Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = Reynoutria japonica

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 606 KB  
Article
Using an Invasive Plant (Japanese Knotweed) for Mycelium-Based Thermal Insulation Composites
by Kobe Deckx, Joris Verhelst and François Rineau
Materials 2026, 19(3), 468; https://doi.org/10.3390/ma19030468 (registering DOI) - 24 Jan 2026
Abstract
Mycelium-based composites (MBCs)—biomaterials made from fungal-inoculated substrates—are promising candidates to replace conventional rigid thermal insulation panels. However, many MBCs are made from hemp, a plant material that is quite difficult to source in many countries for regulation reasons, and mobilizes agricultural fields at [...] Read more.
Mycelium-based composites (MBCs)—biomaterials made from fungal-inoculated substrates—are promising candidates to replace conventional rigid thermal insulation panels. However, many MBCs are made from hemp, a plant material that is quite difficult to source in many countries for regulation reasons, and mobilizes agricultural fields at the expense of food and feed crops. Meanwhile, many of our natural and urban ecosystems are subject to invasion by plants that are just burnt or even left in place, while they may be very good substrate for MBCs. This study investigated the comparative physical and thermal properties of MBCs derived from two distinct lignocellulosic feedstocks: hemp shives (a traditional material) and biomass from the highly invasive species Reynoutria japonica. Polyisocyanurate (PIR) was included as a synthetic benchmark. The MBCs produced from R. japonica demonstrated as low a thermal conductivity as the hemp MBCs in our internally developed method, but also as the PIR standard. However, they exhibited suboptimal physical characteristics: higher bulk density (166 vs. 128 kg/m3 for hemp) and significantly higher water absorption (7.5% vs. 3.5% volume uptake after 2 min). This suggest that they are a less viable alternative to hemp-based MBCs for heat insulation applications. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Graphical abstract

23 pages, 1473 KB  
Article
Optimized Biogas Yield and Safe Digestate Valorization Through Intensified Anaerobic Digestion of Invasive Plant Biomass
by Zaineb Dhaouefi, Salma Taktek, François Bélanger, Pauline Fortin, Julie Charbonneau, Sébastien Lange and Habib Horchani
Energies 2025, 18(19), 5151; https://doi.org/10.3390/en18195151 - 28 Sep 2025
Cited by 2 | Viewed by 984
Abstract
Anaerobic digestion (AD) is an environmentally sustainable approach for managing invasive plants species, mitigating pollution, and generating renewable energy. However, the complex structure of these biomasses limits their biodegradability and necessitates pretreatment to enhance methane production. This study explored the biotransformation of two [...] Read more.
Anaerobic digestion (AD) is an environmentally sustainable approach for managing invasive plants species, mitigating pollution, and generating renewable energy. However, the complex structure of these biomasses limits their biodegradability and necessitates pretreatment to enhance methane production. This study explored the biotransformation of two invasive species, Reynoutria japonica and Phragmites australis, harvested across diverse phenological stages. Bioprocess intensification was achieved through a single-stage process using a hydrolytic–methanogenic consortium under thermophilic conditions (55 °C, 25 days). The impact of harvest timing distinct plant fractions (shoot vs. root) on biogas production was meticulously evaluated. Results revealed progressive biogas production. Notably, winter-harvested shoot fractions exhibited the highest methane-rich biogas, achieving 551.12 ± 33.07 mL/g VS for Reynoutria and 401.42 ± 24.09 mL/g VS for Phragmites. The resulting digestate demonstrates a rich composition of essential macronutrients (N-P-K) vital for plant growth, highlighting its potential as a valuable biofertilizer. Significantly, complete inhibition of seed germination was observed, confirming the process’s efficacy in preventing the further propagation of invasive species. This research underscores that thermophilic anaerobic digestion, coupled with hydrolytic treatment, is a significant advancement in the valorization of invasive biomasses, contributing to both renewable energy production and ecological recovery. Full article
Show Figures

