Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = Rk1+Rg5

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6095 KiB  
Article
Computational Prediction of Ginsenosides Targeting ADGRG3/GPR97 in Cancer and Immune Pathways: A Multi-Faceted In Silico Approach
by Jing Lu
Appl. Sci. 2025, 15(8), 4332; https://doi.org/10.3390/app15084332 - 14 Apr 2025
Cited by 1 | Viewed by 603
Abstract
Ginsenosides are bioactive secondary metabolites in ginseng, which have gained popularity for their usage in traditional Oriental medicine. Many studies have reported that ginsenosides exert their effects through multiple pathways, such as GPCR-related pathways. However, focusing on their specific interactions with ADGRG3 (GPR97) [...] Read more.
Ginsenosides are bioactive secondary metabolites in ginseng, which have gained popularity for their usage in traditional Oriental medicine. Many studies have reported that ginsenosides exert their effects through multiple pathways, such as GPCR-related pathways. However, focusing on their specific interactions with ADGRG3 (GPR97) can provide possible insights to inform targeted intervention strategies in oncology and immunotherapy through the tumor–immune microenvironment interactions. Thus, this study employed an integrative in silico computational strategy to investigate ginsenosides as possible targets of ADGRG3. First, gene expression was analyzed using multiple databases such as TCGA, cBioPortal, and TIMER, revealing the differential expression of ADGRG3 across cancers, with notable overexpression in leukemia. Then, the virtual screening of 128 ginsenosides identified five top candidates (Rg3, Rk3, F5, Rg7, and F1) that showed strong binding energy (−10.7 −10.6, −10.5, −10.4, and −10.3 kcal/mol, respectively) with ADGRG3, as determined through in silico molecular docking (MD). Computational approaches such as molecular dynamics simulations (MDSs), free binding energy calculations (MM-PBSA), and ADMET profiling confirmed the stability of these complexes’ favorable ADMET predictions, respectively, which warrants further experimental validation through in vitro and in vivo pharmacokinetic studies. Finally, the computational protein–protein interaction and pathway enrichment analyses of ADGRG3 demonstrated immune-related pathways, such as neutrophil degranulation and GPCR signaling, emphasizing its role in cancer progression and immune modulation. These computational findings predict ADGRG3 as a viable target for cancer and immune pathways and ginsenosides as natural ligands. Further in vitro and in vivo preclinical and clinical studies are warranted to validate the interactions of ADGRG3 with ginsenosides. Full article
(This article belongs to the Special Issue Advanced Phytochemistry and Its Applications)
Show Figures

Figure 1

16 pages, 6838 KiB  
Article
Comparing the Drying Characteristics, Phytochemicals, and Antioxidant Characterization of Panax quinquefolium L. Treated by Different Processing Techniques
by Meng Li, Shuang Liu, Zhenqiang Wang, Feng Liu, Hongjing Dong, Xuguang Qiao and Xiao Wang
Foods 2025, 14(5), 815; https://doi.org/10.3390/foods14050815 - 27 Feb 2025
Viewed by 758
Abstract
American ginseng (AG) has long been used as an ingredient in the food and pharmaceutical industries because of its nutritional and economic value. AG is rich in nutrients, and its quality is greatly affected by how it is processed. However, there is a [...] Read more.
American ginseng (AG) has long been used as an ingredient in the food and pharmaceutical industries because of its nutritional and economic value. AG is rich in nutrients, and its quality is greatly affected by how it is processed. However, there is a relative paucity of research on the comprehensive evaluation of different processing techniques of AG. This study evaluated the differences in quality formation and properties of low-temperature softened, blanched, steamed followed by hot air drying, and vacuum freeze-dried AG (LTS-HAD, BL-HAD, ST-HAD, and VFD, respectively). The results demonstrated that AGs treated with VFD had the fastest drying time (85 h) and succeeded in preserving the color and microstructure of fresh ginseng. The contents of ginsenoside Rg1 and Rb1 in LTS-HAD samples were 2.81 ± 0.01 mg/g and 10.68 ± 0.66 mg/g, respectively, which were significantly higher than those in VFD samples (p < 0.05). Moreover, ST-HAD samples had an attractive reddish-brown appearance and higher antioxidant activity. Simultaneously, the formation of the ginsenosides Rg6, (S) Rg3, (R) Rg3, Rk1, and Rg5 was discovered. BL-HAD samples had an intermediate quality among the above samples. A total of 58 volatile compounds were identified, including aldehydes (14), alcohols (13), ketones (10), esters (6), terpenes (6), acids (5), and heterocyclic compounds (4). PCA of ginsenosides and volatile components, as well as correlation analysis with color and antioxidant activity, resulted in the identification of different processed products and potential bioactive components. Full article
Show Figures

