Network Pharmacology of Ginseng (Part II): The Differential Effects of Red Ginseng and Ginsenoside Rg5 in Cancer and Heart Diseases as Determined by Transcriptomics
Abstract
:1. Introduction
2. Results
2.1. Effect of Ginsenosides Rb1, Rg3, Rg5 and Rk1, WG and HRG80TM at Different Concentrations on Gene Expression Profile in the Hippocampal Neuronal Cell Line HT22
2.2. Effect of Ginsenoside Rg5 on Signaling Canonical Pathways
- neurotransmitters and nervous system signaling involved in neuroinflammation signaling (Figure 3);
- intracellular second messenger c-AMP mediated protein kinase A signaling (Figure 4);
- transcriptional regulation of sirtuin and nuclear receptors, and estrogen receptor-mediated signaling (Figure 4).
2.3. Predicted Effects of Ginsenosides and Ginseng Extracts HRG80TM and WG
3. Discussion
4. Materials and Methods
4.1. Test Samples and Reference Standard
4.2. mRNA Microarray Hybridization
4.3. Ingenuity Pathway Analysis (IPA)
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, S.M.; Bae, B.-S.; Park, H.-W.; Ahn, N.-G.; Cho, B.-G.; Cho, Y.-L.; Kwak, Y.-S. Characterization of Korean red ginseng (Panax ginseng Meyer): History, preparation method, and chemical composition. J. Ginseng Res. 2015, 39, 384–391. [Google Scholar] [CrossRef] [Green Version]
- Flagg, A.J. Traditional and current use of ginseng. Nurs. Clin. N. Am. 2021, 56, 109–121. [Google Scholar] [CrossRef]
- Ratan, Z.A.; Youn, S.H.; Kwak, Y.-S.; Han, C.-K.; Haidere, M.F.; Kim, J.K.; Min, H.; Jung, Y.-J.; Hosseinzadeh, H.; Hyun, S.H.; et al. Adaptogenic effects of Panax ginseng on modulation of immune functions. J. Ginseng Res. 2020, 45, 32–40. [Google Scholar] [CrossRef]
- Panossian, A.; Brendler, T. The Role of Adaptogens in Prophylaxis and Treatment of Viral Respiratory Infections. Pharmaceuticals 2020, 13, 236. [Google Scholar] [CrossRef]
- Irfan, M.; Kwak, Y.-S.; Han, C.-K.; Hyun, S.H.; Rhee, M.H. Adaptogenic effects of Panax ginseng on modulation of cardiovascular functions. J. Ginseng Res. 2020, 44, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.-Y.; He, Y.-F.; Li, L.; Meng, H.; Dong, Y.-M.; Yi, F.; Xiao, P.-G. A preliminary review of studies on adaptogens: Comparison of their bioactivity in TCM with that of ginseng-like herbs used worldwide. Chin. Med. 2018, 13, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, S.; Rauf, A. Adaptogenic herb ginseng (Panax) as medical food: Status quo and future prospects. Biomed. Pharmacother. 2016, 85, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Panossian, A.G.; Efferth, T.; Shikov, A.N.; Pozharitskaya, O.N.; Kuchta, K.; Mukherjee, P.K.; Banerjee, S.; Heinrich, M.; Wu, W.; Guo, D.; et al. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress- and aging-related diseases. Med. Res. Rev. 2020, 41, 630–703. [Google Scholar] [CrossRef] [PubMed]
- EMA/HMPC/321232/2012. Assessment Report on Panax Ginseng C.A. Meyer, Radix. Based on Article 16d (1), Article 16f and Article 16h of Directive 2001/83/EC as Amended (Traditional Use); European Medicines Agency: Amsterdam, The Netherlands, 2014. [Google Scholar]
