Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = Rhizophoraceae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3264 KiB  
Article
Methanolic Extract of Rhizophora mangle (Rhizophoraceae) Leaves: Phytochemical Characterization and Anthelmintic Evaluation against Schistosoma mansoni
by Wilza W. M. França, Sérgio D. Magalhães Filho, Lucas A. O. Cavalcante, Mary A. A. S. Gomes, Maria T. V. Gonçalves, Emily G. M. Diniz, Wheverton R. C. Nascimento, Reginaldo G. Lima Neto, Mônica C. P. A. Albuquerque, Iranildo J. Cruz Filho, Hallysson D. A. Araújo, André L. Aires and Jeymesson R. C. Vieira
Pharmaceuticals 2024, 17(9), 1178; https://doi.org/10.3390/ph17091178 - 6 Sep 2024
Cited by 1 | Viewed by 1675
Abstract
Rhizophora mangle is commonly used in traditional medicine to treat infections, reduce inflammation, and promote healing. This study aimed to analyze the phytochemical profile of the methanolic extract of R. mangle leaves (MELRm) and evaluate its in vitro schistosomicidal activity against Schistosoma mansoni [...] Read more.
Rhizophora mangle is commonly used in traditional medicine to treat infections, reduce inflammation, and promote healing. This study aimed to analyze the phytochemical profile of the methanolic extract of R. mangle leaves (MELRm) and evaluate its in vitro schistosomicidal activity against Schistosoma mansoni as well as its cytotoxicity. Plant material was collected in Itamaracá City, Pernambuco, Brazil. The extract was analyzed using UV/Vis spectrophotometry and high-performance liquid chromatography (HPLC). The motility, mortality, and cell viability of adult worms were assessed in a schistosomicidal assay, while cytotoxicity was evaluated through a colorimetric assay with MTT on RAW 264.7 cells. The primary compounds identified in MELRm were phenolic compounds. In the schistosomicidal assay, all concentrations of MELRs induced changes in the motility of adult worms. At a concentration of 400 μg/mL, MELRs resulted in 56.25% mortality after 72 h of incubation. After 120 h, mortality rates of 75%, 62.5%, and 50% were observed at MELRm concentrations of 400, 200, and 100 μg/mL, respectively. No eggs were detected at any MELRm concentration. MELRs did not show cytotoxicity towards RAW 264.7 cells at the concentrations tested. These results indicate that MELRs demonstrate schistosomicidal activity in vitro, suggesting they are promising candidates for in vivo studies. Full article
Show Figures

Figure 1

54 pages, 3387 KiB  
Review
Chemical Constituents and Biological Activities of Bruguiera Genus and Its Endophytes: A Review
by Xiongming Luo, Xiaohong Chen, Lingli Zhang, Bin Liu, Lian Xie, Yan Ma, Min Zhang and Xiaobao Jin
Mar. Drugs 2024, 22(4), 158; https://doi.org/10.3390/md22040158 - 29 Mar 2024
Cited by 1 | Viewed by 5648
Abstract
The genus Bruguiera, a member of the Rhizophoraceae family, is predominantly found in coastal areas as a mangrove plant, boasting a rich and diverse community of endophytes. This review systematically compiled approximately 496 compounds derived from both the Bruguiera genus and its [...] Read more.
The genus Bruguiera, a member of the Rhizophoraceae family, is predominantly found in coastal areas as a mangrove plant, boasting a rich and diverse community of endophytes. This review systematically compiled approximately 496 compounds derived from both the Bruguiera genus and its associated endophytes, including 152 terpenoids, 17 steroids, 16 sulfides, 44 alkaloids and peptides, 66 quinones, 68 polyketides, 19 flavonoids, 38 phenylpropanoids, 54 aromatic compounds, and 22 other compounds. Among these, 201 compounds exhibited a spectrum of activities, including cytotoxicity, antimicrobial, antioxidant, anti-inflammatory, antiviral, antidiabetic, insecticidal and mosquito repellent, and enzyme inhibitory properties, etc. These findings provided promising lead compounds for drug discovery. Certain similar or identical compounds were found to be simultaneously present in both Bruguiera plants and their endophytes, and the phenomenon of their interaction relationship was discussed. Full article
(This article belongs to the Special Issue Bio-Active Products from Mangrove Ecosystems 2.0)
Show Figures