Figure 1

16 pages, 6150 KiB  
Article
Assessment of the Effects of Garlic (Allium sativum L.) Stalk Incorporation on Soil Fertility and Bacterial Biodiversity
by Fan Huang, Chunmei Wang, Sajjad Raza, Guangfeng Yao, Lihua Xue, Yinku Liang and Xiaoning Zhao
Plants 2025, 14(5), 672; https://doi.org/10.3390/plants14050672 - 21 Feb 2025
Viewed by 721
Abstract
The lone application of ammonium fertilizer is one of the most commonly used measures to supplement soil nutrients. At the same time, it also causes soil acidification and leads to many environmental problems, such as soil degradation and eutrophication. Garlic (Allium sativum [...] Read more.
The lone application of ammonium fertilizer is one of the most commonly used measures to supplement soil nutrients. At the same time, it also causes soil acidification and leads to many environmental problems, such as soil degradation and eutrophication. Garlic (Allium sativum L.) stalk (RGS) returning has been widely researched for its benefits related to soil organic carbon (SOC) and crop yields. However, few have researched the effects of the incorporation of RGS mixed with ammonium fertilizer on soil physicochemical properties and the bacterial community composition. We incubated soil with the control (N0); ammonium sulfate (AS); and ammonium sulfate combined with 1%, 2%, 3%, and 5% (rate of the dry soil weight) garlic stalk at 25 °C and 60% water-filled pore spaces (WFPS) for 67 days. We measured the soil properties before and on the last day of the experiment. The results showed that adding RGS increased the contents of soil potassium (K), magnesium (Mg), and total nitrogen (TN), but it significantly decreased soil nitrate (NO3). In addition, adding RGS increased the relative abundance of r-strategists and the soil r/K ratio. The α diversity of soil bacteria reached the highest value with 3% treatment. Compared to AS, RGS increased the relative abundance of Firmicutes and Actinobacteria but decreased that of Proteobacteria and Acidobacteria. The function genes of Replication_and_Repair and Cell_Motility were enhanced after adding AS, while the function genes of Metabolism_of_Other_Amino_Acids, Enzyme_Families, and Metabolism were enhanced with increased RGS rates. Although SOC increased, NO3 significantly decreased with the increase in the returning levels, which could be due to the strong decreases in nitrifying bacteria with increases in RGS rates from 3% to 5%. Therefore, adding RGS at 3% is suitable for soil bacterial biodiversity and nutrient balance. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

17 pages, 5629 KiB  
Article
Integrated Analysis of Ginsenoside Content and Biomarker Changes in Processed Ginseng: Implications for Anti-Cancer Mechanisms
by Biyu Guo, Yingli Liang, Biru Fu, Jiayi Luo, Xingchen Zhou, Ruifeng Ji and Xin He
Foods 2024, 13(16), 2497; https://doi.org/10.3390/foods13162497 - 8 Aug 2024
Cited by 3 | Viewed by 2087
Abstract
Black ginseng is the processed product of ginseng, and it has been found that the content and types of rare ginsenosides increased after processing. However, there is limited research on the ginsenoside differences between cultivated and forest ginseng before and after processing and [...] Read more.
Black ginseng is the processed product of ginseng, and it has been found that the content and types of rare ginsenosides increased after processing. However, there is limited research on the ginsenoside differences between cultivated and forest ginseng before and after processing and among various plant parts. This study investigated the effects of processing on ginsenosides in different parts of cultivated and forest ginseng. After processing, the contents of Re, Rg1, S-Rg3, Rg5, R-Rh1, Rk1, Rk3, and F4 were significantly increased or decreased, the growth age of forest ginseng was not proportional to the content of ginsenosides, and the differences in ginsenoside content in ginseng from different cultivation methods were relatively small. Chemometric analysis identified processing biomarkers showing varying percentage changes in different parts. Network pharmacology predicted the EGFR/PI3K/Akt/mTOR pathway as a potential key pathway for the anti-cancer effect of black ginseng. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