Figure 1

24 pages, 4449 KB  
Article
Stabilizing the Baseline: Reference Gene Evaluation in Three Invasive Reynoutria Species
by Marta Stafiniak, Wojciech Makowski, Adam Matkowski and Monika Bielecka
Int. J. Mol. Sci. 2025, 26(17), 8265; https://doi.org/10.3390/ijms26178265 - 26 Aug 2025
Cited by 1 | Viewed by 836
Abstract
Accurate normalization is crucial for reliable gene expression quantification and depends on stably expressed housekeeping genes (HKGs) as internal controls. However, HKGs expression varies with developmental stage, tissue type, and treatments, potentially introducing bias and compromising data accuracy. Thus, validating candidate reference genes [...] Read more.
Accurate normalization is crucial for reliable gene expression quantification and depends on stably expressed housekeeping genes (HKGs) as internal controls. However, HKGs expression varies with developmental stage, tissue type, and treatments, potentially introducing bias and compromising data accuracy. Thus, validating candidate reference genes under defined conditions is essential. Reynoutria, also known as giant Asian knotweeds, is a Polygonaceae family genus of several medicinal plants producing a diverse array of specialized metabolites of pharmacological interest. Outside their native range, these plants are also noxious invasive weeds, causing significant environmental and economic threats. Research on stable reference genes in these species is limited, with a primary focus on R. japonica. To enable accurate gene expression analysis related to specialized metabolism and natural product biosynthesis, we aimed to identify the most stable reference genes across the most common species: R. japonica Houtt., R. sachalinensis (F. Schmidt) Nakai, and their hybrid—R. × bohemica Chrtek & Chrtková. In this study, we evaluated twelve candidate HKGs (ACT, TUA, TUB, GAPDH, EF-1γ, UBQ, UBC, 60SrRNA, eIF6A, SKD1, YLS8, and NDUFA13) across three tissue types (rhizomes, leaves, and flowers) from three Reynoutria species sampled at peak flowering. Primer specificity and amplification efficiency were confirmed through standard-curve analysis. We assessed expression stability using ΔCt, geNorm, NormFinder, and BestKeeper, and generated comprehensive rankings with RefFinder. Our integrated analysis revealed organ- and species-dependent stability differences, yet identified up to three reference genes suitable for interspecific normalization in Reynoutria. This represents the first systematic, comparative validation of HKGs across closely related knotweed species, providing a robust foundation for future transcriptomic and functional studies of their specialized metabolism and other biological processes. Full article
(This article belongs to the Special Issue Developing Methods and Molecular Basis in Plant Biotechnology)
Show Figures

Figure 1

23 pages, 3343 KB  
Article
Mucoadhesive PVA Film for Sustained Resveratrol Delivery: Formulation, Characterization, and Release Profile
by Arleta Dołowacka-Jóźwiak, Izabela Nawrot-Hadzik, Adam Matkowski, Tomasz Ciecieląg, Agnieszka Gawin-Mikołajewicz, Ruth Dudek-Wicher, Mirosława Prochoń, Dorota Markowska, Robert Adamski, Adrian Wiater and Bożena Lucyna Karolewicz
Molecules 2025, 30(12), 2642; https://doi.org/10.3390/molecules30122642 - 18 Jun 2025
Cited by 5 | Viewed by 1559
Abstract
This study aimed to develop and optimize polyvinyl alcohol (PVA)-based polymeric films containing resveratrol (RSV) and to evaluate their applicability as oral mucosal wound dressings. Given the dynamic and complex nature of the oral environment, physicochemical parameters such as elasticity, mucoadhesive strength, and [...] Read more.
This study aimed to develop and optimize polyvinyl alcohol (PVA)-based polymeric films containing resveratrol (RSV) and to evaluate their applicability as oral mucosal wound dressings. Given the dynamic and complex nature of the oral environment, physicochemical parameters such as elasticity, mucoadhesive strength, and the release profile of the RSV were systematically investigated. The therapeutic performance of pure resveratrol was compared with that of an extract derived from Reynoutria japonica. Films were fabricated using a solvent casting method and characterized in terms of thickness uniformity, weight, color consistency, and flexibility, all of which met the required pharmaceutical criteria. Two tested formulations, FR2 (RSV/PVA/PVP/MCA15C/NaCMC/W/PGE), FE2 (extract/PVA/PVP/MCA15C/NaCMC/W/PGE), showed the best mucoadhesive properties (261.11 ± 0.5 g for FR2 and 299.43 ± 0.38 g for FE2) and a favorable release profile both in water (72.42% for FR2, 77.23% for FE2) and in saliva (49.74% for FR2, 49.70% for FE2). Moreover, the optimized films are characterized by hydrophilicity (contact angle < 90°) and the pH value of the extract after their blurring is close to physiological, which promotes better tolerance and reduces the risk of irritation. Obtained results for polymeric films with resveratrol and R. japonica extract confirmed their great potential for use in dentistry as modern, mucoadhesive dressings, improving the effectiveness of local therapies. Full article
Show Figures