Figure 1

15 pages, 8610 KiB  
Article
Differentiating Leaf Structures and Physiological Responses to Freezing Stress of Mangrove Kandelia obovata from Different Provenances
by Wenzhen Xin, Xia An, Huizi Liu, Shuangshuang Liu, Sheng Yang, Xin Wei, Jiali Zhao, Renan Lin, Xing Liu and Qiuxia Chen
Horticulturae 2024, 10(2), 182; https://doi.org/10.3390/horticulturae10020182 - 17 Feb 2024
Cited by 3 | Viewed by 1721
Abstract
Kandelia obovata (Rhizophoraceae) is the most cold-tolerant mangrove species and has been widely used in coastal wetland ecological restoration due to its specific viviparous phenomenon, beautiful shape, and unique floral pattern. Due to long-term adaptation to their local environment, the phenotypic characteristics and [...] Read more.
Kandelia obovata (Rhizophoraceae) is the most cold-tolerant mangrove species and has been widely used in coastal wetland ecological restoration due to its specific viviparous phenomenon, beautiful shape, and unique floral pattern. Due to long-term adaptation to their local environment, the phenotypic characteristics and stress resistance of widely distributed plants of the same species often differentiate across different locations. The capacity for cold resistance is closely linked to the physiological and structural characteristics of plants. Herein, we explored the temporal variations in the leaf structure and physiological status of K. obovata under −5.5 °C from different areas such as Jiulongjiang Estuary (JLJ, 24°25′ N), Fujian Province, and Longgang City (LG, 27°34′ N) and Jiaojiang District (JJ, 28°67′ N), Zhejiang Province. The morphological variations implied that the cold resistance of K. obovata obviously strengthened after the northward migration and acclimatization, in the following order: LG > JJ > JLJ. More specifically, after exposure to a sustained low temperature, the relative conductivity (REC), an index widely used to evaluate the degree of plant damage, remarkably increased from 33.62 ± 2.39 to 63.73 ± 3.81, 31.20 ± 1.63 to 49.48 ± 1.12, and 23.75 ± 0.13 to 54.24 ± 1.45 for JLJ, LG, and JJ, respectively (p < 0.05). Additionally, the palisade-to-spongy tissue ratio (P/I) of JLJ and JJ decreased from 0.78 ± 0.05 and 0.75 ± 0.03 to 0.5 ± 0.04 and 0.64 ± 0.02 (p < 0.05), whereas no significant changes were found in LG (p > 0.05). The SOD activity of LG significantly kept increasing, with values increased from 352.49 ± 10.38 to 477.65 ± 1.78 U·g−1, whereas no apparent changes in JLJ and JJ were observed with the sustained low temperature. The results of this study improved our understanding of the response of K. obovata to freezing stress, which could provide a sound theoretical foundation for cultivating cold-resistant varieties, as well as expanding mangrove plantations in higher latitudes. Full article
Show Figures