- EMA/HMPC/321232/2012. Community Herbal Monograph on Panax Ginseng C.A. Meyer; Radix European Medicines Agency: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Kim, H.J.; Jung, S.W.; Kim, S.Y.; Cho, I.H.; Kim, H.C.; Rhim, H.; Kim, M.; Nah, S.Y. Panax ginseng as an adjuvant treatment for Alzheimer’s disease. J. Ginseng Res. 2018, 42, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.J.; Kim, S.K.; Lee, N.Y.; Choi, Y.R.; Kim, H.S.; Gupta, H.; Youn, G.S.; Sung, H.; Shin, M.J.; Suk, K.T. Effect of Korean red ginseng on metabolic syndrome. J. Ginseng Res. 2020, 45, 380–389. [Google Scholar] [CrossRef]
- Kim, S.-J.; Kim, A.K. Anti-breast cancer activity of Fine Black ginseng (Panax ginseng Meyer) and ginsenoside Rg5. J. Ginseng Res. 2014, 39, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Bilia, A.R.; Bergonzi, M.C. The G115 standardized ginseng extract: An example for safety, efficacy, and quality of an herbal medicine. J. Ginseng Res. 2019, 44, 179–193. [Google Scholar] [CrossRef]
- Hou, W.; Wang, Y.; Zheng, P.; Cui, R. Effects of Ginseng on Neurological Disorders. Front. Cell. Neurosci. 2020, 14, 55. [Google Scholar] [CrossRef] [Green Version]
- Mariage, P.A.; Hovhannisyan, A.; Panossian, A.G. Efficacy of Panax ginseng Meyer herbal preparation HRG80 in preventing and mitigating stress-induced failure of cognitive functions in healthy subjects: A pilot, randomized, double-blind, placebo-controlled crossover trial. Pharmaceuticals 2020, 13, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimpfel, W.; Mariage, P.-A.; Panossian, A. Effects of Red and white ginseng Preparations on Electrical Activity of the Brain in Elderly Subjects: A Randomized, Double-Blind, Placebo-Controlled, Three-Armed Cross-Over Study. Pharmaceuticals 2021, 14, 182. [Google Scholar] [CrossRef] [PubMed]
- Dimpfel, W.; Schombert, L.; Panossian, A.G. Panax ginseng preparations enhance long term potentiation in rat hippocampal slices by glutamatergic NMDA and kainate receptor mediated transmission. J. Altern. Complementary Integr. Med. 2020, 6, 106. [Google Scholar]
- Chen, C.; Lv, Q.; Li, Y.; Jin, Y.-H. The Anti-Tumor Effect and Underlying Apoptotic Mechanism of Ginsenoside Rk1 and Rg5 in Human Liver Cancer Cells. Molecules 2021, 26, 3926. [Google Scholar] [CrossRef]
- Zhu, G.-X.; Zuo, J.-L.; Xu, L.; Li, S.-Q. Ginsenosides in vascular remodeling: Cellular and molecular mechanisms of their therapeutic action. Pharmacol. Res. 2021, 169, 105647. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhang, M.; Ling, C.; Zhu, Y.; Ren, H.; Hong, C.; Qin, J.; Liu, T.; Wang, J. Neuroprotective Effects of Ginsenosides against Cerebral Ischemia. Molecules 2019, 24, 1102. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.Y.; Kim, K.J.; Song, J.H.; Lee, B.Y. Ginsenoside Rg5 prevents apoptosis by modulating heme-oxygenase-1/nuclear factor E2-related factor 2 signaling and alters the expression of cognitive impairment-associated genes in thermal stress-exposed HT22 cells. J Ginseng Res. 2018, 42, 225–228. [Google Scholar] [CrossRef]
- Ahuja, A.; Kim, J.H.; Kim, J.-H.; Yi, Y.-S.; Cho, J.Y. Functional role of ginseng-derived compounds in cancer. J. Ginseng Res. 2017, 42, 248–254. [Google Scholar] [CrossRef]