14 pages, 1603 KiB  
Article
Fermented Cultured Wild Ginseng Roots (Panax ginseng C.A. Meyer) Using Limosilactobacillus fermentum HY7303 Enhances the Intestinal Barrier by Bioconversion of Ginsenosides and Extracellular Vesicle Production
by Sung-Joon Mo, Eun-Ji Kim, Yun-Ha Lee, Soo-Dong Park, Jae-Jung Shim, Jung-Lyul Lee and Jae-Hwan Lee
Fermentation 2024, 10(7), 362; https://doi.org/10.3390/fermentation10070362 - 17 Jul 2024
Cited by 1 | Viewed by 1718
Abstract
Wild ginseng is known to have better pharmacological effects than cultivated ginseng. Additionally, recently developed bioengineering technology has made it possible to produce cultured wild ginseng with the same genetic composition. In this study, we investigated the change in characteristics and the improvement [...] Read more.
Wild ginseng is known to have better pharmacological effects than cultivated ginseng. Additionally, recently developed bioengineering technology has made it possible to produce cultured wild ginseng with the same genetic composition. In this study, we investigated the change in characteristics and the improvement of the intestinal barrier of cultured wild ginseng roots (CWG) and fermented cultured wild ginseng roots (FCWG). First, we screened nine strains of bacteria that are capable of growing on 5-brix CWG medium, and Limosilactobacillus fermentum HY7303 (HY7303) showed the highest growth. Second, changes in the characteristics of CWG due to fermentation using HY7303 showed that pH and total carbohydrates decreased, and reducing sugars increased. The contents of minor ginsenosides (Rg3(s), Rk1, and Rg5) increased. Third, extracellular vesicles (EVs) with a single peak at 493.7 nm were isolated from CWG, and EVs with three peaks at 9.0 nm, 155.6 nm, and 459.0 nm were isolated from FCWG, respectively. Finally, when we treated Caco-2 cells with FCWG and EVs, we confirmed the improvement of intestinal barrier functions, including recovery, permeability, and expression of tight-junction protein genes. In this study, we confirmed the potential pharmacological effects of minor ginsenosides and EVs derived from FCWG. In conclusion, this study suggests that CWG fermentation with HY7303 improves the intestinal barrier by increasing minor ginsenosides and producing EVs. Full article
Show Figures

Figure 1

13 pages, 1070 KiB  
Article
Increasing the Amounts of Bioactive Components in American Ginseng (Panax quinquefolium L.) Leaves Using Far-Infrared Irradiation
by Xuan Wang, Myungjin Kim, Ruoqi Han, Jiarui Liu, Xuemei Sun, Shuyang Sun, Chengwu Jin and Dongha Cho
Foods 2024, 13(4), 607; https://doi.org/10.3390/foods13040607 - 17 Feb 2024
Cited by 4 | Viewed by 1912
Abstract
Both the roots and leaves of American ginseng contain ginsenosides and polyphenols. The impact of thermal processing on enhancing the biological activities of the root by altering its component composition has been widely reported. However, the effects of far-infrared irradiation (FIR), an efficient [...] Read more.
Both the roots and leaves of American ginseng contain ginsenosides and polyphenols. The impact of thermal processing on enhancing the biological activities of the root by altering its component composition has been widely reported. However, the effects of far-infrared irradiation (FIR), an efficient heat treatment method, on the bioactive components of the leaves remain to be elucidated. In the present study, we investigated the effects of FIR heat treatment between 160 and 200 °C on the deglycosylation and dehydration rates of the bioactive components in American ginseng leaves. As the temperature was increased, the amounts of common ginsenosides decreased while those of rare ginsenosides increased. After FIR heat treatment of American ginseng leaves at an optimal 190 °C, the highest total polyphenolic content and kaempferol content were detected, the antioxidant activity was significantly enhanced, and the amounts of the rare ginsenosides F4, Rg6, Rh4, Rk3, Rk1, Rg3, and Rg5 were 41, 5, 37, 64, 222, 17, and 266 times higher than those in untreated leaves, respectively. Moreover, the radical scavenging rates for 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) and the reducing power of the treated leaf extracts were 2.17, 1.86, and 1.77 times higher, respectively. Hence, FIR heat treatment at 190 °C is an efficient method for producing beneficial bioactive components from American ginseng leaves. Full article
(This article belongs to the Topic Advances in Analysis of Food and Beverages)
Show Figures