Figure 1

22 pages, 8818 KiB  
Article
Unveiling the Diversity of Bangka Island’s Mangroves: A Baseline for Effective Conservation and Restoration
by Suci Puspita Sari, Nico Koedam, Aditya Pamungkas, Muhammad Rizza Muftiadi and Frieke Van Coillie
Forests 2023, 14(8), 1666; https://doi.org/10.3390/f14081666 - 17 Aug 2023
Cited by 6 | Viewed by 2933
Abstract
The current state of the mangrove ecosystem on Bangka Island requires urgent attention from the local government to protect, restore, and conserve the remaining mangrove areas. Hence, this study endeavors to assess the species composition of mangroves on Bangka Island, examining their correlation [...] Read more.
The current state of the mangrove ecosystem on Bangka Island requires urgent attention from the local government to protect, restore, and conserve the remaining mangrove areas. Hence, this study endeavors to assess the species composition of mangroves on Bangka Island, examining their correlation with edaphic factors and shedding light on the zonation pattern within the region. We examined species composition, edaphic factors, and zonation patterns along 20 m × 100 m transects perpendicular to the waterfront at 22 sampling sites distributed across Bangka Island. Our findings revealed the presence of 21 mangrove species from ten families, including two mangrove associates. Among the documented species, the Rhizophoraceae family exhibited the highest floristic abundance with nine species. Edaphic factors (soil texture, pore-water salinity, N-total, P, and K) significantly influenced mangrove species composition (p < 0.05). However, these factors explained only 37.2% of the overall variability, suggesting additional factors contribute to the diverse zonation and composition of mangroves on Bangka Island. This study has relevant implications for the conservation and management of mangroves on Bangka Island. By gaining insight into the specific site’s floristic composition, overall richness, and distribution, our findings can guide effective conservation and restoration strategies by understanding the factors shaping mangrove composition. Full article
(This article belongs to the Special Issue Biodiversity, Health, and Ecosystem Services of Mangroves)
Show Figures

Figure 1

16 pages, 2140 KiB  
Review
Red Mangrove (Rhizophora stylosa Griff.)—A Review of Its Botany, Phytochemistry, Pharmacological Activities, and Prospects
by Karina Kalasuba, Mia Miranti, Sri Rejeki Rahayuningsih, Wahyu Safriansyah, Rizky Riscahya Pratama Syamsuri, Kindi Farabi, Dina Oktavia, Arshad Naji Alhasnawi and Febri Doni
Plants 2023, 12(11), 2196; https://doi.org/10.3390/plants12112196 - 1 Jun 2023
Cited by 17 | Viewed by 9955
Abstract
Mangroves are ecologically significant plants in marine habitats that inhabit the coastlines of many countries. Being a highly productive and diverse ecosystem, mangroves are rich in numerous classes of phytochemicals that are of great importance in the field of pharmaceutical industries. The red [...] Read more.
Mangroves are ecologically significant plants in marine habitats that inhabit the coastlines of many countries. Being a highly productive and diverse ecosystem, mangroves are rich in numerous classes of phytochemicals that are of great importance in the field of pharmaceutical industries. The red mangrove (Rhizophora stylosa Griff.) is a common member of the Rhizophoraceae family and the dominant species in the mangrove ecosystem of Indonesia. R. stylosa mangrove species are rich in alkaloids, flavonoids, phenolic acids, tannins, terpenoids, saponins, and steroids, and are widely used in traditional medicine for anti-inflammatory, antibacterial, antioxidant, and antipyretic effects. This review aims to provide a comprehensive understanding of the botanical description, phytochemical profiles, pharmacological activities, and medicinal potentials of R. stylosa. Full article
Show Figures

Graphical abstract

13 pages, 2146 KiB  
Article
Elucidating SNP-Based Population Structure and Genetic Diversity of Bruguiera gymnorhiza (L.) Savigny in Thailand
by Panthita Ruang-areerate, Chutima Sonthirod, Duangjai Sangsrakru, Pitchaporn Waiyamitra, Chatree Maknual, Poonsri Wanthongchai, Pranom Chomriang, Wirulda Pootakham and Sithichoke Tangphatsornruang
Forests 2023, 14(4), 693; https://doi.org/10.3390/f14040693 - 28 Mar 2023
Cited by 3 | Viewed by 2431
Abstract
Bruguiera gymnorhiza (L.) Savigny is one of the most important and widespread mangrove species in the Indo-West Pacific region. Here, the population structure and genetic diversity of B. gymnorhiza along the coastlines of Thailand were examined. A total of 73 B. gymnorhiza accessions [...] Read more.
Bruguiera gymnorhiza (L.) Savigny is one of the most important and widespread mangrove species in the Indo-West Pacific region. Here, the population structure and genetic diversity of B. gymnorhiza along the coastlines of Thailand were examined. A total of 73 B. gymnorhiza accessions in 15 provinces were sequenced using RAD-seq to generate their SNPs. Based on the high-quality SNPs, the topology of the maximum likelihood phylogenetic tree clearly presented two genetically distinct groups corresponding to two geographic regions, the Gulf of Thailand and the Andaman Sea coasts. The results for the population structure provided by STRUCTURE and PCA also showed two main genetic clusters and their genetic admixture. A moderate genetic diversity was observed among the accessions, with average observed and expected heterozygosity values of 0.397 and 0.317, respectively. A high genetic differentiation (FST = 0.16, p < 0.001) between the two subpopulations was significantly found. An analysis of molecular variance revealed 83.95% of the genetic variation within populations and 16.05% of the genetic variation among populations. A high genetic variation within the populations and admixture may facilitate adaptation to local environments and climate changes. These results provide important information on the population genetic structure and genetic diversity of B. gymnorhiza in Thailand for further mangrove management. Full article
(This article belongs to the Special Issue Genetic Diversity and Conservation of Forest Species)
Show Figures

