4(ni) ·
m

∑
i=1

{
1

c4(ni)
− c4(ni)

}
≥ m ·

m

∑
i=1

{
1− c4(ni)

2
}

,

which results in
m

∑
i=1

{
1

c4(ni)
− c4(ni)

}
≥

m ∑m
i=1
{

1− c4(ni)
2}

∑m
i=1 c4(ni)

. (23)

Comparing Equations (22) and (23), we have

m

∑
i=1

c4(ni) ·
m

∑
i=1

{
1

c4(ni)2 − 1
}
≥

m2 ∑m
i=1
{

1− c4(ni)
2}

∑m
i=1 c4(ni)

,

which results in
1

m2

m

∑
i=1

{
1

c4(ni)2 − 1
}
≥ ∑m

i=1
{

1− c4(ni)
2}

{∑m
i=1 c4(ni)}2 .

This completes the proof.

Theorem 3. We have
Var(S̄B) ≥ Var(S̄C).

Proof. We have the variances of S̄B and S̄C from Equations (15) and (16), which are given by

Var(S̄B) =
σ2 ·∑m

i=1
{

1− c4(ni)
2}{

∑m
i=1 c4(ni)

}2 and Var(S̄C) =
σ2

m

∑
i=1

c4(ni)
2

1− c4(ni)2

.

Thus, it suffices to show{
m

∑
i=1

c4(ni)

}2

≤
m

∑
i=1

c4(ni)
2

1− c4(ni)2 ·
m

∑
i=1

{
1− c4(ni)

2}. (24)

For convenience, we let ai = c4(ni)/
√

1− c4(ni)2 and bi =
√

1− c4(ni)2. Then, it is immediate
from the Cauchy–Schwarz inequality,

{
∑ aibi

}2 ≤
{

∑ a2
i
}{

∑ b2
i
}

that the inequality in Equation (24)
holds. This completes the proof.

Lemma 3. The function
c4(x)2

1− c4(x)2

is concave.

Proof. It is immediate from Equation (21) that we have

c4(x)2

1− c4(x)2 =
(x− 1)/2

θ((x− 1)/2)
. (25)

For convenience, we let y = (x− 1)/2. Then, it suffices to show y/θ(y) is concave. Bustoz and
Ismail [21] showed that θ(y) is completely monotonic on [−1/2, ∞) using the representation by Watson [14].
For more details on complete monotonicity, refer to Section XIII.4 of Feller [22]. It is well known that
completely monotonic functions are log-convex. For example, see Lemma 4.3 of Merkle [23], Theorem 1 of
Fink [24], Exercise 6 in Section 2.1 of Niculescu and Persson [25], and Equation (3.4) of van Haeringen [26]
with n = 0 and m = 1, among others.
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Thus, log θ(y) is convex so − log θ(y) is concave. Since log y is also concave, log(y/θ(y)) =

log y +
{
− log θ(y)

}
is concave. This implies that y/θ(y) is log-concave. The log-concavity of y/θ(y)

guarantees that it is concave. This completes the proof.

Theorem 4. We have
Var(S̄C) ≥ Var(S̄D).

Proof. From Equations (16) and (18), we have

Var(S̄C) =
σ2

m

∑
i=1

c4(ni)
2

1− c4(ni)2

and Var(S̄D) = σ2
{ 1

c4(N −m + 1)2 − 1
}

.

Thus, it suffices to show

c4(N −m + 1)2

1− c4(N −m + 1)2 ≥
m

∑
i=1

c4(ni)
2

1− c4(ni)2 .

It is immediate from Lemma 3 that c4(x)2/{1− c4(x)2} is concave. Then, using Jensen’s inequality,
we have

c4(n̄)2

1− c4(n̄)2 ≥
1
m

m

∑
i=1

c4(ni)
2

1− c4(ni)2 ,

where n̄ = ∑m
i=1 ni/m. Thus, it suffices to show

c4(N −m + 1)2

1− c4(N −m + 1)2 ≥
mc4(n̄)2

1− c4(n̄)2 . (26)

Using Equation (25) in Lemma 3, we have

c4(N −m + 1)2

1− c4(N −m + 1)2 =
(N −m)/2

θ((N −m)/2)
(27)

and

mc4(n̄)2

1− c4(n̄)2 =
m(n̄− 1)/2

θ((n̄− 1)/2)
=

(N −m)/2
θ((n̄− 1)/2)

, (28)

where θ(x) is defined in Equation (20). Comparing Equations (27) and (28), we need to show

θ((N −m)/2) ≤ θ((n̄− 1)/2).

Since (n̄− 1)/2 ≤ (N −m)/2 and θ(x) is decreasing from Watson [14], the above inequality in
Equation (26) holds. This completes the proof.

In combination with the inequalities in Theorems 2–4, we have the following result:

Var(S̄A) ≥ Var(S̄B) ≥ Var(S̄C) ≥ Var(S̄D). (29)

Lemma 4. The c4(x) defined in Equation (4) satisfies

1
m

m

∑
i=1

c4(ni) ≤ c4(n̄).
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Proof. First, we will show that c4(x) is concave. Taking the logarithm of c4(x) in Equation (19), we have

log c4(x) = log Γ
( x

2

)
− 1

2
log Γ

( x− 1
2

)
− 1

2
log Γ

( x + 1
2

)
,

where x ≥ 2. It is well known that the second derivative of log Γ(x) can be expressed as the sum of
the series

d2

dx2 log Γ(x) =
∞

∑
k=0

1
(x + k)2 . (30)

For more details, see Merkle [27] and Section 11.14 (iv) of Schilling [28].
Using Equation (30), we have

d2

dx2 log c4(x) =
∞

∑
k=0

1
(x/2 + k)2 −

1
2

∞

∑
k=0

1
(x/2− 1/2 + k)2 −

1
2

∞

∑
k=0

1
(x/2 + 1/2 + k)2

=
∞

∑
k=0

[
1

(x/2 + k)2 −
1

2(x/2− 1/2 + k)2 −
1

2(x/2 + 1/2 + k)2

]

= −
∞

∑
k=0

3
4 (x/2− 1/2 + k)2 + 3

4 (x/2− 1/2 + k) + 1
8

(x/2 + k)2(x/2− 1/2 + k)2(x/2 + 1/2 + k)2 < 0.

Thus, c4(x) is log-concave which guarantees that c4(x) is concave. Then, using Jensen’s inequality,
we have

1
m

m

∑
i=1

c4(ni) ≤ c4(n̄),

where n̄ = ∑m
i=1 ni/m. This completes the proof.

Remark 3. It is worth mentioning that one can argue an alternative way based on an average sample size
n̄ = ∑m

i=1 ni/m. For example, see Section 6.3.2 of Montgomery [9]. In such setting, one may consider the
following quotient for the estimator of σ

S̄∗ =
S̄

c4(n̄)
, (31)

where

S̄ =
1
m

m

∑
i=1

Si. (32)

However, this estimator is not unbiased because

E[S̄∗] =
1
m ∑m

i=1 E[Si]

c4(n̄)σ
=

1
m ∑m

i=1 c4(ni)

c4(n̄)
· σ.

Because 1
m ∑m

i=1 c4(ni) ≤ c4(n̄) from Lemma 4, S̄∗ can underestimate the true parameter σ. However,
for the case of an equal sample size (n1 = n2 = · · · = nm = n), we have S̄∗ = S̄/c4(n) so that S̄A = S̄B =

S̄C = S̄∗. Thus, in this special case of an equal sample size, S̄∗ is unbiased.

Remark 4. There is another alternative in Subsection 3.8.B of ASTM [10], which is based on the weighted
average of sample standard deviations given by

S̄w =
n1S1 + n2S2 + · · ·+ nmSm

n1 + n2 + · · ·+ nm
=

∑m
i=1 niSi

N
. (33)

Then, we have

E[S̄w] =
∑m

i=1 nic4(ni)

N
· σ.
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It deserves mentioning that the estimator above still underestimates the true parameter σ because c4(x) < 1
from Lemma 1. In addition, for the case of an equal sample size, we have S̄w = S̄, where S̄ = 1

m ∑m
i=1 Si.

Theorem 5. Let S2
N = ∑m

i=1 ∑ni
j=1(Xij − ¯̄X)2/(N − 1) and ¯̄X = 1

N ∑m
i=1 ∑ni

j=1 Xij. Then, ¯̄X and S̄E =

SN/c4(N) are the uniform minimum variance unbiased estimators of µ and σ, respectively. Thus, we have

Var(S̄D) ≥ Var(S̄E).

Proof. One can obtain the uniform minimum variance unbiased estimator (UMVUE) using complete
sufficient statistics as described in Theorem 7.3.23 of Casella and Berger [29]. For more details on the
UMVUE, one can refer to Definition 1.6 of Lehmann and Casella [30].

The control charts we have developed are under the assumption that Xij are independent and
identically distributed as normal with mean µ and variance σ2 which leads to the joint complete
sufficient statistics for µ and σ2 given by ¯̄X = 1

N ∑m
i=1 ∑ni

j=1 Xij and ∑m
i=1 ∑ni

j=1(Xij − ¯̄X)2, respectively.

Since E[ ¯̄X] = µ and E[S̄E] = σ, ¯̄X and S̄E are the UMVUEs of µ and σ, respectively. This completes
the proof.

Remark 5. It is noteworthy that, analogous to Equation (18), we have

Var(S̄E) = σ2
{ 1

c4(N)2 − 1
}

, (34)

which also results in Var(S̄D) ≥ Var(S̄E) since c4(x) is increasing from Lemma 1.

Remark 6. Although S̄E can attain the minimum variance, we do not adopt this estimator to construct the
control charts. The main reason can be discussed as follows. Consider the case that Xij are independent and
identically distributed as normal with different means µi for j = 1, 2, . . . , ni and variance σ2. Then, the pooled
sample variance, S2

p, is a complete sufficient statistic. See Example 2.3 in Section 2.2 of Lehmann and Casella [30].
This implies that S̄E is better under the null hypothesis H0 : µ1 = µ2 = · · · = µm (in control), whereas S̄D is
better under the alternative (out of control). Thus, if the process is out of control, the control charts using S̄E
could have wider control limits, which may result in an increase in the rate incorrectly signaling that the process
is in-control when the process is actually out of control.

In addition, one can think of the case of non-constancy of σ. In this heteroscedasticity case, Burr [13]
mentioned that S̄C seems preferable to S̄D. We think that this case should be investigated more thoroughly in a
sequel paper.

4. Comparison of the Performance

In this section, we provide the relative efficiency of the methods to compare their performance.
We also carried out Monte Carlo simulations to compare the empirical biases and variances.

4.1. Relative Efficiency

When we compare the performance of unbiased estimators (say, θ̂1 and θ̂0), the relative efficiency
(RE) is widely used in the statistics literature. See Section 2.2 of Lehmann [31] for more details. The RE
of θ̂1 with respect to θ̂0 is given by

RE(θ̂1 | θ̂0) =
Var(θ̂0)

Var(θ̂1)
,

where θ̂0 is a reference estimator. In general, the estimator with the smaller variance of the two
estimators is used as a reference estimator so that RE(θ̂1 | θ̂0) ≤ 1.
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To estimate the location parameter, we considered ¯̄XA in Equation (1) and ¯̄XB in Equation (2).
Then, the RE of ¯̄XA with respect to ¯̄XB is easily obtained as

RE( ¯̄XA | ¯̄XB) =
m2(

∑m
i=1 ni

)
·
(

∑m
i=1 n−1

i
) .

Note that RE( ¯̄XA | ¯̄XB) ≤ 1 where the equality holds if and only if n1 = n2 = · · · = nm due to the
inequality of the arithmetic mean and the harmonic mean [32].

For the case of the scale parameter, we considered the five estimators. Among them, S̄E has
the smallest variance. Thus, it can be used as a reference to compare the performance of the scale
estimators and the RE is then given by

RE(S̄j | S̄E) =
Var(S̄E)

Var(S̄j)
,

where j = A, B, C, D. For notational brevity, we denote

RE(S̄j) = RE(S̄j | S̄E). (35)

It is immediate from Equations (14)–(16), (18), and (34) that we have

RE(S̄A) =
{ 1

c4(N)2 − 1
}
· m2

∑m
i=1

{
1

c4(ni)2 − 1
} ,

RE(S̄B) =
{ 1

c4(N)2 − 1
}
·
{

∑m
i=1 c4(ni)

}2

∑m
i=1
{

1− c4(ni)2
} ,

RE(S̄C) =
{ 1

c4(N)2 − 1
}
·

m

∑
i=1

c4(ni)
2

1− c4(ni)2 ,

and

RE(S̄D) =
{ 1

c4(N)2 − 1
}
· c4(N −m + 1)2

1− c4(N −m + 1)2 .

It can be easily seen from Equations (29) and (34) that we have RE(S̄A) ≤ RE(S̄B) ≤ RE(S̄C) ≤
RE(S̄D) ≤ 1. In particular, when n1 = n2 = · · · = nm, we have RE(S̄A) = RE(S̄B) = RE(S̄C) ≤ RE(S̄D).

We have considered the RE to compare the performance of the above unbiased estimators.
However, S̄∗ in Equation (31) and S̄w in Equation (33) are not unbiased as mentioned in Remarks 2
and 3, respectively. In addition, S̄ in Equation (32) is not unbiased as easily seen from Equation (3).
Thus, it is reasonable to consider the mean square error (MSE) to obtain the RE since the MSE can
be regarded as a overall measure of bias and dispersion. For other utilization and modification of
the RE, one can refer to Park et al. [33,34] and Ouyang et al. [35] which considered the ratio of the
determinants of the covariance matrices, that is, the generalized variances [36,37]. Since the MSE is
the same as the variance for unbiased estimators (S̄A, S̄B, S̄C, and S̄D), the RE based on the MSE is the
same as that based on the variance in this unbiased case. In addition, the variance of S̄E is the same as
its MSE. Thus, we consider the RE of S̄, S̄∗, and S̄w as follows. We denote them by

RE(S̄) =
Var(S̄E)

MSE(S̄)
, RE(S̄∗) =

Var(S̄E)

MSE(S̄∗)
, and RE(S̄w) =

Var(S̄E)

MSE(S̄w)
.

We next obtain their biases which are easily obtained using Equation (3)
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Bias(S̄) =
[ 1

m

m

∑
i=1

c4(ni)− 1
]
σ,

Bias(S̄∗) =
[∑m

i=1 c4(ni)

mc4(n̄)
− 1
]
σ,

and

Bias(S̄w) =
[∑m

i=1 nic4(ni)

N
− 1
]
σ.

In addition, the variances are also easily obtained by using Var(Si) = σ2{1− c4(ni)
2} so that we have

Var(S̄) =
σ2

m2

m

∑
i=1

{
1− c4(ni)

2},

Var(S̄∗) =
1

c4(n̄)2
σ2

m2

m

∑
i=1

{
1− c4(ni)

2},

and

Var(S̄w) =
σ2

N2

m

∑
i=1

n2
i
{

1− c4(ni)
2}.

Considering that the MSE is the variance plus the squared bias, we can obtain the RE based on
the MSE

RE(S̄) =
{ 1

c4(N)2 − 1
}
· m2

∑m
i=1
{

1− c4(ni)2
}
+
{

∑m
i=1 c4(ni)−m

}2 ,

RE(S̄∗) =
{ 1

c4(N)2 − 1
}
· m2c4(n̄)2

∑m
i=1
{

1− c4(ni)2
}
+
{

∑m
i=1 c4(ni)−mc4(n̄)

}2 ,

and

RE(S̄w) =
{ 1

c4(N)2 − 1
}
· N2

∑m
i=1 n2

i
{

1− c4(ni)2
}
+
{

∑m
i=1 nic4(ni)− N

}2 .

4.2. Empirical Biases and Variances

The RE is a useful statistical tool to compare the performance of unbiased estimators. However,
the conventional methods such as in Equations (31)–(33) are biased. To compare these with the methods
provided here, we obtain the empirical biases and variances by carrying out Monte Carlo simulations.

We consider two cases: an equal sample size and unequal sample sizes. We first generated
samples of equal size with n1 = n2 = n3 = 3, with n1 = n2 = n3 = 10, and with n1 = n2 = n3 = 20.
We next generated samples of unequal sizes with n1 = 3, n2 = 5, n3 = 7, with n1 = 5, n2 = 10,
n3 = 15, and with n1 = 10, n2 = 20, n3 = 30. Again, let Xij be the ith sample (subgroup) of size ni.
Then, Xij were generated from the normal distribution with mean µ0 = 100 and standard deviation
σ0 = 10 and we obtained the scale estimates including the unbiased estimators (S̄A, S̄B, S̄C, S̄D, S̄E)
and the conventional methods (S̄, S̄∗, S̄w). In order to obtain the empirical biases and variances of these
estimates, we repeated this simulation ten million times (I = 107) and the results are summarized in
Table 1 for the case of an equal sample size and Table 2 for the case of unequal sample sizes. In addition,
the MSEs along with the squared empirical biases (red) and variances (light blue) are plotted in Figure 1
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for the case of an equal sample size and in Figure 2 for the case of unequal sample sizes. In the figures,
S̄A, S̄B, S̄C, S̄D, S̄, S̄∗, and S̄w are denoted by A, B, C, D, S, S*, and Sw, respectively.

Table 1. The empirical bias, variance, MSE, and RE with an equal sample size.

S̄A S̄B S̄C S̄D S̄E S̄ S̄∗ S̄w

(n1 = n2 = n3 = 3)

Bias 0.0005 0.0005 0.0005 0.0004 0.0008 −1.1372 0.0005 −1.1372
Var 9.1087 9.1087 9.1087 8.6503 6.4354 7.1539 9.1087 7.1539

MSE 9.1087 9.1087 9.1087 8.6503 6.4354 8.4473 9.1087 8.4473
RE 0.7065 0.7065 0.7065 0.7439 1.0000 0.7618 0.7065 0.7618

(n1 = n2 = n3 = 10)

Bias 0.0001 0.0001 0.0001 0.0002 0.0002 −0.2733 0.0001 −0.2733
Var 1.9007 1.9007 1.9007 1.8689 1.7388 1.7982 1.9007 1.7982

MSE 1.9007 1.9007 1.9007 1.8689 1.7388 1.8729 1.9007 1.8729
RE 0.9148 0.9148 0.9148 0.9304 1.0000 0.9284 0.9148 0.9284

(n1 = n2 = n3 = 20)

Bias 0.0001 0.0001 0.0001 0.0001 0.0002 −0.1305 0.0001 −0.1305
Var 0.8885 0.8885 0.8885 0.8811 0.8511 0.8655 0.8885 0.8655

MSE 0.8885 0.8885 0.8885 0.8811 0.8511 0.8825 0.8885 0.8825
RE 0.9578 0.9578 0.9578 0.9660 1.0000 0.9644 0.9578 0.9644

Table 2. The empirical bias, variance, MSE, and RE with unequal sample sizes.

S̄A S̄B S̄C S̄D S̄E S̄ S̄∗ S̄w

(n1 = 3, n2 = 5, n3 = 7)

Bias 0.0008 0.0008 0.0009 0.0009 0.0007 −0.7140 −0.1211 −0.6164
Var 5.4627 5.2936 4.3850 4.2500 3.6337 4.5640 5.1653 3.8867

MSE 5.4627 5.2936 4.3850 4.2500 3.6337 5.0738 5.1800 4.2667
RE 0.6652 0.6864 0.8287 0.8550 1.0000 0.7162 0.7015 0.8517

(n1 = 5, n2 = 10, n3 = 15)

Bias 0.0006 0.0006 0.0003 0.0003 0.0002 −0.3496 −0.0783 −0.2792
Var 2.5013 2.4512 1.8990 1.8685 1.7388 2.2825 2.4126 1.7990

MSE 2.5013 2.4512 1.8990 1.8685 1.7388 2.4047 2.4188 1.8770
RE 0.6952 0.7094 0.9157 0.9306 1.0000 0.7231 0.7189 0.9264

(n1 = 10, n2 = 20, n3 = 30)

Bias −0.0001 −0.0001 0.0001 0.0001 0.0002 −0.1634 −0.0331 −0.1319
Var 1.1229 1.1138 0.8885 0.8811 0.8511 1.0777 1.1064 0.8657

MSE 1.1229 1.1138 0.8885 0.8811 0.8511 1.1044 1.1075 0.8831
RE 0.7579 0.7641 0.9579 0.9659 1.0000 0.7706 0.7684 0.9637

Comparing the simulation results in Table 1, we can observe that the empirical results of S̄A, S̄B, S̄C,
and S̄∗ are the same for the case of an equal sample size. These results are quite reasonable as pointed
out in Remark 3. We can notice that the empirical biases are not exactly zero, although quite negligible,
because these biases are due to a random phenomenon of Monte Carlo simulation. In addition, S̄ and
S̄w have the same results as pointed out in Remark 4. On the other hand, for the case of unequal
sample sizes, they all have different results.

For the case of an equal sample size, the empirical variances and biases are noticeably different for
a smaller sample size, but all of them are getting closer as the sample size is increasing as also shown
in Figure 1. For the case of unequal sample sizes, the empirical biases are getting smaller as the sample
sizes are increasing. However, the variances are still noticeably different even with large sample sizes.
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Figure 1. (a) n1 = n2 = n3 = 3, (b) n1 = n2 = n3 = 10, and (c) n1 = n2 = n3 = 20.
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Figure 2. (a) n1 = 3, n2 = 5, n3 = 7, (b) n1 = 5, n2 = 10, n3 = 15, and (c) n1 = 10, n2 = 20, n3 = 30.

Comparing the empirical variances only, S̄w performs very well, whereas it is seriously biased.
Thus, it is reasonable to compare the MSEs along with the biases and we can conclude that S̄D is
overall the best. Note that we do not recommend the use of S̄E, even though S̄E always has the best
results in all the measures. This is because it can lead to degraded performance when the process is
out of control, as aforementioned in Remark 6.

5. Construction of the Control Charts with Unequal Sample Sizes

We briefly introduce how to construct the control charts and then discuss how to implement the
estimators provided here to construct the S chart in Section 5.1 and improve the S chart using the
probability limits in Section 5.2. We also discuss the construction of the X̄ chart in Section 5.3.

In general, we construct statistical quality control charts based on two phases [9,38], usually
denoted by Phase-I and Phase-II. Then, one can establish control limits with a set of stable manufacturing
process data in Phase-I. Then, we monitor the process in Phase-II using the control limits obtained in
Phase-I. We assume that we have m samples from a stable manufacturing process (Phase-I) and each
sample has different sample sizes, denoted by ni where i = 1, 2, . . . , m. Then, we monitor the process
with a sample of size nk (Phase-II).
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5.1. The S Chart

From the statistical asymptotic theory (for example, Corollarys 6–10 of Arnold [39]), we can have
an approximate distribution

Sk − E(Sk)

SE(Sk)
•∼ N(0, 1),

where Sk is the sample standard deviation with sample size nk. In order to construct the CL± 3 · SE
control limits, we can set up (Sk − E(Sk))/SE(Sk) = ±3. Solving this for Sk, we have

E(Sk)± 3 · SE(Sk) = c4(nk)σ± 3
√

1− c4(nk)2σ.

Since σ is generally unknown, we need to estimate σ. One can use S̄A in Equation (5), S̄B in
Equation (6), S̄C in Equation (7), and S̄D in Equation (11). Using S̄A, we can construct the S chart with
sample size nk as follows:

UCLA =
c4(nk)

m

m

∑
i=1

Si
c4(ni)

+ 3
√

1− c4(nk)2 · 1
m

m

∑
i=1

Si
c4(ni)

CLA =
c4(nk)

m

m

∑
i=1

Si
c4(ni)

LCLA =
c4(nk)

m

m

∑
i=1

Si
c4(ni)

− 3
√

1− c4(nk)2 · 1
m

m

∑
i=1

Si
c4(ni)

,

where we assign zero to LCL if it is negative. Next, using S̄B, we construct the S chart as follows:

UCLB = c4(nk) ·
∑m

i=1 Si

∑m
i=1 c4(ni)

+ 3
√

1− c4(nk)2 · ∑m
i=1 Si

∑m
i=1 c4(ni)

CLB = c4(nk) ·
∑m

i=1 Si

∑m
i=1 c4(ni)

LCLB = c4(nk) ·
∑m

i=1 Si

∑m
i=1 c4(ni)

− 3
√

1− c4(nk)2 · ∑m
i=1 Si

∑m
i=1 c4(ni)

.

In addition, using S̄C, we can construct the S chart as follows:

UCLC = c4(nk) ·

m

∑
i=1

c4(ni)Si
1− c4(ni)2

m

∑
i=1

c4(ni)
2

1− c4(ni)2

+ 3
√

1− c4(nk)2 ·

m

∑
i=1

c4(ni)Si
1− c4(ni)2

m

∑
i=1

c4(ni)
2

1− c4(ni)2

CLC = c4(nk) ·

m

∑
i=1

c4(ni)Si
1− c4(ni)2

m

∑
i=1

c4(ni)
2

1− c4(ni)2

LCLC = c4(nk) ·

m

∑
i=1

c4(ni)Si
1− c4(ni)2

m

∑
i=1

c4(ni)
2

1− c4(ni)2

− 3
√

1− c4(nk)2 ·

m

∑
i=1

c4(ni)Si
1− c4(ni)2

m

∑
i=1

c4(ni)
2

1− c4(ni)2

.

Of particular note is that, for the case of an equal sample size (n1 = n2 = · · · = nm = n) in Phase-I,
it is easily seen that UCLA = UCLB = UCLC, CLA = CLB = CLC, and LCLA = LCLB = LCLC.
Thus, we have the S chart below with sample size nk to use in Phase-II
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UCL =
c4(nk)

c4(n)
S̄ +

3
√

1− c4(nk)2

c4(n)
S̄

CL =
c4(nk)

c4(n)
S̄ (36)

LCL =
c4(nk)

c4(n)
S̄− 3

√
1− c4(nk)2

c4(n)
S̄,

where S̄ = ∑m
i=1 Si/m. We assign zero to LCL if it is negative. Furthermore, if we assume nk = n, we have

UCL = S̄ +
3
√

1− c4(n)2

c4(n)
S̄ = B4(n)S̄

CL = S̄

LCL = S̄− 3
√

1− c4(n)2

c4(n)
S̄ = B3(n)S̄,

where B3(n) = max
{

1 − 3
√

1− c4(n)2/c4(n), 0
}

, and B4(n) = 1 + 3
√

1− c4(n)2/c4(n). This is
a well-known S chart introduced in the quality control literature. For example, see the chart in
Equation (6.27) of Montgomery [9]. This indicates that the proposed S chart includes the existing S
chart as a special case.

Using S̄D, we construct the S chart as follows:

UCLD = c4(nk) ·
Sp

c4(N −m + 1)
+ 3
√

1− c4(nk)2 ·
Sp

c4(N −m + 1)

CLD = c4(nk) ·
Sp

c4(N −m + 1)

LCLD = c4(nk) ·
Sp

c4(N −m + 1)
− 3
√

1− c4(nk)2 ·
Sp

c4(N −m + 1)
,

where Sp =
{

∑m
i=1(ni − 1)S2

i /(N −m)
}1/2 and N = ∑m

i=1 ni. Unlike the previous cases, this control
chart is not the same as the one in Equation (36) even for the case of an equal sample size.

5.2. The S and S2 Charts with Probability Limits

We can improve the above S charts by using probability limits as mentioned in Section 4.7.4 of
Ryan [40]. It follows from the following Chi-square distribution result

(nk − 1)S2
k

σ2 ∼ χ2
nk−1

that

P

[
χ2

1−α/2,nk−1 ≤
(nk − 1)S2

k
σ2 ≤ χ2

α/2,nk−1

]
= 1− α, (37)

where χ2
γ,ν is the γth upper quantile of the Chi-square distribution with ν degrees of freedom. Rewriting

Equation (37) about Sk, we then have

P

σ ·

√
χ2

1−α/2,nk−1

nk − 1
≤ Sk ≤ σ ·

√
χ2

α/2,nk−1

nk − 1

 = 1− α.
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Thus, we can construct the S chart with probability limits such that UCL = σ{χ2
α/2,nk−1/(nk −

1)}1/2, CL = σ, and LCL = σ{χ2
1−α/2,nk−1/(nk − 1)}1/2. In practice, since σ is unknown, we need to

estimate σ. Thus, with the estimator σ̂, we can obtain

UCL = σ̂ ·

√
χ2

α/2,nk−1

nk − 1

CL = σ̂

LCL = σ̂ ·

√
χ2

1−α/2,nk−1

nk − 1
.

In the above, one construct the S chart with probability limits by using S̄A, S̄B, S̄C or S̄D instead of σ̂.
Next, we consider the construction of the S2 chart. We rewrite Equation (37) about S2

k and we
then have

P

[
σ2 ·

χ2
1−α/2,nk−1

nk − 1
≤ S2

k ≤ σ2 ·
χ2

α/2,nk−1

nk − 1

]
= 1− α.

Using the above along with σ̂2 = S2
p where S2

p is the pooled sample variance denoted in
Equation (9), we can also construct the S2 chart as follows:

UCL = S2
p ·

χ2
α/2,nk−1

nk − 1

CL = S2
p

LCL = S2
p ·

χ2
1−α/2,nk−1

nk − 1
.

Note that none of S̄2
A, S̄2

B, S̄2
C, or S̄2

D is unbiased for σ2, whereas S2
p is unbiased. Thus, it is not

recommended to use any of the four estimators to construct the S2 chart.

5.3. The X̄ Chart

From the statistical asymptotic theory, we have

X̄k − E(X̄k)

SE(X̄k)
•∼ N(0, 1),

where X̄k is the sample mean with sample size nk. In order to construct the CL± 3 · SE control limits,
we can set up (X̄k − E(X̄k))/SE(X̄k) = ±3. Solving this for X̄k, we have

E(X̄k)± 3 · SE(X̄k) = µ± 3σ√
nk

.

Since µ and σ are unknown in practice, we need to estimate them. With the estimates µ̂ and σ̂,
we have

UCL = µ̂ +
3σ̂√

nk

CL = µ̂

LCL = µ̂− 3σ̂√
nk

.

To estimate µ, one can use ¯̄XA defined in Equation (1) or ¯̄XB defined in Equation (2). To estimate
σ, one can use any of S̄A, S̄B, S̄C, and S̄D.
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As an illustration, using ¯̄XB and S̄A, we have X̄ chart as follows:

UCLA = ¯̄XB +
3S̄A√

nk

CLA = ¯̄XB

LCLA = ¯̄XB −
3S̄A√

nk
.

Similarly, we can construct various X̄ charts using a total of eight combinations of µ and
σ estimators.

Remark 7. It should be noted that, when S̄D is used, the X̄ chart is somewhat different from the above chart
and is given by

UCLD = ¯̄X +
3Sp

c4(nm−m + 1)
√

nk

CLD = ¯̄X

LCLD = ¯̄X−
3Sp

c4(nm−m + 1)
√

nk
.

As shown in Section 4, S̄D performs better than S̄A, S̄B, and S̄C. However, to the best of our
knowledge, the X̄ chart based on S̄D has not been widely used probably because the calculation of the
normal-consistent unbiasing factor c4 is difficult especially with a large argument value. Most textbooks
provide the values of c4(n) only for n ≤ 25. In Appendix A, for an easy calculation, we provide an
approximation for c4(n) which is highly accurate within one unit in the ninth decimal place for n > 25.
Thus, using this, one can easily calculate the LCL and UCL of the X̄ chart based on S̄D.

6. Average Run Length and Standard Deviation of Run Length

To compare the performance of the control charts based on the various estimators, we obtained
the empirical estimates of the ARL and the SDRL through using the extensive Monte Carlo simulation
method. For this simulation, we considered the X̄ chart. In this chart, we only estimated the location
with µ̂ = ¯̄XB because the RE of ¯̄XB is better than that of ¯̄XA as shown in Section 4. For the scale,
we considered seven different estimates (S̄A, S̄B, S̄C, S̄D, S̄, S̄∗, S̄w) and we denoted the charts based on
these scale estimates by A, B, C, D, S, S*, and Sw, respectively.

We assume that we have m samples (n1, n2, . . . , nm) in Phase-I. Again, let Xij be the ith sample
(subgroup) of size ni. Then, Xij’s were generated from the normal distribution with mean µ0 = 10 and
standard deviation σ0 = 5 and we obtained the location estimate ( ¯̄XB) and the seven scale estimates.
Using these estimates, we constructed the seven control charts based on CL± 3 · SE control limits
with FAR 0.27%. Then, we monitored the process with a new sample of size nk from the same normal
distribution and obtained the run length in Phase-II. We repeated this simulation one million times
(I = 106) to obtain the run lengths and then estimated the ARL and SDRL based on these run lengths.
Note that the simulation results are the same as the ones under different parameter values of µ0 and
σ0. It deserves mentioning that the results are quite reasonable, since the normal distribution is a
location-scale family, whereas the results are somewhat dependent on the number of samples and the
combination of the sample sizes.

We generated m = 15 samples with the five different scenarios. The sample sizes of each scenario
are given by

Scenario I n1 = n2 = · · · = n5 = 3, n6 = n7 = · · · = n10 = 10, n11 = n12 = · · · = n15 = 17
Scenario II n1 = n2 = · · · = n5 = 5, n6 = n7 = · · · = n10 = 10, n11 = n12 = · · · = n15 = 15,
Scenario III n1 = n2 = · · · = n5 = 7, n6 = n7 = · · · = n10 = 10, n11 = n12 = · · · = n15 = 13,
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Scenario IV n1 = n2 = · · · = n5 = 9, n6 = n7 = · · · = n10 = 10, n11 = n12 = · · · = n15 = 11,
Scenario V n1 = n2 = · · · = n5 = 10, n6 = n7 = · · · = n10 = 10, n11 = n12 = · · · = n15 = 10.

We considered Scenarios I–IV for the cases of unequal sample sizes and Scenario V for the case of
an equal sample size as a reference. Upon each of these scenarios, we estimated the ARL and SDRL as
described above. The simulation results are provided in Table 3.

Table 3. Estimated ARL and SDRL with nk = 10.

A B C D S̄ S̄∗ S̄w

Scenario I
ARL 475.03 456.02 363.61 361.84 257.78 343.39 270.79

SDRL 1301.18 1184.11 536.61 531.45 499.21 777.03 387.18

Scenario II
ARL 390.41 388.19 364.59 362.56 269.79 357.12 274.27

SDRL 654.28 643.59 540.99 533.90 421.37 586.10 391.26

Scenario III
ARL 370.63 370.25 363.84 361.77 273.95 361.84 275.39

SDRL 565.01 563.36 538.59 530.64 400.49 549.63 392.54

Scenario IV
ARL 364.28 364.23 363.63 361.77 275.28 363.39 275.32

SDRL 539.37 539.16 537.54 531.26 393.40 537.95 392.44

Scenario V (equal sample size)
ARL 364.36 364.36 364.36 362.58 275.95 364.36 275.95

SDRL 541.45 541.45 541.45 537.31 395.12 541.45 395.12

Note that the ideal ARL under the normal distribution is around 1/0.0027 ≈ 370 with FAR 0.27%.
However, this ideal value is obtained when using the true µ0 and σ0. In practice, we need to estimate
these parameters in Phase-I. Thus, with such an uncertainty due to estimation, the target ARL can be
different from the ideal ARL of 370. We observed that the empirical results of A, B, C, and S* have
the same value under the case of an equal sample size (Scenario V) and these results have the same
tendency when the RE measure is used in Section 4.2. These results are expected as pointed out in
Remark 3. The estimated ARL of D (362.58) is very close to that of A, B, C, and S* (364.36). In addition,
the estimated SDRL of D (537.31) is very close to that of A, B, C, and S* (541.45). This minor difference
may be due to a random phenomenon of the Monte Carlo simulation. Thus, it is quite reasonable to
assume that the target ARL is around 360 and the target SDRL is around 540.

In what follows, we analyze and compare our results based on these target values. Note that
we did not consider the values from the control charts based on S and Sw because they have much
smaller ARL values than the others, which is mainly due to the fact that they have serious negative
bias even with the case of an equal sample size as seen in Table 1.

In Scenario I, there is a serious difference in terms of the sample sizes (3, 10, 17). The ARL values
of the charts based on A and B seriously overshoot the target value and their SDRLs are far above the
target value. The ARL values of the charts using S and Sw seriously undershoot the target value while the
ARL of the chart using S* has a minor underestimate. These results are closely related to the RE. In Table 2,
S̄ and S̄w have noticeable negative values of the biases while S̄∗ has a decent negative value. This implies
that the scale estimates underestimate the true value, which results in a narrower control chart. Thus, using
a narrower control chart, one can have a smaller ARL. When it comes to the SDRL, the SDRLs of the charts
using A and B seriously overshoot the target and those using S and Sw undershoot the target. The chart
using S* overshoots the target. These results are similar to those with the RE.

In Scenarios II–IV, we have similar observations as noticed in Scenario I. Because there is a less
serious difference in sample sizes, the observations are not so dramatic as seen in Scenario I, but their
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tendencies are quite similar. For example, in Scenario IV, the sample sizes are very slightly different,
so these results are quite close to those in Scenario V (equal sample size).

In Scenario V, as mentioned earlier, we considered this as a reference. In this case, we can also
observe that the charts using S and Sw have the same results and their ARL values seriously undershoot
the target value. In Remark 4, we pointed out S̄w = S̄ for the case of an equal sample size. We can also
observe this in Figure 1a. As mentioned earlier, their underperformance is due to a serious negative
bias as seen in Table 1. The results show that the charts based on C and D perform very well. However,
when the samples are very small (small number of samples with small sample size), we expect that the
chart based on D can be slightly better than that based on C as shown in Figure 1. However, in practice,
with a decent size of samples, one can use the charts based on either C or D.

7. Illustrative Examples

Here, we provide three real-data examples to illustrate the applications of the proposed methods
into the control charts. All computations were analyzed using the R language [41,42]. The R functions
for the X̄ and S charts can be obtained in Appendix B.

Example 1. We consider the data set presented earlier in Table 30 in Section 3.31 of ASTM [10]. The data
sets were obtained from ten shipments whose sample sizes were not equal. The sample sizes are 50, 50, 100, 25,
25, 50, 100, 50, 50, 50. The corresponding sample means are given by 55.7, 54.6, 52.6, 55.0, 53.4, 55.2, 53.3,
52.3, 53.7, 54.3 and the corresponding sample standard deviations are 4.35, 4.03, 2.43, 3.56, 3.10, 3.30, 4.18,
4.30, 2.09, 2.67, respectively. Using these, we have ¯̄XA = 54.01, ¯̄XB = 53.8, S̄A = 3.420251, S̄B = 3.420254,
S̄C = 3.405517, and S̄D = 3.491055.

Using the R functions provided in Appendix B, we can obtain the following results. In the R function, A,
B, C, and D denote the control limits based on S̄A, S̄B, S̄C, S̄D, respectively. The R function Xbarchart() uses
¯̄XB as a default for the CL of the X̄ chart since ¯̄XB performs better as seen in Section 4.1.

> ni = c(50, 50, 100, 25, 25, 50, 100, 50, 50, 50)
> Xbari = c(55.7, 54.6, 52.6, 55.0, 53.4, 55.2, 53.3, 52.3, 53.7, 54.3)
> Si = c(4.35, 4.03, 2.43, 3.56, 3.10, 3.30, 4.18, 4.30, 2.09, 2.67)

> Xbarchart(Xbari, Si, ni=ni, nk=25)
LCL CL UCL
A 51.74785 53.8 55.85215
B 51.74785 53.8 55.85215
C 51.75669 53.8 55.84331
D 51.70537 53.8~55.89463

> Schart(Si, ni, nk=25)
LCL CL UCL
A 1.911697 3.384818 4.857940
B 1.911699 3.384822 4.857945
C 1.903462 3.370238 4.837013
D 1.951272 3.454889 4.958505

The control limits are calculated using Methods A–D and the results are summarized in Table 4. The results
using Methods A–C are quite close but those using Method D are slightly different from others.

In addition, the variances of S̄A, S̄B, S̄C, S̄D, and S̄E are obtained from Equations (14)–(16), (18),
and (34), respectively, and we have Var(S̄A) = 0.0011375146 · σ2, Var(S̄B) = 0.0011348232 · σ2, Var(S̄C) =

0.0009301593 · σ2, Var(S̄D) = 0.0009263542 · σ2, and Var(S̄E) = 0.0009111612 · σ2. Thus, the REs with
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respect to S̄E are easily obtained from Equation (35) and we have RE(S̄A) = 80.10%, RE(S̄B) = 80.29%,
RE(S̄C) = 97.96%, and RE(S̄D) = 98.36%.

Table 4. Control limits for the X̄ and S charts for Example 1.

X̄ Chart S Chart
Method LCL CL UCL LCL CL UCL

sample size, nk = 25
A 51.74785 53.80 55.85215 1.911697 3.384818 4.857940
B 51.74785 53.80 55.85215 1.911699 3.384822 4.857945
C 51.75669 53.80 55.84331 1.903462 3.370238 4.837013
D 51.70537 53.80 55.89463 1.951272 3.454889 4.958505

sample size, nk = 50
A 52.34891 53.80 55.25109 2.369028 3.402846 4.436665
B 52.34891 53.80 55.25109 2.369030 3.402850 4.436669
C 52.35516 53.80 55.24484 2.358823 3.388188 4.417553
D 52.31887 53.80 55.28113 2.418070 3.473290 4.528509

sample size, nk = 100
A 52.77392 53.80 54.82608 2.683351 3.411625 4.139899
B 52.77392 53.80 54.82608 2.683354 3.411629 4.139903
C 52.77834 53.80 54.82166 2.671792 3.396929 4.122065
D 52.75268 53.80 54.84732 2.738900 3.482250 4.225600

Example 2. We consider the data set presented earlier in Table 32 in Section 3.31 of ASTM [10]. The data sets
were obtained from 21 tension testing machines whose sample sizes were not equal. The sample sizes are 5, 5, 5,
5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5. The corresponding sample means are given by 73.8, 71.0, 74.2,
71.0, 70.0, 67.0, 73.5, 71.2, 71.2, 71.2, 71.6, 71.2, 74.2, 74.6, 72.4, 75.3, 69.0, 71.8, 72.8, 69.8, 69.00, and the
corresponding sample standard deviations are 1.10, 0.71, 0.45, 1.41, 0.00, 2.35, 1.91, 1.79, 0.45, 0.45, 0.55,
0.55, 0.84, 0.55, 0.55, 0.50, 0.71, 0.84, 0.45, 1.30, 0.00, respectively. Using these, we have ¯̄XA = 71.70476,
¯̄XB = 71.65243, S̄A = 0.8869858, S̄B = 0.8861882, S̄C = 0.8762927, and S̄D = 1.014672.

Using the R functions in Appendix B with the above data sets, the control limits are easily calculated and
we summarized the results in Table 5.

As was illustrated in Example 1, the variances of S̄A, S̄B, S̄C, S̄D, and S̄E are obtained from
Equations (14)–(16), (18), and (34), respectively, and we have Var(S̄A) = 0.006484797 · σ2, Var(S̄B) =

0.006477515 · σ2, Var(S̄C) = 0.006434091 · σ2, Var(S̄D) = 0.006116037 · σ2, and Var(S̄E) = 0.004913916 ·
σ2. Then, the REs with respect to S̄E are given by RE(S̄A) = 75.78%, RE(S̄B) = 75.86%, RE(S̄C) = 76.37%,
and RE(S̄D) = 80.34%.

Table 5. Control limits for the X̄ and S charts for Example 2.

X̄ Chart S Chart
Method LCL CL UCL LCL CL UCL

sample size, nk = 4
A 70.32195 71.65243 72.98291 0 0.8171958 1.851804
B 70.32314 71.65243 72.98171 0 0.8164609 1.850139
C 70.33799 71.65243 72.96687 0 0.8073440 1.829480
D 70.13042 71.65243 73.17444 0 0.9348355 2.118381

sample size, nk = 5
A 70.46241 71.65243 72.84244 0 0.8337539 1.741710
B 70.46348 71.65243 72.84137 0 0.8330041 1.740144
C 70.47676 71.65243 72.82810 0 0.8237026 1.720713
D 70.29110 71.65243 73.01375 0 0.9537773 1.992439

Example 3. We consider the data set presented earlier in Table 6.4 of Montgomery [9] which includes 113
measurements (in millimeters) of the diameters of piston rings for an automotive engine produced by a forging
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process. The data were obtained from 25 samples and the sample sizes are given by 5, 3, 5, 5, 5, 4, 4, 5, 4, 5, 5, 5, 3,
5, 3, 5, 4, 5, 5, 3, 5, 5, 5, 5, 5. The corresponding sample means are calculated as 74.010, 73.996, 74.008, 74.003,
74.003, 73.996, 73.999, 73.997, 74.004, 73.998, 73.994, 74.001, 73.994, 73.990, 74.008, 73.997, 73.999, 74.007,
73.998, 74.008, 74.000, 74.002, 74.002, 74.005, 73.998, and the corresponding sample standard deviations
are 0.0148, 0.0046, 0.0147, 0.0091, 0.0122, 0.0099, 0.0055, 0.0123, 0.0064, 0.0063, 0.0029, 0.0042, 0.0100,
0.0153, 0.0087, 0.0078, 0.0115, 0.0070, 0.0085, 0.0068, 0.0122, 0.0074, 0.0119, 0.0087, 0.0162. Using these,
we have ¯̄XA = 74.00068, ¯̄XB = 74.00066, S̄A = 0.01010231, S̄B = 0.01012067, S̄C = 0.01030545,
and S̄D = 0.01032266.

Similar to the two examples above, we can obtain the control limits using these data sets. The control
limits are calculated and summarized in Table 6. In addition, the variances of S̄A, S̄B, S̄C, S̄D, and S̄E are
obtained as Var(S̄A) = 0.006472658 · σ2, Var(S̄B) = 0.006390116 · σ2, Var(S̄C) = 0.006020000 · σ2,
Var(S̄D) = 0.005697867 · σ2, and Var(S̄E) = 0.004474206 · σ2. Using these, the REs with respect to S̄E are
calculated as RE(S̄A) = 69.12%, RE(S̄B) = 70.02%, RE(S̄C) = 74.32%, and RE(S̄D) = 78.52%.

Table 6. Control limits for the X̄ and S charts for Example 3.

X̄ Chart S Chart
Method LCL CL UCL LCL CL UCL

sample size, nk = 3
A 73.98317 74.00066 74.01816 0 0.008952937 0.02299266
B 73.98313 74.00066 74.01819 0 0.008969207 0.02303445
C 73.98281 74.00066 74.01851 0 0.009132968 0.02345501
D 73.98278 74.00066 74.01854 0 0.009148216 0.02349417

sample size, nk = 4
A 73.98551 74.00066 74.01582 0 0.009307435 0.02109109
B 73.98548 74.00066 74.01584 0 0.009324349 0.02112941
C 73.98521 74.00066 74.01612 0 0.009494595 0.02151520
D 73.98518 74.00066 74.01615 0 0.009510446 0.02155112

sample size, nk = 5
A 73.98711 74.00066 74.01422 0 0.009496024 0.01983717
B 73.98709 74.00066 74.01424 0 0.009513281 0.01987322
C 73.98684 74.00066 74.01449 0 0.009686976 0.02023607
D 73.98681 74.00066 74.01451 0 0.009703148 0.02026986

8. Conclusions

In this paper, we have considered several unbiased location and scale estimators for the
process parameters of the X̄ and S control charts when the sample sizes are not necessarily equal.
These estimators are essential for constructing the control limits of the Shewhart-type control charts.
A natural question is: among these unbiased estimators, which one should be recommended in
practical applications? We clarified this question by providing the inequality relations among the
variances of these estimators through the rigorous proofs. We also showed that the conventional ad hoc
methods could result in degraded performance of the control charts, mainly because the adopted
estimators are all biased and they actually tend to underestimate the true scale parameter.

We also provided the relative efficiency of the methods along with the conventional methods
and the empirical estimates of the ARL and the SDRL through using the extensive Monte Carlo
simulations. We observed that the chart based on S̄D outperforms the others under consideration from
both theoretical and numerical points of view. The only difficulty of using S̄D lies in calculating the
normal-consistent unbiasing factor c4 for a large argument value (large sample size) without using a
professional software. To resolve this problem, we provided an approximation of the c4 as a function of
a sample size which can be easily calculated with a general calculator for the case of a large argument
value and is accurate within one unit in the ninth decimal place.
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All of the theoretical results revealed an interesting and useful connection between the two fields
of statistics and mathematics. For example, the normal-consistent unbiasing factor c4 can be expressed
as a function through using the Watson representation, which helps one to understand the behavior of
the c4 in depth. We thus expect that the new findings about the c4 can help quality engineers develop
more useful results in various engineering statistics fields.

It is noteworthy to mention that all the theoretical and empirical results of this paper require the
assumption of the homoscedasticity case of σ. In an ongoing work, we investigate these estimators
more thoroughly for the heteroscedasticity case.
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Abbreviations

The following abbreviations are used in this manuscript:

CL center line
LCL lower control limit
UCL upper control limit
ARL average run length
SDRL standard deviation of run length
FAR false alarm rate
MSE mean square error
BLUE best linear unbiased estimator
UMVUE uniform minimum variance unbiased estimator
RE relative efficiency

Appendix A. Calculation of c4(n)

Many textbooks provide the table for the values of c4(n). However, to our knowledge, this is
very limited to the case for n ≤ 25. To construct the control charts using the proposed methods, it is
important to calculate c4(n) accurately, especially for n > 25.

The calculation of c4(n) needs to calculate the gamma function or the factorial which runs into
overflow errors for a large value of n. To avoid this problem, one can use the log-gamma function
to calculate c4(n), or an approximation technique for c4(n) can be used for an easier and simpler
calculation. For example, two well-known approximations below are widely used for c4(n):

c4a(n) ≈
4n− 4
4n− 3

and c4b(n) ≈
√

4n− 5
4n− 3

.

For more details, refer to Chapter 3 of ASTM [10]. These approximations are based on the Stirling’s
formula [43] and accurate within one unit in the fourth and fifth decimal places for n > 25, respectively.

However, we can obtain a better approximation using the Wallis’ inequality. For more details on
the Wallis’ inequality, one can refer to Wallis [15], Stedall [44], and Kazarinoff [45]. Here, we provide
two approximations such that

c4c(n) ≈
√

1
n− 1

· 4

√
n2 − 3n +

5
2
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and

c4d(n) ≈
√

1
n− 1

· 8
√

n4 − 6n3 + 14n2 − 15n + 6,

which are accurate within one unit in the seventh and ninth decimal places, respectively, for n > 25.
For more details, see Mortici [16].

To compare the approximations above with the true value, we calculate the relative error times
106 of each approximation which is given by

εj(n) =
∣∣∣∣ c4j(n)− c4(n)

c4(n)

∣∣∣∣× 106,

where j = a, b, c, d. The relative errors for n = 10, 20, 30, 40, 50 are calculated and summarized in
Table A1. As shown in the table, c4d(n) provides the best approximation and the accuracy gets better
for a larger value of n as expected. We can also observe that the approximation is quite accurate even
for smaller values of n so that it can be practically used for n ≥ 10, say. This approximation can be
useful for field engineers and practitioner because c4d(n) can be calculated using a regular calculator.

Table A1. The relative errors εj(n) for n = 10, 20, 30, 40, 50.

n 10 20 30 40 50

c4(n) 128
105

√
2
π

65536
230945

√
38
π

33554432
145422675

√
58
π

34359738368
172308161025

√
78
π

70368744177664
56433306445425

√
2
π

εa(n) 322.5166918 79.761632484 35.2405932138 19.7566428390 12.6174044235
εb(n) 63.4846795 6.814116424 1.9195517402 0.7896677690 0.3982547452
εc(n) 5.7906964 0.264861432 0.0472214077 0.0141995968 0.0056418668
εd(n) 0.1547649 0.001535605 0.0001158804 0.0000191278 0.0000047817

Appendix B. R Codes for Illustrative Examples

Xbarchart = function(Xbari,Si,ni,nk,CL=c("XB","XA"),FAR=0.002699796){
CL = match.arg(CL)
if (CL=="XA") {
Xbarbar = mean(Xbari)
}
else if (CL=="XB") {
Xbarbar = sum(ni*Xbari) / sum(ni)
}
else {
stop("Choose the Xbarbar: \"XA\" or \"XB\".")
}
N = sum(ni)
m = length(ni)
c4ni = sqrt(2/(ni-1))*exp(lgamma(ni/2) - lgamma((ni-1)/2))
one.minus.c4sq = 1-c4ni^2
S = numeric(4)
S[1] = sum(Si/c4ni) / m
S[2] = sum(Si) / sum(c4ni)
S[3] = sum(c4ni*Si/one.minus.c4sq) / sum(c4ni^2/one.minus.c4sq)
c4Nm1 = sqrt(2/(N-m))*exp(lgamma((N-m+1)/2) - lgamma((N-m)/2))
S[4] = sqrt( sum((ni-1)*Si^2) / (N-m) ) / c4Nm1

z.cut = qnorm(1-FAR/2)
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OUT = array(dim=c(4,3))

for ( i in 1:4 ) {
OUT[i,] = Xbarbar + c(-z.cut*S[i]/sqrt(nk),0,z.cut*S[i]/sqrt(nk))
}
colnames(OUT) = c("LCL", "CL", "UCL")
rownames(OUT) = c("A", "B", "C", "D")
return(OUT)
}

Schart = function(Si,ni,nk,FAR=0.002699796){
z.cut = qnorm(1-FAR/2)
c4nk = sqrt(2/(nk-1))*exp(lgamma(nk/2) - lgamma((nk-1)/2))
c4ni = sqrt(2/(ni-1))*exp(lgamma(ni/2) - lgamma((ni-1)/2))
N = sum(ni)
m = length(ni)
one.minus.c4sq = 1-c4ni^2
S = numeric(4)
S[1] = sum(Si/c4ni) / m
S[2] = sum(Si) / sum(c4ni)
S[3] = sum(c4ni*Si/one.minus.c4sq) / sum(c4ni^2/one.minus.c4sq)
c4Nm1 = sqrt(2/(N-m))*exp(lgamma((N-m+1)/2) - lgamma((N-m)/2))
S[4] = sqrt( sum((ni-1)*Si^2) / (N-m) ) / c4Nm1

OUT = array(dim=c(4,3))
for ( i in 1:4 ) {
CL = c4nk*S[i]
LCL = max(CL - z.cut*sqrt(1-c4nk^2)*S[i], 0)
UCL = CL + z.cut*sqrt(1-c4nk^2)*S[i]
OUT[i,] = c(LCL, CL, UCL)
}
colnames(OUT) = c("LCL", "CL", "UCL")
rownames(OUT) = c("A", "B", "C", "D")
return(OUT)
}
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