Figure 1

17 pages, 5027 KiB  
Article
Identification of Potential Mechanisms of Rk1 Combination with Rg5 in the Treatment of Type II Diabetes Mellitus by Integrating Network Pharmacology and Experimental Validation
by Yao Liu, Jingjing Zhang, Chao An, Chen Liu, Qiwen Zhang, Hao Ding, Saijian Ma and Wenjiao Xue
Int. J. Mol. Sci. 2023, 24(19), 14828; https://doi.org/10.3390/ijms241914828 - 2 Oct 2023
Cited by 5 | Viewed by 2085
Abstract
In this study, we aimed to explore the potential targets and functional mechanisms of Rk1 combined with Rg5 (Rk1+Rg5) against type II diabetes mellitus (T2DM). Network pharmacology and molecular docking were used to predict and verify the targets and signaling pathways of Rk1+Rg5 [...] Read more.
In this study, we aimed to explore the potential targets and functional mechanisms of Rk1 combined with Rg5 (Rk1+Rg5) against type II diabetes mellitus (T2DM). Network pharmacology and molecular docking were used to predict and verify the targets and signaling pathways of Rk1+Rg5 against T2DM. The results were further confirmed by a db/db mouse model and a model using PA-induced L6 cells. According to network pharmacology, a total of 250 core targets of Rk1+Rg5 towards T2DM were identified; the insulin resistance signaling pathways were enriched by KEGG. Results of molecular docking indicated good binding affinity of Rk1 and Rg5 to Akt1. In vivo and in vitro studies further showed that Rk1+Rg5 is an inhibitor of skeletal muscle insulin resistance. The results showed that Rk1+Rg5 significantly improved the hyperglycemic state of db/db mice, alleviated dyslipidemia, and promoted skeletal muscle glucose uptake. This phenomenon was closely related to the alleviation of the insulin resistance in skeletal muscles. Finally, the combination activated the Akt signaling pathway and promoted GLUT4 translocation to the cell membrane for glucose uptake. Altogether, our findings, for the first time, demonstrate that the combination of Rk1 and Rg5 could be beneficial for anti-T2DM, possibly involving ameliorated insulin resistance. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

13 pages, 2880 KiB  
Article
Photoprotective Effects of Processed Ginseng Leaf Administration against UVB-Induced Skin Damage in Hairless Mice
by Eunjung Son, Yun Mi Lee, Seung-Hyung Kim and Dong-Seon Kim
Molecules 2023, 28(18), 6734; https://doi.org/10.3390/molecules28186734 - 21 Sep 2023
Cited by 5 | Viewed by 2107
Abstract
Although ginseng leaves contain a larger amount of ginsenosides than the roots, studies on the protective effect of oral administration of ginseng leaves against photoaging are lacking. Processed ginseng leaves (PGL) prepared by acid reaction to increase effective ginsenoside content showed higher levels [...] Read more.
Although ginseng leaves contain a larger amount of ginsenosides than the roots, studies on the protective effect of oral administration of ginseng leaves against photoaging are lacking. Processed ginseng leaves (PGL) prepared by acid reaction to increase effective ginsenoside content showed higher levels of Rg3 (29.35 mg/g) and Rk1 (35.16 mg/g) than ginseng leaves (Rg3 (2.14 mg/g) and Rk1 (ND)), and ginsenosides Rg3 and Rk1 were evaluated as active ingredients that protected human keratinocytes against UVB-induced cell damage by increasing cell proliferation and decreasing matrix metalloproteinase (MMP)-2 and 9 secretion. Herein, the effect of oral PGL administration (50, 100, or 200 mg/kg, daily) against photoaging in HR-1 hairless mice was assessed by measuring wrinkle depth, epidermal thickness, and trans-epidermal water loss for 16 weeks. The PGL treatment group showed reduced skin wrinkles, inhibited MMP-2 and MMP-9 expression, and decreased IL-6 and cyclooxygenase-2 levels. These data suggest that oral PGL administration inhibits photoaging by inhibiting the expression of MMPs, which degrade collagen, and inhibiting cytokines, which induce inflammatory responses. These results reveal that ginseng leaves processed by acid reaction may serve as potential functional materials with anti-photoaging activities. Full article
Show Figures