Figure 1

16 pages, 3891 KiB  
Article
Assessment of the Genetic Diversity and Population Structure of Rhizophora mucronata along Coastal Areas in Thailand
by Chaiwat Naktang, Supaporn Khanbo, Chutintorn Yundaeng, Sonicha U-thoomporn, Wasitthee Kongkachana, Darunee Jiumjamrassil, Chatree Maknual, Poonsri Wanthongchai, Sithichoke Tangphatsornruang and Wirulda Pootakham
Biology 2023, 12(3), 484; https://doi.org/10.3390/biology12030484 - 21 Mar 2023
Cited by 3 | Viewed by 4143
Abstract
Unique and biodiverse, mangrove ecosystems provide humans with benefits and contribute to coastal protection. Rhizophora mucronata, a member of the Rhizophoraceae family, is prevalent in the mangrove forests of Thailand. R. mucronata’s population structure and genetic diversity have received scant attention. [...] Read more.
Unique and biodiverse, mangrove ecosystems provide humans with benefits and contribute to coastal protection. Rhizophora mucronata, a member of the Rhizophoraceae family, is prevalent in the mangrove forests of Thailand. R. mucronata’s population structure and genetic diversity have received scant attention. Here, we sequenced the entire genome of R. mucronata using 10× Genomics technology and obtained an assembly size of 219 Mb with the N50 length of 542,540 bases. Using 2857 single nucleotide polymorphism (SNP) markers, this study investigated the genetic diversity and population structure of 80 R. mucronata accessions obtained from the mangrove forests in Thailand. The genetic diversity of R. mucronata was moderate (I = 0.573, Ho = 0.619, He = 0.391). Two subpopulations were observed and confirmed from both population structure and principal component analysis (PCA). Analysis of molecular variance (AMOVA) showed that there was more variation within populations than between them. Mean pairwise genetic differentiation (FST = 0.09) showed that there was not much genetic difference between populations. Intriguingly, the predominant clustering pattern in the R. mucronata population did not correspond to the Gulf of Thailand and the Andaman Sea, which are separated by the Malay Peninsula. Several factors could have influenced the R. mucronata genetic pattern, such as hybridization and anthropogenic factors. This research will provide important information for the future conservation and management of R. mucronata in Thailand. Full article
(This article belongs to the Special Issue Plant Functional Genomics in the Era of Omics Approaches)
Show Figures