- Park, S.K.; Hyun, S.H.; In, G.; Park, C.-K.; Kwak, Y.-S.; Jang, Y.-J.; Kim, B.; Kim, J.-H.; Han, C.-K. The antioxidant activities of Korean red ginseng (Panax ginseng) and ginsenosides: A systemic review through in vivo and clinical trials. J. Ginseng Res. 2020, 45, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Z.; Anderson, S.; Du, W.; He, T.-C.; Yuan, C.-S. Red ginseng and cancer treatment. Chin. J. Nat. Med. 2016, 14, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Mohanan, P.; Subramaniyam, S.; Mathiyalagan, R.; Yang, D.-C. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J. Ginseng Res. 2017, 42, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kim, T.-H.; Choi, T.-Y.; Lee, M.S. Ginseng for Health Care: A Systematic Review of Randomized Controlled Trials in Korean Literature. PLoS ONE 2013, 8, e59978. [Google Scholar] [CrossRef] [Green Version]
- Davis, M.P.; Behm, B. Ginseng: A Qualitative Review of Benefits for Palliative Clinicians. Am. J. Hosp. Palliat. Med. 2019, 36, 630–659. [Google Scholar] [CrossRef]
- Yoo, S.; Park, B.-I.; Kim, D.-H.; Lee, S.; Lee, S.-H.; Shim, W.-S.; Seo, Y.; Kang, K.; Lee, K.-T.; Yim, S.-V.; et al. Ginsenoside Absorption Rate and Extent Enhancement of Black Ginseng (CJ EnerG) over red ginseng in Healthy Adults. Pharmaceutics 2021, 13, 487. [Google Scholar] [CrossRef]
- Kim, H.-K. Pharmacokinetics of ginsenoside Rb1 and its metabolite compound K after oral administration of Korean red ginseng extract. J. Ginseng Res. 2013, 37, 451–456. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Cui, R.; Zhao, L.; Fan, J.; Li, B. Mechanisms of Panax ginseng action as an antidepressant. Cell Prolif. 2019, 52, e12696. [Google Scholar] [CrossRef] [Green Version]
- Nocerino, E.; Amato, M.; Izzo, A. The aphrodisiac and adaptogenic properties of ginseng. Fitoterapia 2000, 71, S1–S5. [Google Scholar] [CrossRef]
- Li, S.; Zhang, B. Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chin. J. Nat. Med. 2013, 11, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-Y.; Park, J.-H.; Kim, H.-S.; Lee, C.-Y.; Lee, H.-J.; Kang, K.S.; Kim, C.-E. Systems-level mechanisms of action of Panax ginseng: A network pharmacological approach. J. Ginseng Res. 2017, 42, 98–106. [Google Scholar] [CrossRef]
- Ding, Q.; Zhu, W.; Diao, Y.; Xu, G.; Wang, L.; Qu, S.; Shi, Y. Elucidation of the Mechanism of Action of Ginseng Against Acute Lung Injury/Acute Respiratory Distress Syndrome by a Network Pharmacology-Based Strategy. Front. Pharmacol. 2021, 11, 611794. [Google Scholar] [CrossRef]
- Li, Q.-Y.; Hou, C.-Z.; Yang, L.-P.; Chu, X.-L.; Wang, Y.; Zhang, P.; Zhao, Y. Study on the Mechanism of Ginseng in the Treatment of Lung Adenocarcinoma Based on Network Pharmacology. Evid. Based Complement. Altern. Med. 2020, 2020, 2658795. [Google Scholar] [CrossRef]
- Jeong, E.; Lim, Y.; Kim, K.J.; Ki, H.-H.; Lee, D.; Suh, J.; So, S.-H.; Kwon, O.; Kim, J.Y. A Systems Biological Approach to Understanding the Mechanisms Underlying the Therapeutic Potential of red ginseng Supplements against Metabolic Diseases. Molecules 2020, 25, 1967. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wang, P.; Yang, W.; Zhao, C.; Zhang, L.; Zhang, J.; Qin, Y.; Xu, H.; Huang, L. Characterization of the Components and Pharmacological Effects of Mountain-Cultivated Ginseng and Garden Ginseng Based on the Integrative Pharmacology Strategy. Front. Pharmacol. 2021, 12, 659954. [Google Scholar] [CrossRef]