Figure 1

20 pages, 3540 KB  
Article
Chromatographic Analysis and Enzyme Inhibition Potential of Reynoutria japonica Houtt.: Computational Docking, ADME, Pharmacokinetic, and Toxicokinetic Analyses of the Major Compounds
by Tugsen Buyukyildirim, Fatma Sezer Senol Deniz, Osman Tugay, Ramin Ekhteiari Salmas, Onur Kenan Ulutas, Ibrahim Ayhan Aysal and Ilkay Erdogan Orhan
Pharmaceuticals 2025, 18(3), 408; https://doi.org/10.3390/ph18030408 - 14 Mar 2025
Cited by 2 | Viewed by 1686
Abstract
Background: Reynoutria japonica Houtt. has been used for inflammatory diseases, skin burns, and high cholesterol in traditional Chinese medicine, and the roots and rhizomes of the plant were registered in the Chinese Pharmacopoeia. This study evaluated the enzyme inhibitory activities of R. [...] Read more.
Background: Reynoutria japonica Houtt. has been used for inflammatory diseases, skin burns, and high cholesterol in traditional Chinese medicine, and the roots and rhizomes of the plant were registered in the Chinese Pharmacopoeia. This study evaluated the enzyme inhibitory activities of R. japonica extracts from Türkiye. Its major phytochemical content was elucidated, molecular interaction studies of the main compounds were conducted, and toxicokinetic predictions and absorption, distribution, metabolism, and elimination studies were performed with in silico methods. Methods: R. japonica extracts were tested for their enzyme inhibitory activities using an ELISA microplate reader. The phytochemical profile was elucidated by LC-MS QTOF. Docking and other in silico studies evaluated interactions of its main components with cholinesterase, collagenase, and elastase. Results: R. japonica exhibited significant cholinesterase inhibitory effectiveness, while the stem and root extracts showed moderate tyrosinase inhibition. R. japonica leaf (IC50 = 117.20 ± 4.84 g/mL) and flower extracts (IC50 = 111.40 ± 1.45 µg/mL) exhibited considerable elastase activity. R. japonica leaf (IC50 = 171.00 ± 6.76 g/mL) and root (IC50 = 160.00 ± 6.81 g/mL) extracts displayed similar and potent collagenase inhibition. In the LC-MS QTOF analysis, procyanidin dimer, catechin, piceid, torachrysone, and its glucoside isomers were identified as the major components and resveratrol as the minor component. Galloylglucose showed the strongest binding at cholinesterase via key hydrogen bonds, while emodin-6-glucoside and emodin formed stable interactions with elastase. Piceid displayed significant polar and water-mediated contacts with collagenase. These findings underscore the potential of these ligands as protein inhibitors. In silico predictions reveal that emodin possessed the most favorable drug-like properties but posed potential interaction risks. Conclusions: This research represents the first investigation of the bioactivity and phytochemistry of R. japonica grown and documented in 2020 in Türkiye. Our findings point out that R. japonica could be used for cosmetic purposes, and further studies on neurological disorders could be performed. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

18 pages, 2353 KB  
Article
Polyphenol Composition of Traditional Decoctions from Polygoni Cuspidati Rhizoma et Radix of Different Origin and Their Impact on Human Gingival Fibroblasts
by Izabela Nawrot-Hadzik, Magdalena Fast, Tomasz Gębarowski, Giorgio Zanoni, Stefan Martens, Adam Matkowski, Piotr Seweryn and Jakub Hadzik
Appl. Sci. 2025, 15(4), 1914; https://doi.org/10.3390/app15041914 - 12 Feb 2025
Cited by 1 | Viewed by 1693
Abstract
Polygoni cuspidati rhizoma et radix (rhizomes of Reynoutria japonica Houtt.) have a long tradition of use in traditional Chinese medicine confirmed by numerous contemporary studies. Our earlier results implied the potential use of decoction of this raw material in oral wound improvement. In [...] Read more.
Polygoni cuspidati rhizoma et radix (rhizomes of Reynoutria japonica Houtt.) have a long tradition of use in traditional Chinese medicine confirmed by numerous contemporary studies. Our earlier results implied the potential use of decoction of this raw material in oral wound improvement. In this study, we investigated Polygoni cuspidati rhizoma et radix traditionally prepared decoctions from European wildly growing plant (SC decoction; self-collected decoction) and from a pharmacopeial raw material (PH decoction) purchase from a certified pharmacy in Europe. We performed qualitative and quantitative phytochemical analysis and examined the effect of the decoctions and their major constituents on the viability of the human gingival fibroblast (HGF-1) cell line. The SC decoction caused a higher increase in cell viability in a wide range of concentrations 2.5–2000 µg/mL (from 100 µg/mL an increase of 35% and more, compared to control, at p ≤ 0.0001), while the decoction PH showed a statistically significant increase only at a concentration of 100 µg/mL (an increase of 24% compared to control, at p ≤ 0.001). Moreover, the PH decoction showed cytotoxic activity towards HGF-1 at higher concentrations (≥500 μg/mL), which was not observed in the SC decoction. Substantial differences in the chemical composition between the two decoctions were also observed. The SC decoction contained significantly more flavan-3-ols and procyanidin dimers and less stilbenes and anthraquinones than the PH decoction. For example, SC contained about 9 times more epicatechin and 3 times more catechin, as well as 4.5 times more procyanidin B1 and 9 times more procyanidin B2 and B4 than the PH decoction but about 7.5 times less resveratrol and 4 times less emodin. We concluded that the high content of flavan-3-ols and procyanidins with low cytotoxic potential towards HGF-1, as well as the correspondingly low content of some anthraquinones, had a beneficial effect on the activity of the SC decoction. Full article
Show Figures