Figure 1

14 pages, 2752 KiB  
Article
Assessment of the Genetic Diversity and Population Structure of Rhizophora apiculata Blume (Rhizophoraceae) in Thailand
by Panthita Ruang-areerate, Chaiwat Naktang, Wasitthee Kongkachana, Duangjai Sangsrakru, Nattapol Narong, Chatree Maknual, Tamanai Pravinvongvuthi, Waratthaya Promchoo, Suchart Yamprasai, Sithichoke Tangphatsornruang and Wirulda Pootakham
Biology 2022, 11(10), 1449; https://doi.org/10.3390/biology11101449 - 1 Oct 2022
Cited by 8 | Viewed by 3819
Abstract
Rhizophora apiculata is one of the most widespread and economically important mangrove trees in the Indo-West Pacific region. Knowledge of the genetic variation of R. apiculata in Thailand is limited. Here, we generated a whole-genome sequence of R. apiculata using the 10× Genomics [...] Read more.
Rhizophora apiculata is one of the most widespread and economically important mangrove trees in the Indo-West Pacific region. Knowledge of the genetic variation of R. apiculata in Thailand is limited. Here, we generated a whole-genome sequence of R. apiculata using the 10× Genomics technology. R. apiculata genome assembly was 230.47 Mb. Based on its genome, 2640 loci of high-quality biallelic SNPs were identified from 82 R. apiculata accessions collected from 17 natural mangrove forests in Thailand to assess the genetic diversity and population structure among them. A moderate level of genetic diversity of R. apiculata was observed. The average observed heterozygosity (Ho = 0.48) was higher than the average expected heterozygosity (He = 0.36). Two subpopulations were observed and confirmed from three approaches: population structure, PCA, and phylogenetic analyses. They corresponded to the Gulf of Thailand and the Andaman Sea separated by the Malay Peninsula. AMOVA analyses indicated that genetic variation was attributable to 76.22% within populations and 23.78% among populations. A high level of genetic differentiation between the two subpopulations (FST = 0.24, p < 0.001) was observed. This study evaluated the genetic diversity and population structure of R. apiculata, providing useful information for sustainable mangrove management in Thailand. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

15 pages, 1991 KiB  
Article
Photosynthesis in Response to Different Salinities and Immersions of Two Native Rhizophoraceae Mangroves
by Chung-I Chen, Kuan-Hung Lin, Meng-Yuan Huang, Shau-Lian Wong, Tien-Szu Liao, Ming-Nan Chen, Jen-Hsien Weng, Mei-Li Hsueh, Yu-Hsiang Lai and Ching-Wen Wang
Cells 2022, 11(19), 3054; https://doi.org/10.3390/cells11193054 - 29 Sep 2022
Cited by 10 | Viewed by 2555
Abstract
Mangrove ecosystems are vulnerable to rising sea levels as the plants are exposed to high salinity and tidal submergence. The ways in which these plants respond to varying salinities, immersion depths, and levels of light irradiation are poorly studied. To understand photosynthesis in [...] Read more.
Mangrove ecosystems are vulnerable to rising sea levels as the plants are exposed to high salinity and tidal submergence. The ways in which these plants respond to varying salinities, immersion depths, and levels of light irradiation are poorly studied. To understand photosynthesis in response to salinity and submergence in mangroves acclimated to different tidal elevations, two-year-old seedlings of two native mangrove species, Kandelia obovata and Rhizophora stylosa, were treated at different salinity concentrations (0, 10, and 30 part per thousand, ppt) with and without immersion conditions under fifteen photosynthetic photon flux densities (PPFD μmol photon·m−2·s−1). The photosynthetic capacity and the chlorophyll fluorescence (ChlF) parameters of both species were measured. We found that under different PPFDs, electron transport rate (ETR) induction was much faster than photosynthetic rate (Pn) induction, and Pn was restricted by stomatal conductance (Gs). The Pn of the immersed K. obovata plants increased, indicating that this species is immersed-tolerant, whereas the Pn level of the R. stylosa plants is salt-tolerant with no immersion. All of the plants treated with 30 ppt salinity exhibited lower Pn but higher non-photochemical quenching (NPQ) and heat quenching (D) values, followed by increases in the excess energy and photoprotective effects. Since NPQ or D can be easily measured in the field, these values provide a useful ecological monitoring index that may provide a reference for mangrove restoration, habitat creation, and ecological monitoring. Full article
(This article belongs to the Special Issue Research on Photosynthesis under Stress)
Show Figures