Graphical abstract

15 pages, 3728 KiB  
Article
The Content and Principle of the Rare Ginsenosides Produced from Gynostemma pentaphyllum after Heat Treatment
by Xin-Can Li, Fang-Fang Li, Wen-Jing Pei, Jing Yang, Yu-Long Gu and Xiang-Lan Piao
Molecules 2023, 28(17), 6415; https://doi.org/10.3390/molecules28176415 - 3 Sep 2023
Cited by 3 | Viewed by 2624
Abstract
Ginsenoside Rg3, Rk1, and Rg5, rare ginsenosides from Panax ginseng, have many pharmacological effects, which have attracted extensive attention. They can be obtained through the heat treatment of Gynostemma pentaphyllum. In this study, scanning electron microscopy (SEM) and thermal gravity-differential thermal [...] Read more.
Ginsenoside Rg3, Rk1, and Rg5, rare ginsenosides from Panax ginseng, have many pharmacological effects, which have attracted extensive attention. They can be obtained through the heat treatment of Gynostemma pentaphyllum. In this study, scanning electron microscopy (SEM) and thermal gravity-differential thermal gravity (TG-DTG) were employed to investigate this process and the content change in ginsenosides was analyzed using liquid chromatography-mass spectrometry (LC-MS). SEM and TG-DTG were used to compare the changes in the ginsenosides before and after treatment. In SEM, the presence of hydrogen bond rearrangement was indicated by the observed deformation of vascular bundles and ducts. The before-and-after changes in the peak patterns and peaks values in TG-DTG indicated that the content of different kinds of compounds produced changes, which all revealed that the formation of new saponins before and after the heat treatment was due to the breakage or rearrangement of chemical bonds. Additionally, the deformation of vascular bundles and vessels indicated the presence of hydrogen bond rearrangement. The glycosidic bond at the 20 positions could be cleaved by ginsenoside Rb3 to form ginsenoside Rd, which, in turn, gave rise to ginsenoside Rg3(S) and Rg3(R). They were further dehydrated to form ginsenoside Rk1 and Rg5. This transformation process occurs in a weak acidic environment provided by G. pentaphyllum itself, without the involvement of endogenous enzymes. In addition, the LC-MS analysis results showed that the content of ginsenoside Rb3 decreased from 2.25 mg/g to 1.80 mg/g, while the contents of ginsenoside Rk1 and Rg5 increased from 0.08 and 0.01 mg/g to 3.36 and 3.35 mg/g, respectively. Ginsenoside Rg3(S) and Rg3(R) were almost not detected in G. pentaphyllum, and the contents of them increased to 0.035 and 0.23 mg/g after heat treatment. Therefore, the rare ginsenosides Rg3(S), Rg3(R), Rk1, and Rg5 can be obtained from G. pentaphyllum via heat treatment. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

22 pages, 8079 KiB  
Article
Structural-Activity Relationship of Rare Ginsenosides from Red Ginseng in the Treatment of Alzheimer’s Disease
by Xianwen Ye, Haixia Zhang, Qian Li, Hongmin Ren, Xinfang Xu and Xiangri Li
Int. J. Mol. Sci. 2023, 24(10), 8625; https://doi.org/10.3390/ijms24108625 - 11 May 2023
Cited by 14 | Viewed by 3200
Abstract
Rare ginsenosides are the major components of red ginseng. However, there has been little research into the relationship between the structure of ginsenosides and their anti-inflammatory activity. In this work, BV-2 cells induced by lipopolysaccharide (LPS) or nigericin, the anti-inflammatory activity of eight [...] Read more.
Rare ginsenosides are the major components of red ginseng. However, there has been little research into the relationship between the structure of ginsenosides and their anti-inflammatory activity. In this work, BV-2 cells induced by lipopolysaccharide (LPS) or nigericin, the anti-inflammatory activity of eight rare ginsenosides, and the target proteins expression of AD were compared. In addition, the Morris water maze test, HE staining, thioflavins staining, and urine metabonomics were used to evaluate the effect of Rh4 on AD mice. Our results showed that their configuration influences the anti-inflammatory activity of ginsenosides. Ginsenosides Rk1, Rg5, Rk3, and Rh4 have significant anti-inflammatory activity compared to ginsenosides S-Rh1, R-Rh1, S-Rg3, and R-Rg3. Ginsenosides S-Rh1 and S-Rg3 have more pronounced anti-inflammatory activity than ginsenosides R-Rh1 and R-Rg3, respectively. Furthermore, the two pairs of stereoisomeric ginsenosides can significantly reduce the level of NLRP3, caspase-1, and ASC in BV-2 cells. Interestingly, Rh4 can improve the learning ability of AD mice, improve cognitive impairment, reduce hippocampal neuronal apoptosis and Aβ deposition, and regulate AD-related pathways such as the tricarboxylic acid cycle and the sphingolipid metabolism. Our findings conclude that rare ginsenosides with a double bond have more anti-inflammatory activity than those without, and 20(S)-ginsenosides have more excellent anti-inflammatory activity than 20(R)-ginsenosides. Full article
(This article belongs to the Special Issue Advances in Alzheimer’s Disease Drug Research and Development)
Show Figures

Figure 1

16 pages, 13667 KiB  
Article
Antiviral Effect of Ginsenosides rk1 against Influenza a Virus Infection by Targeting the Hemagglutinin 1-Mediated Virus Attachment
by Xia Yang, Hailiang Sun, Zhening Zhang, Weixin Ou, Fengxiang Xu, Ling Luo, Yahong Liu, Weisan Chen and Jianxin Chen
Int. J. Mol. Sci. 2023, 24(5), 4967; https://doi.org/10.3390/ijms24054967 - 4 Mar 2023
Cited by 8 | Viewed by 2962
Abstract
Influenza A virus (IAV) infections have been a serious hazard to public health everywhere. With the growing concern of drug-resistant IAV strains, there is an urgent need for novel anti-IAV medications, especially those with alternative mechanisms of action. Hemagglutinin (HA), an IAV glycoprotein, [...] Read more.
Influenza A virus (IAV) infections have been a serious hazard to public health everywhere. With the growing concern of drug-resistant IAV strains, there is an urgent need for novel anti-IAV medications, especially those with alternative mechanisms of action. Hemagglutinin (HA), an IAV glycoprotein, plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a good target for developing anti-IAV drugs. Panax ginseng is a widely used herb in traditional medicine with extensive biological effects in various disease models, and its extract was reported to show protection in IAV-infected mice. However, the main effective anti-IAV constituents in panax ginseng remain unclear. Here, we report that ginsenoside rk1 (G-rk1) and G-rg5, out of the 23 screened ginsenosides, exhibit significant antiviral effects against 3 different IAV subtypes (H1N1, H5N1, and H3N2) in vitro. Mechanistically, G-rk1 blocked IAV binding to sialic acid in a hemagglutination inhibition (HAI) assay and an indirect ELISA assay; more importantly, we showed that G-rk1 interacted with HA1 in a dose-dependent manner in a surface plasmon resonance (SPR) analysis. Furthermore, G-rk1 treatment by intranasal inoculation effectively reduced the weight loss and mortality of mice challenged with a lethal dose of influenza virus A/Puerto Rico/8/34 (PR8). In conclusion, our findings reveal for the first time that G-rk1 possesses potent anti-IAV effects in vitro and in vivo. We have also identified and characterized with a direct binding assay a novel ginseng-derived IAV HA1 inhibitor for the first time, which could present potential approaches to prevent and treat IAV infections. Full article
(This article belongs to the Special Issue Antiviral Drug Discovery)
Show Figures

Figure 1

12 pages, 1374 KiB  
Article
Thermal Control Using Far-Infrared Irradiation for Producing Deglycosylated Bioactive Compounds from Korean Ginseng Leaves
by Shucheng Duan, Jia Rui Liu, Xin Wang, Xue Mei Sun, Han Sheng Gong, Cheng Wu Jin and Seok Hyun Eom
Molecules 2022, 27(15), 4782; https://doi.org/10.3390/molecules27154782 - 26 Jul 2022
Cited by 4 | Viewed by 2248
Abstract
Although ginseng leaf is a good source of health-beneficial phytochemicals, such as polyphenols and ginsenosides, few studies have focused on the variation in compounds and bioactivities during leaf thermal processing. The efficiency of far-infrared irradiation (FIR) between 160 °C and 200 °C on [...] Read more.
Although ginseng leaf is a good source of health-beneficial phytochemicals, such as polyphenols and ginsenosides, few studies have focused on the variation in compounds and bioactivities during leaf thermal processing. The efficiency of far-infrared irradiation (FIR) between 160 °C and 200 °C on the deglycosylation of bioactive compounds in ginseng leaves was analyzed. FIR treatment significantly increased the total polyphenol content (TPC) and kaempferol production from panasenoside conversion. The highest content or conversion ratio was observed at 180 °C (FIR-180). Major ginsenoside contents gradually decreased as the FIR temperature increased, while minor ginsenoside contents significantly increased. FIR exhibited high efficiency to produce dehydrated minor ginsenosides, of which F4, Rg6, Rh4, Rk3, Rk1, and Rg5 increased to their highest levels at FIR-190, by 278-, 149-, 176-, 275-, 64-, and 81-fold, respectively. Moreover, significantly increased antioxidant activities were also observed in FIR-treated leaves, particularly FIR-180, mainly due to the breakage of phenolic polymers to release antioxidants. These results suggest that FIR treatment is a rapid and efficient processing method for producing various health-beneficial bioactive compounds from ginseng leaves. After 30 min of treatment without leaf burning, FIR-190 was the optimum temperature for producing minor ginsenosides, whereas FIR-180 was the optimum temperature for producing polyphenols and kaempferol. In addition, the results suggested that the antioxidant benefits of ginseng leaves are mainly due to polyphenols rather than ginsenosides. Full article
(This article belongs to the Special Issue Natural Polyphenols in Human Health)
Show Figures

Figure 1

15 pages, 3599 KiB  
Article
Ginsenosides Conversion and Anti-Oxidant Activities in Puffed Cultured Roots of Mountain Ginseng
by Jian Yu Pu, Zelika Mega Ramadhania, Ramya Mathiyalagan, Yue Huo, Yaxi Han, Jin Feng Li, Jong Chan Ahn, Feng Jiao Xu, Dong Wook Lee, Xu Hui Zeng, Deok Chun Yang, Gi-Young Kwak and Se Chan Kang
Processes 2021, 9(12), 2271; https://doi.org/10.3390/pr9122271 - 17 Dec 2021
Cited by 10 | Viewed by 3517
Abstract
CRMG (Cultured Roots of Mountain Ginseng) have the advantages in scale-up production, safety, and pharmacological efficacies. Though several methods are available for the conversion of major to minor ginsenosides, which has more pharmacological activities, a single step process with high temperature and pressure [...] Read more.
CRMG (Cultured Roots of Mountain Ginseng) have the advantages in scale-up production, safety, and pharmacological efficacies. Though several methods are available for the conversion of major to minor ginsenosides, which has more pharmacological activities, a single step process with high temperature and pressure as a puffing method took place in this study to gain and produce more pharmacologically active compounds. Puffed CRMG exhibited an acceleration of major ginsenosides to minor ginsenosides conversions, and released more phenolic and flavonoid compounds. HPLC analysis was used to detect a steep decrease in the contents of major ginsenosides (Re, Rf, Rg1, Rg2, Rb1, Rb2, Rb3, Rc and Rd) with increasing pressure; on the contrary, the minor ginsenosides (20 (S, R)-Rg3, Rg5, Rk1, Rh1, Rh2, Rg6, F4 and Rk3) contents increased. Minor ginsenosides, such as Rg6, F4 and Rk3, were firstly reported to be produced from puffed CRMG. After the puffing process, phenolics, flavonoids, and minor ginsenoside contents were increased, and also, the antioxidant properties, such as DPPH inhibition and reducing the power of puffed CRMG, were significantly enhanced. Puffed CRMG at 490.3 kPa and 588.4 kPa had a low toxicity on HaCaT (immortalized human epidermal keratinocyte) cells at 200 μg/mL, and could significantly reduce ROS by an average of 60%, compared to the group treated with H2O2. Therefore, single step puffing of CRMG has the potential to be utilized for functional food and cosmeceuticals. Full article
(This article belongs to the Topic Innovative Food Processing Technologies)
Show Figures

Graphical abstract

18 pages, 6802 KiB  
Article
Network Pharmacology of Ginseng (Part II): The Differential Effects of Red Ginseng and Ginsenoside Rg5 in Cancer and Heart Diseases as Determined by Transcriptomics
by Alexander Panossian, Sara Abdelfatah and Thomas Efferth
Pharmaceuticals 2021, 14(10), 1010; https://doi.org/10.3390/ph14101010 - 30 Sep 2021
Cited by 18 | Viewed by 3974
Abstract
Panax ginseng C.A.Mey. is an adaptogenic plant traditionally used to enhance mental and physical capacities in cases of weakness, exhaustion, tiredness, or loss of concentration, and during recovery. According to ancient records, red ginseng root preparations enhance longevity with long-term intake. Recent pharmacokinetic [...] Read more.
Panax ginseng C.A.Mey. is an adaptogenic plant traditionally used to enhance mental and physical capacities in cases of weakness, exhaustion, tiredness, or loss of concentration, and during recovery. According to ancient records, red ginseng root preparations enhance longevity with long-term intake. Recent pharmacokinetic studies of ginsenosides in humans and our in vitro study in neuronal cells suggest that ginsenosides are effective when their levels in blood is low—at concentrations from 10−6 to 10−18 M. In the present study, we compared the effects of red ginseng root preparation HRG80TM(HRG) at concentrations from 0.01 to 10,000 ng/mL with effects of white ginseng (WG) and purified ginsenosides Rb1, Rg3, Rg5 and Rk1 on gene expression in isolated hippocampal neurons. The aim of this study was to predict the effects of differently expressed genes on cellular and physiological functions in organismal disorders and diseases. Gene expression profiling was performed by transcriptome-wide mRNA microarray analyses in murine HT22 cells after treatment with ginseng preparations. Ingenuity pathway downstream/upstream analysis (IPA) was performed with datasets of significantly up- or downregulated genes, and expected effects on cellular function and disease were identified by IPA software. Ginsenosides Rb1, Rg3, Rg5, and Rk1 have substantially varied effects on gene expression profiles (signatures) and are different from signatures of HRG and WG. Furthermore, the signature of HRG is changed significantly with dilution from 10,000 to 0.01 ng/mL. Network pharmacological analyses of gene expression profiles showed that HRG exhibits predictable positive effects in neuroinflammation, senescence, apoptosis, and immune response, suggesting beneficial soft-acting effects in cancer, gastrointestinal, and endocrine systems diseases and disorders in a wide range of low concentrations in blood. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

14 pages, 3001 KiB  
Article
The Anti-Tumor Effect and Underlying Apoptotic Mechanism of Ginsenoside Rk1 and Rg5 in Human Liver Cancer Cells
by Chen Chen, Qing Lv, Yang Li and Ying-Hua Jin
Molecules 2021, 26(13), 3926; https://doi.org/10.3390/molecules26133926 - 27 Jun 2021
Cited by 35 | Viewed by 4307
Abstract
Ginsenoside Rk1 and Rg5 are minor ginseng saponins that have received more attention recently because of their high oral bioavailability. Each of them can effectively inhibit the survival and proliferation of human liver cancer cells, but the underlying mechanism remains largely unknown. Network [...] Read more.
Ginsenoside Rk1 and Rg5 are minor ginseng saponins that have received more attention recently because of their high oral bioavailability. Each of them can effectively inhibit the survival and proliferation of human liver cancer cells, but the underlying mechanism remains largely unknown. Network pharmacology and bioinformatics analysis demonstrated that G-Rk1 and G-Rg5 yielded 142 potential targets, and shared 44 putative targets associated with hepatocellular carcinoma. Enrichment analysis of the overlapped genes showed that G-Rk1 and G-Rg5 may induce apoptosis of liver cancer cells through inhibition of mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signal pathways. Methyl thiazolyl tetrazolium (MTT) assay was used to confirm the inhibition of cell viability with G-Rk1 or G-Rg5 in highly metastatic human cancer MHCC-97H cells. We evaluated the apoptosis of MHCC-97H cells by using flow cytometry and 4′,6-diamidino-2-phenylindole (DAPI) staining. The translocation of Bax/Bak led to the depolarization of mitochondrial membrane potential and release of cytochrome c and Smac. A sequential activation of caspase-9 and caspase-3 and the cleavage of poly(ADP-ribose) polymerase (PARP) were observed after that. The levels of anti-apoptotic proteins were decreased after treatment of G-Rk1 or G-Rg5 in MHCC-97H cells. Taken together, G-Rk1 and G-Rg5 promoted the endogenous apoptotic pathway in MHCC-97H cells by targeting and regulating some critical liver cancer related genes that are involved in the signal pathways associated with cell survival and proliferation. Full article
Show Figures

Figure 1

Back to TopTop