Figure 1

13 pages, 2162 KB  
Article
Ellagic Acid from Geranium thunbergii and Antimalarial Activity of Korean Medicinal Plants
by Hojong Jun, Joon-Hee Han, Min Hong, Fadhila Fitriana, Jadidan Hada Syahada, Wang-Jong Lee, Ernest Mazigo, Johnsy Mary Louis, Van-Truong Nguyen, Seok Ho Cha, Wanjoo Chun, Won Sun Park, Se Jin Lee, Sunghun Na, Soo-Ung Lee, Eun-Taek Han, Tae-Hyung Kwon and Jin-Hee Han
Molecules 2025, 30(2), 359; https://doi.org/10.3390/molecules30020359 - 17 Jan 2025
Cited by 5 | Viewed by 2397
Abstract
This study investigates the antimalarial potential of extracts and compounds from various plants used in traditional Korean medicine, in response to the increasing resistance of Plasmodium falciparum to standard treatments such as chloroquine and artemisinin. The antimalarial activity screening was conducted on 151 [...] Read more.
This study investigates the antimalarial potential of extracts and compounds from various plants used in traditional Korean medicine, in response to the increasing resistance of Plasmodium falciparum to standard treatments such as chloroquine and artemisinin. The antimalarial activity screening was conducted on 151 extracts, identifying the top seven candidates, including Geranium thunbergii (50% ethanol and 100% methanol extract), Reynoutria japonica, Amomum villosum (hot water and 50% ethanol extract), Cinnamomum zeylanicum, and Platycodon grandiflorum. Among these, G. thunbergii was identified as the top priority for further analysis due to its high antimalarial activity and high yield of bioactive compounds. The plant extracts were fractionated using ethyl acetate, chloroform, and hot water, and their efficacy against P. falciparum was evaluated through IC50 determination and microscopic analysis. The compounds evaluated included ellagic acid, gallic acid, afzelin, quercetin, and protocatechuic acid. Among the tested compounds, ellagic acid showed the most potent antimalarial activity with an IC50 of 1.60 ± 0.09 µM, followed by gallic acid (39.43 ± 1.48 µM) and afzelin (52.77 ± 1.84 µM). In contrast, quercetin (116.8 ± 3.78 µM) and protocatechuic acid (1.23 ± 0.02 mM) exhibited minimal antimalarial effects. Giemsa staining was employed to visualize parasite morphology and confirmed that ellagic acid is effective in inhibiting growth at the late trophozoite stage. These findings suggest that ellagic acid could serve as a promising lead compound for developing a novel antimalarial agent. This study highlights the importance of exploring plant-based compounds as alternative strategies against drug-resistant malaria. Further investigation into the mechanisms underlying the antimalarial activity of these compounds is necessary to fully validate their therapeutic potential. Full article
(This article belongs to the Special Issue Cutting-Edge Progress in Natural Product-Derived Antimicrobial Drugs)
Show Figures

Figure 1

19 pages, 3239 KB  
Article
Reynoutria japonica Houtt. Transformed Hairy Root Cultures as an Effective Platform for Producing Phenolic Compounds with Strong Bactericidal Properties
by Wojciech Makowski, Aleksandra Królicka, Krzysztof Hinc, Agnieszka Szopa, Paweł Kubica, Julia Sroka, Barbara Tokarz and Krzysztof Michał Tokarz
Int. J. Mol. Sci. 2025, 26(1), 362; https://doi.org/10.3390/ijms26010362 - 3 Jan 2025
Cited by 1 | Viewed by 2448
Abstract
Reynoutria japonica Houtt. is the source of various phenolic compounds: phenolic acids, flawan-3-ols, and stilbenes, with a broad range of biological activity. The rhizome (underground organ of these plants) is abundant in secondary metabolites but, in natural conditions, may accumulate various toxic substances [...] Read more.
Reynoutria japonica Houtt. is the source of various phenolic compounds: phenolic acids, flawan-3-ols, and stilbenes, with a broad range of biological activity. The rhizome (underground organ of these plants) is abundant in secondary metabolites but, in natural conditions, may accumulate various toxic substances (such as heavy metals) from the soil. The principal objective of this research was to produce transformed cultures of R. japonica hairy roots that would serve as a valuable source of phenolic compounds, independent of environmental resources. The transformation was performed using a variety of wild strains of Rhizobium rhizogenes bacteria, of which only strain A4 (ATCC 31798) proved effective. The molecular characterization of transformed clones was performed using PCR. The biometric parameters (growth index and dry weight content), phenolic compounds accumulation (DAD-HPLC), antioxidant capacity (DPPH, CUPRAC), and bactericidal properties against Staphylococcus aureus with various sensitivity to antibiotics were evaluated. Two obtained transformed clones (RJ 9 and 30) exhibited the incorporation of the entire bacterial T-DNA into genomic DNA, while clones RJ 10 and 11 demonstrated only the presence of the LT-DNA sequence. The results demonstrated an increase in flawan-3-ols (catechins) accumulation in hairy root tissue relative to non-transformed (NT) plants. Moreover, hairy roots exhibited enhanced antioxidant activity and bactericidal properties compared with NT roots and NT shoots, respectively. Full article
(This article belongs to the Special Issue Developing Methods and Molecular Basis in Plant Biotechnology)
Show Figures