Figure 1

15 pages, 1197 KiB  
Article
The Tip of the Iceberg: Cryopreservation Needs for Meeting the Challenge of Exceptional Plant Conservation
by Valerie C. Pence and Emily Beckman Bruns
Plants 2022, 11(12), 1528; https://doi.org/10.3390/plants11121528 - 7 Jun 2022
Cited by 13 | Viewed by 3111
Abstract
Cryopreservation is increasingly important as a conservation tool, particularly for threatened exceptional species. The goal of this study was to investigate the current knowledge of plant cryopreservation through a search of the literature in Web of Science and align that with the 775 [...] Read more.
Cryopreservation is increasingly important as a conservation tool, particularly for threatened exceptional species. The goal of this study was to investigate the current knowledge of plant cryopreservation through a search of the literature in Web of Science and align that with the 775 species currently identified on the Working List of Exceptional Plants. While there is a good foundation in plant cryopreservation research, particularly with economically important species, there are significant gaps in research on families that contain the largest numbers of currently known exceptional species, including the Dipterocarpaceae, Rhizophoraceae, and Pittosporaceae. Even families well represented in both in the literature and on the List of Exceptional Plants had much less overlap at the level of genus. Tropical trees, a significant portion of exceptional species, were not as well represented in the literature as herbaceous species. Over 70% of all articles dealt with in vitro cryopreservation, with much less emphasis on other methods (seed, embryo, dormant bud, and pollen) that will be more cost-effective for species where they can be applied. While the research on plant cryopreservation to date provides a strong foundation and is being utilized effectively for conserving the diversity of a number of economically important species, this study revealed significant gaps that can help prioritize future research to more effectively conserve the diversity of threatened exceptional species. Full article
(This article belongs to the Special Issue Plant Cryobiotechnology: Progress and Prospects)
Show Figures

Figure 1

16 pages, 3986 KiB  
Article
Quantitative Analysis of Methodological and Environmental Influences on Survival of Planted Mangroves in Restoration and Afforestation
by Daniel Gorman, Mathew A. Vanderklift and Anna Lafratta
Forests 2022, 13(3), 404; https://doi.org/10.3390/f13030404 - 2 Mar 2022
Cited by 9 | Viewed by 5411
Abstract
Mangrove planting has been employed for decades to achieve aims associated with restoration and afforestation. Often, survival of planted mangroves is low. Improving survival might be aided by augmenting the understanding of which planting methods and environmental variables most influence plant survival across [...] Read more.
Mangrove planting has been employed for decades to achieve aims associated with restoration and afforestation. Often, survival of planted mangroves is low. Improving survival might be aided by augmenting the understanding of which planting methods and environmental variables most influence plant survival across a range of contexts. The aim of this study was to provide a global synthesis of the influence of planting methods and background environment on mangrove survival. This was achieved through a global meta-analysis, which compiled published survival rates for the period 1979–2021 and analyzed the influence of decisions about minimum spacing and which life stage to plant, and environmental contexts such as climate, tidal range and coastal setting on the reported survival of planted individuals, classified by species and root morphology. Generalized Additive Mixed Modeling (GAMM) revealed that planting larger mangrove saplings was associated with increased survival for pencil-rooted species such as Avicennia spp. and Sonneratia spp. (17% increase cf. seedlings), while greater plant spacing was associated with higher survival of stilt-rooted species in the family Rhizophoraceae (39% increase when doubling plant spacing from 1.5 to 3.0 m). Tidal range showed a nonlinear positive correlation with survival for pencil-rooted species, and the coastal environmental setting was associated with significant variation in survival for both pencil- and stilt-rooted species. The results suggest that improving decisions about which species to plant in different contexts, and intensive care after planting, is likely to improve the survival of planted mangroves. Full article
(This article belongs to the Special Issue Mangrove Wetland Restoration and Rehabilitation)
Show Figures