- Park, J.-M.; Lee, H.-J.; Yoo, J.H.; Ko, W.J.; Cho, J.Y.; Hahm, K.B. Overview of gastrointestinal cancer prevention in Asia. Best Pract. Res. Clin. Gastroenterol. 2015, 29, 855–867. [Google Scholar] [CrossRef]
- Kim, J.W.; Han, S.W.; Cho, J.Y.; Chung, I.-J.; Kim, J.G.; Lee, K.H.; Park, K.U.; Baek, S.K.; Oh, S.C.; Lee, M.A.; et al. Korean red ginseng for cancer-related fatigue in colorectal cancer patients with chemotherapy: A randomised phase III trial. Eur. J. Cancer 2020, 130, 51–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bespalov, V.G.; Alexandrov, V.A.; Semenov, A.L.; Kovan’Ko, E.G.; Ivanov, S.D. Anticarcinogenic activity of alpha-difluoromethylornithine, ginseng, eleutherococcus, and leuzea on radiation-induced carcinogenesis in female rats. Int. J. Radiat. Biol. 2014, 90, 1191–1200. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, M.-K.; Lee, M.; Kwon, B.-S.; Suh, D.H.; Song, Y.S. Effect of red ginseng on Genotoxicity and Health-Related Quality of Life after Adjuvant Chemotherapy in Patients with Epithelial Ovarian Cancer: A Randomized, Double Blind, Placebo-Controlled Trial. Nutrients 2017, 9, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, I.-K.; Lee, K.Y.; Kang, J.; Park, J.S.; Jeong, J. Immune-modulating Effect of Korean red ginseng by Balancing the Ratio of Peripheral T Lymphocytes in Bile Duct or Pancreatic Cancer Patients With Adjuvant Chemotherapy. In Vivo 2021, 35, 1895–1900. [Google Scholar] [CrossRef]
- Oh, J.; Bin Jeon, S.; Lee, Y.; Lee, H.; Kim, J.; Kwon, B.R.; Kyung-Min, C.; Cha, J.-D.; Hwang, S.-M.; Choi, K.-M.; et al. Fermented red ginseng Extract Inhibits Cancer Cell Proliferation and Viability. J. Med. Food 2015, 18, 421–428. [Google Scholar] [CrossRef]
- Panossian, A.; Seo, E.-J.; Efferth, T. Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. Phytomedicine 2018, 50, 257–284. [Google Scholar] [CrossRef]
- Panossian, A. Understanding adaptogenic activity: Specificity of the pharmacological action of adaptogens and other phytochemicals. Ann. N. Y. Acad. Sci. 2017, 1401, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Fulop, T.; Witkowski, J.M.; Olivieri, F.; Larbi, A. The integration of inflammaging in age-related diseases. Semin. Immunol. 2018, 40, 17–35. [Google Scholar] [CrossRef]
- Leonardi, G.C.; Accardi, G.; Monastero, R.; Nicoletti, F.; Libra, M. Ageing: From inflammation to cancer. Immun. Ageing 2018, 15, 1. [Google Scholar] [CrossRef]
- Zuo, L.; Prather, E.R.; Stetskiv, M.; Garrison, D.E.; Meade, J.R.; Peace, T.I.; Zhou, T. Inflammaging and Oxidative Stress in Human Diseases: From Molecular Mechanisms to Novel Treatments. Int. J. Mol. Sci. 2019, 20, 4472. [Google Scholar] [CrossRef] [Green Version]
- Panossian, A.; Gerbarg, P. Potential use of plant adaptogens in age-related disorders. In Complementary, Alternative, and Integrative Interventions in Mental Health and Aging; Lavretsky, H., Sajatovic, M., Reynolds, C.F., III, Eds.; Oxford University Press: New York, NY, USA, 2016; pp. 197–211. [Google Scholar]
- Panossian, A.; Wikman, G. Evidence based efficacy and effectiveness of Rhodiola SHR-5 extract in treating stress- and age-associated disorders. In Rhodiola rosea, Series: Traditional Herbal Medicines for Modern Times; Cuerrier, A., Ampong-Nyarko, K., Eds.; CRC Press Taylor; Francis Group: Boca-Raton, FL, USA; London, UK; New York, NY, USA, 2014; pp. 203–221. [Google Scholar]
- Seo, E.-J.; Klauck, S.M.; Efferth, T.; Panossian, A. Adaptogens in chemobrain (Part I): Plant extracts attenuate cancer chemotherapy-induced cognitive impairment—Transcriptome-wide microarray profiles of neuroglia cells. Phytomedicine 2018, 55, 80–91. [Google Scholar] [CrossRef]
- Panossian, A.; Seo, E.-J.; Klauck, S.M.; Efferth, T. Adaptogens in chemobrain (part IV): Adaptogenic plants prevent the chemotherapeutics-induced imbalance of redox homeostasis by modulation of expression of genes encoding Nrf2-mediated signaling proteins and antioxidant, metabolizing, detoxifying enzymes in neuroglia cells. Longhua Chin. Med. 2020, 3, 4. [Google Scholar] [CrossRef]
- Krämer, A.; Green, J.; Pollard, J., Jr.; Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 2014, 30, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Abatangelo, L.; Maglietta, R.; Distaso, A.; D’Addabbo, A.; Creanza, T.M.; Mukherjee, S.; Ancona, N. Comparative study of gene set enrichment methods. BMC Bioinform. 2009, 10, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ihnatova, I.; Popovici, V.; Budinska, E. A critical comparison of topology-based pathway analysis methods. PLoS ONE 2018, 13, e0191154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fakhry, C.T.; Choudhary, P.; Gutteridge, A.; Sidders, B.; Chen, P.; Ziemek, D.; Zarringhalam, K. Interpreting transcriptional changes using causal graphs: New methods and their practical utility on public networks. BMC Bioinform. 2016, 17, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chindelevitch, L.; Ziemek, D.; Enayetallah, A.; Randhawa, R.; Sidders, B.; Brockel, C.; Huang, E.S. Causal reasoning on biological networks: Interpreting transcriptional changes. Bioinformatics 2012, 28, 1114–1121. [Google Scholar] [CrossRef] [PubMed]
Sample Name | Concentration ng/mL; nM | Concentration of Ginsenoside Rg5 nM | Content in WG Extract/Powder, % | Content in HRG80TM Extract/Powder % | Number of Deregulated Genes | Substance/ Concentration Specific Genes |
---|---|---|---|---|---|---|
WG | 10,000 | 4.04 | n/a | n/a | 344 | 189 |
HRG1 | 10,000 | 982.27 | n/a | n/a | 397 | 232 |
HRG2 | 1000 | 98.17 | n/a | n/a | 461 | 397 |
HRG3 | 100 | 9.78 | n/a | n/a | 283 | 246 |
HRG4 | 10 | 0.91 | n/a | n/a | 448 | 290 |
HRG5 | 0.01 | 0.01 | n/a | n/a | 327 | 169 |
Rb1 | 110.9; 100 | - | 4.250/1.069 | 0.183/0.046 | 470 | 283 */279 ** |
Rg3 | 78.5; 100 | - | 0.309/0.080 | 4.307/1.080 | 413 | 235 */236 ** |
Rg5 | 76.7; 100 | 100 | 0.031/0.008 | 7.534/1.888 | 553 | 338 */345 ** |
Rk1 | 76.7; 100 | - | 0.112/0.028 | 4.027/1.009 | 373 | 215 */214 ** |
Test Substance | WG | HRG-80TM | Rb1 | Rg3 | Rg5 | Rk1 | ||||
---|---|---|---|---|---|---|---|---|---|---|
Concentration, ng/mL | 10,000 | 10,000 | 1000 | 100 | 10 | 0.01 | 100 nM | 100 nM | 100 nM | 100 nM |
Diseases and disorders | ||||||||||
Cancer | 300 | 346 | 412 | 253 | 404 | 277 | 419 | 363 | 494 | 338 |
Gastrointestinal | 259 | 308 | 360 | 222 | 357 | 243 | 370 | 317 | 439 | 301 |
Endocrine System | 227 | 293 | 336 | 205 | 342 | 228 | 356 | 292 | 430 | 268 |
Neurological | 167 | 265 | ||||||||
Reproductive System | 237 | |||||||||
Hepatic | 255 | |||||||||
Hematological | 136 | |||||||||
Hereditary | 116 | |||||||||
Infectious | 77 | |||||||||
Developmental | 68 | |||||||||
Metabolic | 9 | |||||||||
Ophthalmic | 9 | |||||||||
Total genes | 344 | 397 | 461 | 283 | 448 | 327 | 470 | 413 | 553 | 373 |
Test Substance | WG | HRG-80TM | Rb1 | Rg3 | Rg5 | Rk1 | ||||
---|---|---|---|---|---|---|---|---|---|---|
Concentration, ng/mL | 10,000 | 10,000 | 1000 | 100 | 10 | 0.01 | 100 nM | 100 nM | 100 nM | 100 nM |
Diseases and Biofunctions | ||||||||||
Abdominal cancer/Abdominal neoplasm | −0.7 −2.062 * | −0.867 | −2.162 * −2.018 * | −0.447 | −1.348 | 0.342 | −1.274 | −0.63 | −1.664 | 0.922 |
Activation of RNA virus | −2.0 * | |||||||||
Carcinoma | −1.437 | −0.583 | −0.849 | −0.897 | 0.331 | 1.103 | −0.92 | −2.16 * | −2.042 * | 0.206 |
Colorectal cancer cell viability | −2.009 * | |||||||||
Conotruncal heart malformations Connective tissue cell death | −2.2 * −2.243 * | |||||||||
Endocrine gland tumor | 1.172 | −2.176 * | −2.186 * | −0.594 | ||||||
Familial congenital heart disease | −2.2 * | |||||||||
Familial heart disease | −2.2 * | 0.9 | ||||||||
Familial midline defect | −2.2 * | 0.9 | ||||||||
Genital tumor | −1.039 | −1.262 | −1.838 | 0.3 | 0.135 | −2.207 * | ||||
Genitourinary tumor | −1.387 | 1.078 | −0.444 | −0.699 | 0.786 | −0.319 | −0.008 | −2.062 * | 0.875 | |
Growth of tumor | 0.048 | −2.012 * | −2.001 | |||||||
Hepatic steatosis | −2.313 * | −1.102 | ||||||||
Invasion of breast cancer cell lines | −2.014 * | |||||||||
Malignant neoplasm | −2.002 * | |||||||||
Malignant solid tumor | −0.639 | −0.322 | −0.219 | −0.452 | 0.99 | 0.904 | −0.438 | 0.013 | −2.458 * | 0.039 |
Migration of tumor cells | −3.101* | |||||||||
Necrosis | −2.263 * | −2.594 * | −2.304 * | |||||||
Neoplasia of cells | −1.108 | 1.18 | −2.195 * | 2.348 * | −0.7 | −0.505 | −2.237 * | −1.277 | ||
Nonhematologic malignant neoplasm | −0.799 | −0.609 | −0.821 | −0.255 | 0.63 | 1.366 | −0.087 | −1.432 | −2.002 * | −0.204 |
Pelvic tumor | −1.039 | −1.191 | −1.522 | 0.573 | −0.417 | −2.415 * | ||||
Proliferation of leukemia cell lines | −2.070 * | |||||||||
Sarcoma | −2.2 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panossian, A.; Abdelfatah, S.; Efferth, T. Network Pharmacology of Ginseng (Part II): The Differential Effects of Red Ginseng and Ginsenoside Rg5 in Cancer and Heart Diseases as Determined by Transcriptomics. Pharmaceuticals 2021, 14, 1010. https://doi.org/10.3390/ph14101010
Panossian A, Abdelfatah S, Efferth T. Network Pharmacology of Ginseng (Part II): The Differential Effects of Red Ginseng and Ginsenoside Rg5 in Cancer and Heart Diseases as Determined by Transcriptomics. Pharmaceuticals. 2021; 14(10):1010. https://doi.org/10.3390/ph14101010
Chicago/Turabian StylePanossian, Alexander, Sara Abdelfatah, and Thomas Efferth. 2021. "Network Pharmacology of Ginseng (Part II): The Differential Effects of Red Ginseng and Ginsenoside Rg5 in Cancer and Heart Diseases as Determined by Transcriptomics" Pharmaceuticals 14, no. 10: 1010. https://doi.org/10.3390/ph14101010
APA StylePanossian, A., Abdelfatah, S., & Efferth, T. (2021). Network Pharmacology of Ginseng (Part II): The Differential Effects of Red Ginseng and Ginsenoside Rg5 in Cancer and Heart Diseases as Determined by Transcriptomics. Pharmaceuticals, 14(10), 1010. https://doi.org/10.3390/ph14101010