Figure 1

21 pages, 3260 KB  
Article
Optimization of Cellulose Derivative-, PVA-, and PVP-Based Films with Reynoutria japonica Extract to Improve Periodontal Disease Treatment
by Arleta Dołowacka-Jóźwiak, Izabela Nawrot-Hadzik, Adam Matkowski, Piotr Nowakowski, Ruth Dudek-Wicher, Dorota Markowska, Robert Adamski, Dorota Krzyżanowska-Gołąb and Bożena Karolewicz
Materials 2024, 17(24), 6205; https://doi.org/10.3390/ma17246205 - 19 Dec 2024
Cited by 1 | Viewed by 1494
Abstract
The aim of this study was to develop and optimize polymeric films based on cellulose derivatives—hydroxypropylmethylcellulose (HPMC), methylcellulose (MC), and sodium carboxymethylcellulose (NaCMC)—as well as pullulan, polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), and glycerol (GLY) as plasticizer incorporating Reynoutria japonica extract for potential use [...] Read more.
The aim of this study was to develop and optimize polymeric films based on cellulose derivatives—hydroxypropylmethylcellulose (HPMC), methylcellulose (MC), and sodium carboxymethylcellulose (NaCMC)—as well as pullulan, polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), and glycerol (GLY) as plasticizer incorporating Reynoutria japonica extract for potential use in periodontal and gum disease treatment. Over 80 formulations were fabricated using the solvent-casting method, 6 of which were selected for further investigation based on their mechanical properties, mucoadhesion, and disintegration profiles, including three placebo films (OP1 (PVA/PVP/MC400CP/NaCMC/GLY), OP2 (PVA/PVP/MCA15C/NaCMC/GLY), and OP3 (PVA/PVP/HPMC/NaCMC/GLY)) and three films containing R. japonica extract (OW1, OW2, and OW3). The films demonstrated uniform structural characteristics, with the formulations containing PVA with a high hydrolysis degree (98–99%) and methylcellulose derivatives showing prolonged dissolution times due to physical cross-linking, while the inclusion of NaCMC reduced dissolution time without compromising mucoadhesiveness. The study also described the release kinetics of resveratrol and piceid from the OW2 films using three semi-empirical models: the Korsmeyer–Peppas model, a first-order kinetic model, and a multidimensional approach. The multidimensional model demonstrated a strong fit, with a correlation coefficient (R2) of 0.909 for resveratrol, compared to 0.894 and 0.908 for the Korsmeyer–Peppas and first-order models, respectively. For piceid, the multidimensional model showed a correlation coefficient (R2) of 0.958, outperforming the Korsmeyer–Peppas (0.823) and first-order models (0.932). The active compounds released in sustained-release tests, including resveratrol and piceid, suggest that these films could provide an extended therapeutic effect. Full article
(This article belongs to the Special Issue Advanced Materials for Oral Application (3rd Edition))
Show Figures

Graphical abstract

15 pages, 3322 KB  
Article
Insights into the Genomic Background of Nine Common Chinese Medicinal Plants by Flow Cytometry and Genome Survey
by Chang An, Denglin Li, Lin Lu, Chaojia Liu, Xiaowen Xu, Shiyu Xie, Jing Wang, Ruoyu Liu, Chengzi Yang, Yuan Qin and Ping Zheng
Plants 2024, 13(24), 3536; https://doi.org/10.3390/plants13243536 - 18 Dec 2024
Viewed by 2947
Abstract
Medicinal plants have long played a crucial role in healthcare systems, but limited genomic information on these species has impeded the integration of modern biological technologies into medicinal plant research. In this study, we selected nine common medicinal plants, each belonging to a [...] Read more.
Medicinal plants have long played a crucial role in healthcare systems, but limited genomic information on these species has impeded the integration of modern biological technologies into medicinal plant research. In this study, we selected nine common medicinal plants, each belonging to a different plant family, including Sarcandra glabra (Chloranthaceae), Nekemias grossedentata (Vitaceae), Uraria crinita (Fabaceae), Gynostemma pentaphyllum (Cucurbitaceae), Reynoutria japonica (Polygonaceae), Pseudostellaria heterophylla (Caryophyllaceae), Morinda officinalis (Rubiaceae), Vitex rotundifolia (Lamiaceae), and Gynura formosana (Asteraceae), to estimate their genome sizes and conduct preliminary genomic surveys. The estimated genome sizes by flow cytometry were 3.66 Gb, 0.65 Gb, 0.58 Gb, 1.02 Gb, 3.96 Gb, 2.99 Gb, 0.43 Gb, 0.78 Gb, and 7.27 Gb, respectively. The genome sizes of M. officinalis, R. japonica, and G. pentaphyllum have been previously reported. Comparative analyses suggest that variations in genome size may arise due to differences in measurement methods and sample sources. Therefore, employing multiple approaches to assess genome size is necessary to provide more reliable information for further genomic research. Based on the genome survey, species with considerable genome size variation or polyploidy, such as G. pentaphyllum, should undergo a ploidy analysis in conjunction with population genomics studies to elucidate the development of the diversified genome size. Additionally, a genome survey of U. crinita, a medicinal plant with a relatively small genome size (509.08 Mb) and of considerable interest in southern China, revealed a low heterozygosity rate (0.382%) and moderate repeat content (51.24%). Given the limited research costs, this species represents a suitable candidate for further genomic studies on Leguminous medicinal plants characteristic of southern China. This foundational genomic information will serve as a critical reference for the sustainable development and utilization of these medicinal plants. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

13 pages, 2279 KB  
Article
Foliar Application of Nettle and Japanese Knotweed Extracts on Vitis vinifera: Consequences for Plant Physiology, Biochemical Parameters, and Yield
by Eliana Monteiro, Sofia Correia, Miguel Baltazar, Sandra Pereira, Helena Ferreira, Radek Bragança, Isabel Cortez, Isaura Castro and Berta Gonçalves
Horticulturae 2024, 10(12), 1275; https://doi.org/10.3390/horticulturae10121275 - 30 Nov 2024
Cited by 3 | Viewed by 1457
Abstract
Climate change is expected to affect grapevine physiology, berry quality, and yield in the Douro Demarcated Region (DDR). In this study, nettle (NE) and Japanese knotweed (JKE) extracts were tested to verify their biostimulant effect on the physiological and biochemical parameters of grapevine [...] Read more.
Climate change is expected to affect grapevine physiology, berry quality, and yield in the Douro Demarcated Region (DDR). In this study, nettle (NE) and Japanese knotweed (JKE) extracts were tested to verify their biostimulant effect on the physiological and biochemical parameters of grapevine leaves and in vine yields. In fact, some parameters were improved after foliar application of the plant extracts, namely the photosynthetic activity and consequently, the levels of photosynthetic pigments (Clb), starch, and total soluble sugars. We also observed a reduction in lipid peroxidation, which could play a crucial role in protecting cell membranes from oxidative damage induced by the climatic conditions prevalent in this region. Therefore, we confirmed that the foliar application of plant extracts, along with the enhancement of secondary metabolites and the upregulation of plant defense genes, as previously reported, resulted in the enhancement of grapevine physiology, while also increasing the yield at harvest. In the future, these plant extracts could serve as a vital tool for winegrowers in mitigating the effects of expected changes in climatic conditions. Full article
Show Figures

Figure 1

16 pages, 1842 KB  
Article
Analysis of Phenolic Compounds of Reynoutria sachalinensis and Reynoutria japonica Growing in the Russian Far East
by Andrey R. Suprun, Konstantin V. Kiselev, Olga A. Aleynova, Artem Yu. Manyakhin and Alexey A. Ananev
Plants 2024, 13(23), 3330; https://doi.org/10.3390/plants13233330 - 27 Nov 2024
Cited by 1 | Viewed by 2878
Abstract
The Russian Far East is a region of unique biodiversity, with numerous plant species, including Reynoutria japonica and Reynoutria sachalinensis. These plants are considered a serious threat to biodiversity and are classified as threatened species. However, Reynoutria plants synthesize and accumulate a [...] Read more.
The Russian Far East is a region of unique biodiversity, with numerous plant species, including Reynoutria japonica and Reynoutria sachalinensis. These plants are considered a serious threat to biodiversity and are classified as threatened species. However, Reynoutria plants synthesize and accumulate a variety of metabolites that are valued for their positive effects on human health. The main objective of this study is to quantitatively and qualitatively evaluate the content of secondary metabolites in different parts of R. japonica and R. sachalinensis plants. In this study, the results of phylogenetic analysis of the ITS2, matK, and rps16 genes showed that samples collected in the Sakhalin region were closest to R. sachalinensis, while samples collected in Primorsky krai were closer to R. japonica. The high-performance chromatography and mass spectrometry (HPLC-MS/MS) method was used to identify the compounds. As a result of the identification of metabolites in the leaves, stem, and roots of R. japonica and R. sachalinensis, we showed the presence of a total of 31 compounds, including stilbenes, phenolic acids, flavan-3-ols, flavones and flavonols, naphthalene derivatives, anthraquinones and derivatives, and phenylpropanoid disaccharide esters. The root of R. japonica was shown to be a rich source of stilbenes (up to 229.17 mg/g DW), which was 8.5 times higher than that of R. sachalinensis root (up to 27.04 mg/g DW). The root also contained high amounts of emodin derivatives and vanicoside B. Quercetin and its derivatives were the major metabolites in the leaves and stems of both Reynoutria species. In R. japonica leaves, quercetin-3-O-pentoside was the major compound, reaching a total of 7 mg/g DW, accounting for 34% of all compounds analyzed. In contrast, in R. sachalinensis leaves, quercitrin was the major compound (up to 13.96 mg/g DW), accounting for 62% of all compounds and 12.7 times higher than in R. japonica leaves. In turn, R. japonica leaves also contained high amounts of phenolic acids (up to 10 mg/g DW). Thus, the obtained results showed significant differences in the qualitative and quantitative composition of metabolites between R. japonica and R. sachalinensis plants. Additionally, in this work, a cell culture of R. japonica was obtained and tested for its ability to synthesize and accumulate stilbenes. Full article
(This article belongs to the Special Issue Secondary Metabolites in Plants)
Show Figures

Figure 1

21 pages, 4856 KB  
Article
Inhibitory Effects of Reynoutria japonica Houtt. on Pain and Cartilage Breakdown in Osteoarthritis Based on Its Multifaceted Anti-Inflammatory Activity: An In Vivo and In Vitro Approach
by Hee-Geun Jo, Chae Yun Baek, Juni Lee, Yeseul Hwang, Eunhye Baek, Aejin Song, Ho Sueb Song and Donghun Lee
Int. J. Mol. Sci. 2024, 25(19), 10647; https://doi.org/10.3390/ijms251910647 - 3 Oct 2024
Cited by 1 | Viewed by 2305
Abstract
In the past 30 years, the number of years lived with disability due to osteoarthritis (OA) has doubled, making it an increasing global health burden. To address this issue, interventions that inhibit the progressive pathology driven by age-related low-grade inflammation, the primary mechanism [...] Read more.
In the past 30 years, the number of years lived with disability due to osteoarthritis (OA) has doubled, making it an increasing global health burden. To address this issue, interventions that inhibit the progressive pathology driven by age-related low-grade inflammation, the primary mechanism of OA, are being actively pursued. Recent investigations have focused on modulating the age-related low-grade inflammatory pathology of this disease as a therapeutic target. However, no agent has successfully halted the disease’s progression or reversed its irreversible course. Reynoutria japonica Houtt. (RJ), a promising East Asian herbal medicine, has been utilized for several diseases due to its potent anti-inflammatory activity. This study aims to determine RJ’s capacity to inhibit OA symptoms and associated inflammation, exploring its potential for further development. In vivo and in vitro experiments demonstrated RJ’s anti-OA activity and modulation of multifaceted inflammatory targets. RJ significantly inhibited pain, gait deterioration, and cartilage destruction in a monosodium iodoacetate-induced OA rat model, with its analgesic effect further confirmed in an acetic acid-induced writhing model. RJ exhibited consistent anti-inflammatory activity against multiple targets in serum and cartilage of the OA rat model and lipopolysaccharide-induced RAW 264.7 cells. The inhibition of inflammatory cytokines, including interleukin-1β, interleukin-6, matrix metalloproteinase-13, tumor necrosis factor-α, and nitric oxide synthase 2, suggests that RJ’s alleviation of OA manifestations relates to its multifaceted anti-inflammatory activity. These results indicate that RJ merits further investigation as a disease-modifying drug candidate targeting OA’s inflammatory pathology. To further characterize the pharmacological properties of RJ, future studies with expanded designs are warranted. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapeutic Strategies of Inflammatory Pain)
Show Figures

Figure 1

20 pages, 6351 KB  
Article
Endophytic Bacteria and Fungi Associated with Polygonum cuspidatum in the Russian Far East
by Olga A. Aleynova, Alexey A. Ananev, Nikolay N. Nityagovsky, Andrey R. Suprun, Nursaule Zh. Zhanbyrshina, Alina A. Beresh, Zlata V. Ogneva, Alexey P. Tyunin and Konstantin V. Kiselev
Plants 2024, 13(18), 2618; https://doi.org/10.3390/plants13182618 - 19 Sep 2024
Cited by 2 | Viewed by 1712
Abstract
Polygonum cuspidatum, alternatively known as Fallopia japonica or Reynoutria japonica, is a perennial herb belonging to the Polygonaceae family. Commonly called Japanese knotweed or Asian knotweed, this plant is native to East Asia, particularly in regions such as Korea, China, and [...] Read more.
Polygonum cuspidatum, alternatively known as Fallopia japonica or Reynoutria japonica, is a perennial herb belonging to the Polygonaceae family. Commonly called Japanese knotweed or Asian knotweed, this plant is native to East Asia, particularly in regions such as Korea, China, and Japan. It has successfully adapted to a wide range of habitats, resulting in it being listed as a pest and invasive species in several countries in North America and Europe. This study focuses on analysing the composition of the bacterial and fungal endophytic communities associated with Japanese knotweed growing in the Russian Far East, employing next-generation sequencing (NGS) and a cultivation-based method (microbiological sowing). The NGS analysis showed that the dominant classes of endophytic bacteria were Alphaproteobacteria (28%) and Gammaproteobacteria (28%), Actinobacteria (20%), Bacteroidia (15%), and Bacilli (4%), and fungal classes were Agaricomycetes (40%), Dothideomycetes (24%), Leotiomycetes (10%), Tremellomycetes (9%), Pezizomycetes (5%), Sordariomycetes (3%), and Exobasidiomycetes (3%). The most common genera of endophytic bacteria were Burkholderia-Caballeronia-Parabukholderia, Sphingomonas, Hydrotalea, Methylobacterium-Metylorubrum, Cutibacterium, and Comamonadaceae, and genera of fungal endophytes were Marasmius, Tuber, Microcyclosporella, Schizothyrium, Alternaria, Parastagonospora, Vishniacozyma, and Cladosporium. The present data showed that the roots, leaves, and stems of P. cuspidatum have a greater number and diversity of endophytic bacteria and fungi compared to the flowers and seeds. Thus, the biodiversity of endophytic bacteria and fungi of P. cuspidatum was described and analysed for the first time in this study. Full article
(This article belongs to the Special Issue Plant-Microbiome Interactions)
Show Figures

Figure 1

29 pages, 3473 KB  
Article
Preliminary Identification and Quantification of Individual Polyphenols in Fallopia japonica Plants and Honey and Their Influence on Antimicrobial and Antibiofilm Activities
by Alexandra-Antonia Cucu, Adriana Cristina Urcan, Otilia Bobiș, Victorița Bonta, Mihaiela Cornea-Cipcigan, Adela Ramona Moise, Ștefan Dezsi, Claudia Pașca, Gabriela-Maria Baci and Daniel Severus Dezmirean
Plants 2024, 13(13), 1883; https://doi.org/10.3390/plants13131883 - 8 Jul 2024
Cited by 5 | Viewed by 2759
Abstract
Fallopia japonica (FJ), an invasive plant species known for its rich bioactive compounds, has been used for centuries in traditional Chinese medicine. Despite its significant beekeeping potential, this aspect of FJ remains underexplored. This research aims to investigate the antimicrobial and antibiofilm properties [...] Read more.
Fallopia japonica (FJ), an invasive plant species known for its rich bioactive compounds, has been used for centuries in traditional Chinese medicine. Despite its significant beekeeping potential, this aspect of FJ remains underexplored. This research aims to investigate the antimicrobial and antibiofilm properties of FJ plants and honey. Notably, this study is the first to identify individual phenolic compounds in both FJ plant tissues and FJ honey, highlighting resveratrol as a marker of FJ honey. The study tested inhibitory activity against seven bacterial strains: Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, Salmonella enteritidis, and the yeast Candida albicans. Disk diffusion and microdilution methods were used to assess antimicrobial activity, while the crystal violet staining test evaluated antibiofilm activity. Results showed that FJ plant tissues and honey exhibited strong inhibition, particularly against Gram-negative bacterial strains. The most significant inhibition of biofilm formation, by both FJ plant tissues and honey, was observed against Staphylococcus aureus and Escherichia coli. A significant positive correlation was found between antimicrobial activity and individual polyphenols, especially resveratrol. The antibacterial and antibiofilm potential of FJ plant tissues and honey suggests promising applications in sustainable beekeeping. Further research is necessary to evaluate the bioactive compounds found in FJ honey and their health effects. Full article
(This article belongs to the Special Issue Advances in Functional Food Products Derived from Plant)
Show Figures

Figure 1

Back to TopTop