Figure 1

19 pages, 4841 KiB  
Article
Comparative Analysis and Phylogenetic Relationships of Ceriops Species (Rhizophoraceae) and Avicennia lanata (Acanthaceae): Insight into the Chloroplast Genome Evolution between Middle and Seaward Zones of Mangrove Forests
by Panthita Ruang-areerate, Thippawan Yoocha, Wasitthee Kongkachana, Phakamas Phetchawang, Chatree Maknual, Wijarn Meepol, Darunee Jiumjamrassil, Wirulda Pootakham and Sithichoke Tangphatsornruang
Biology 2022, 11(3), 383; https://doi.org/10.3390/biology11030383 - 28 Feb 2022
Cited by 17 | Viewed by 4758
Abstract
Ceriops and Avicennia are true mangroves in the middle and seaward zones of mangrove forests, respectively. The chloroplast genomes of Ceriops decandra, Ceriops zippeliana, and Ceriops tagal were assembled into lengths of 166,650, 166,083 and 164,432 bp, respectively, whereas Avicennia lanata [...] Read more.
Ceriops and Avicennia are true mangroves in the middle and seaward zones of mangrove forests, respectively. The chloroplast genomes of Ceriops decandra, Ceriops zippeliana, and Ceriops tagal were assembled into lengths of 166,650, 166,083 and 164,432 bp, respectively, whereas Avicennia lanata was 148,264 bp in length. The gene content and gene order are highly conserved among these species. The chloroplast genome contains 125 genes in A. lanata and 129 genes in Ceriops species. Three duplicate genes (rpl2, rpl23, and trnM-CAU) were found in the IR regions of the three Ceriops species, resulting in expansion of the IR regions. The rpl32 gene was lost in C. zippeliana, whereas the infA gene was present in A. lanata. Short repeats (<40 bp) and a lower number of SSRs were found in A. lanata but not in Ceriops species. The phylogenetic analysis supports that all Ceriops species are clustered in Rhizophoraceae and A. lanata is in Acanthaceae. In a search for genes under selective pressures of coastal environments, the rps7 gene was under positive selection compared with non-mangrove species. Finally, two specific primer sets were developed for species identification of the three Ceriops species. Thus, this finding provides insightful genetic information for evolutionary relationships and molecular markers in Ceriops and Avicennia species. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

15 pages, 1980 KiB  
Article
The First De Novo Transcriptome Assembly and Transcriptomic Dynamics of the Mangrove Tree Rhizophora stylosa Griff. (Rhizophoraceae)
by Matin Miryeganeh and Hidetoshi Saze
Int. J. Mol. Sci. 2021, 22(21), 11964; https://doi.org/10.3390/ijms222111964 - 4 Nov 2021
Cited by 9 | Viewed by 3110
Abstract
Mangroves are salt-tolerant plant species that grow in coastal saline water and are adapted to harsh environmental conditions. In this study, we de novo assembled and functionally annotated the transcriptome of Rhizophora stylosa, the widely distributed mangrove from the largest mangrove family [...] Read more.
Mangroves are salt-tolerant plant species that grow in coastal saline water and are adapted to harsh environmental conditions. In this study, we de novo assembled and functionally annotated the transcriptome of Rhizophora stylosa, the widely distributed mangrove from the largest mangrove family (Rhizophoraceae). The final transcriptome consists of 200,491 unigenes with an average length, and N50 of 912.7 and 1334 base pair, respectively. We then compared the genome-wide expression profiles between the two morphologically distinct natural populations of this species growing under different levels of salinity depending on their distance from the ocean. Among the 200,491 unigenes, 40,253 were identified as differentially expressed between the two populations, while 15,741 and 24,512 were up- and down-regulated, respectively. Functional annotation assigned thousands of upregulated genes in saline environment to the categories related to abiotic stresses such as response to salt-, osmotic-, and oxidative-stress. Validation of those genes may contribute to a better understanding of adaptation in mangroves species. This study reported, for the first time, the transcriptome of R. stylosa, and the dynamic of it in response to salt stress and provided a valuable resource for elucidation of the molecular mechanism underlying the salt stress response in mangroves and other plants that live under stress. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 8436 KiB  
Article
Evaluation of Antioxidant and Anticorrosive Activities of Ceriops tagal Plant Extract
by Md Shamsuzzaman, Kathirvel Kalaiselvi and Mayakrishnan Prabakaran
Appl. Sci. 2021, 11(21), 10150; https://doi.org/10.3390/app112110150 - 29 Oct 2021
Cited by 7 | Viewed by 3744
Abstract
Mangroves are plants known for their various medicinal and economical values, and therefore are widely investigated for their phytochemical, antioxidant, antidiarrheal, and antimicrobial activities. In the present study, we analyze the antioxidant and anticorrosive properties of Ceriops tagal (C. tagal), a [...] Read more.
Mangroves are plants known for their various medicinal and economical values, and therefore are widely investigated for their phytochemical, antioxidant, antidiarrheal, and antimicrobial activities. In the present study, we analyze the antioxidant and anticorrosive properties of Ceriops tagal (C. tagal), a tropical and subtropical mangrove plant of the Rhizophoraceae family. The total phenolic content (TPC) and total flavonoid content (TFC) were found to be 101.52 and 35.71 mg/g, respectively. The extract (100 µg/mL) exhibited 83.88, 85, and 87% antioxidant property against 1,1-diphenyl-2-picrylhydrazyl (DPPH), nitric oxide, and hydrogen peroxide free radicals. In addition, 600 ppm of C. tagal extract showed 95% corrosion inhibition against 1 M HCl attack on mild steel at 303 ± 1 K, which declined over other concentrations and temperatures, where AAS produced 82% inhibition at 600 ppm. UV-visible spectroscopy analysis revealed the formation of an inhibitor metal complex. The elemental analysis provided the presence of 84.21, 9.01, and 6.37% of Fe, O, and C, respectively, in inhibited mild steel, whereas the same were 71.54, 22.1, and 4.34%, respectively, in uninhibited specimen, stressing the presence of protective film on the metal surface. Scanning electron microscopy (SEM) also showed some noteworthy changes in both uninhibited and inhibited mild steel, making C. tagal plant a better alternative than any other synthetic inhibitors. Further, the atomic force microscopy (AFM) surface topography analysis showed that 600 ppm of C. tagal extract significantly diminished corrosion on the surface of mild steel. Full article
(This article belongs to the Special Issue Modern Materials and Methods of Mitigating Metal Corrosion)
Show Figures

Figure 1

22 pages, 2437 KiB  
Article
De Novo Transcriptome Assembly, Functional Annotation, and Transcriptome Dynamics Analyses Reveal Stress Tolerance Genes in Mangrove Tree (Bruguiera gymnorhiza)
by Matin Miryeganeh and Hidetoshi Saze
Int. J. Mol. Sci. 2021, 22(18), 9874; https://doi.org/10.3390/ijms22189874 - 13 Sep 2021
Cited by 8 | Viewed by 4269
Abstract
Their high adaptability to difficult coastal conditions makes mangrove trees a valuable resource and an interesting model system for understanding the molecular mechanisms underlying stress tolerance and adaptation of plants to the stressful environmental conditions. In this study, we used RNA sequencing (RNA-Seq) [...] Read more.
Their high adaptability to difficult coastal conditions makes mangrove trees a valuable resource and an interesting model system for understanding the molecular mechanisms underlying stress tolerance and adaptation of plants to the stressful environmental conditions. In this study, we used RNA sequencing (RNA-Seq) for de novo assembling and characterizing the Bruguiera gymnorhiza (L.) Lamk leaf transcriptome. B. gymnorhiza is one of the most widely distributed mangrove species from the biggest family of mangroves; Rhizophoraceae. The de novo assembly was followed by functional annotations and identification of individual transcripts and gene families that are involved in abiotic stress response. We then compared the genome-wide expression profiles between two populations of B. gymnorhiza, growing under different levels of stress, in their natural habitats. One population living in high salinity environment, in the shore of the Pacific Ocean- Japan, and the other population living about one kilometre farther from the ocean, and next to the estuary of a river; in less saline and more brackish condition. Many genes involved in response to salt and osmotic stress, showed elevated expression levels in trees growing next to the ocean in high salinity condition. Validation of these genes may contribute to future salt-resistance research in mangroves and other woody plants. Furthermore, the sequences and transcriptome data provided in this study are valuable scientific resources for future comparative transcriptome research in plants growing under stressful conditions. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop