Preliminary Identification and Quantification of Individual Polyphenols in Fallopia japonica Plants and Honey and Their Influence on Antimicrobial and Antibiofilm Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant and Honey Collection and Preparation
2.2. Determination of Phenolic Compounds Using HPLC-PDA Method
2.3. Antimicrobial Activity
2.3.1. Disk Diffusion Method
2.3.2. Determination of the Minimum Inhibitory Concentrations (MICs)
2.4. Antibiofilm Activity
2.5. Statistical Analysis
3. Results
3.1. Screening and Quantification of Phenolic Compounds Found in FJ Plant Tissues Using HPLC–PDA
3.2. Screening and Quantification of Phenolic Compounds Found in FJH Using HPLC-PDA
3.3. Antibacterial Activity
3.3.1. Inhibition Zones of FJ Plant Extracts against Different Microorganisms
3.3.2. Inhibition Zones of FJH Extracts against Different Microorganisms
3.3.3. Minimum Inhibitory Concentration (MIC) (µg/mL) of FJ Plant Extracts against Different Microorganisms
3.3.4. Minimum Inhibitory Concentration (MIC) (µg/mL) of FJH Extracts against Different Microorganisms
3.4. Antibiofilm Activity
3.4.1. Biofilm Eradication after Treatment with Various Concentrations of FJ Plant Extracts
3.4.2. Percentages of Biofilm Eradication after Treatment with Various Concentrations of FJH
3.5. Multivariate Statistics
4. Discussion
4.1. Phenolic Compounds Found in FJ Plant and Honey
4.2. Antimicrobial Effect of FJ Plant and Honey
4.3. Antibiofilm Activity of FJ Plant and Honey
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mena, P.; Angelino, D. Plant Food, Nutrition, and Human Health. Nutrients 2020, 12, 2157. [Google Scholar] [CrossRef] [PubMed]
- Criste, A.; Urcan, A.C.; Bunea, A.; Furtuna, F.R.P.; Olah, N.K.; Madden, R.H.; Corcionivoschi, N. Phytochemical Composition and Biological Activity of Berries and Leaves from Four Romanian Sea Buckthorn (Hippophae rhamnoides L.) Varieties. Molecules 2020, 25, 1170. [Google Scholar] [CrossRef]
- Parham, S.; Kharazi, A.Z.; Bakhsheshi-Rad, H.R.; Nur, H.; Ismail, A.F.; Sharif, S.; RamaKrishna, S.; Berto, F. Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials. Antioxidants 2020, 9, 1309. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, S. Honey in Medicine: A Review Short History of Honey in Medicine. Available online: www.apitherapy.com (accessed on 25 May 2024).
- Cucu, A.-A.; Baci, G.-M.; Moise, A.R.; Dezsi, Ş.; Marc, B.-D.; Stângaciu, Ş.; Dezmirean, D.S. Towards a Better Understanding of Nutritional and Therapeutic Effects of Honey and Their Applications in Apitherapy. Appl. Sci. 2021, 11, 4190. [Google Scholar] [CrossRef]
- Atazadegan, M.A.; Bagherniya, M.; Askari, G.; Tasbandi, A.; Sahebkar, A. The Effects of Medicinal Plants and Bioactive Natural Compounds on Homocysteine. Molecules 2021, 26, 3081. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.T.; Lu, P.; Parrella, J.A.; Leggette, H.R. Consumer Acceptance toward Functional Foods: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 1217. [Google Scholar] [CrossRef] [PubMed]
- Zafar, M.; Latafat, T.; Zehra, A.; Farooqui, Y. Therapeutic Properties of Honey: A Review of Literature. Res. Rev. A J. Pharmacol. 2020, 10, 41–49. [Google Scholar]
- Papadaki, A.; Kachrimanidou, V.; Lappa, I.K.; Eriotou, E.; Sidirokastritis, N.; Kampioti, A.; Kopsahelis, N. Mediterranean Raisins/Currants as Traditional Superfoods: Processing, Health Benefits, Food Applications and Future Trends within the Bio-Economy Era. Appl. Sci. 2021, 11, 1605. [Google Scholar] [CrossRef]
- Sainz-Hernández, J.C.; Rueda-Puente, E.O.; Cornejo-Ramírez, Y.I.; Bernal-Mercado, A.T.; González-Ocampo, H.A.; López-Corona, B.E. Biological Application of the Allopathic Characteristics of the Genus Maclura: A Review. Plants 2023, 12, 3480. [Google Scholar] [CrossRef]
- Hepper, F.N.; Tutin, T.G. Flora Europaea Vol. 3 Diapensiaceae to Myoporaceae. Kew Bull. 1973, 28, 541. [Google Scholar] [CrossRef]
- Peng, W.; Qin, R.; Li, X.; Zhou, H. Botany, Phytochemistry, Pharmacology, and Potential Application of Polygonum cuspidatum Sieb.et Zucc.: A Review. J. Ethnopharmacol. 2013, 148, 729–745. [Google Scholar] [CrossRef]
- Kim, Y.S.; Hwang, C.S.; Shin, D.H. Volatile Constituents from the Leaves of Polygonum cuspidatum. and Their Anti-Bacterial Activities. Food Microbiol. 2005, 22, 139–144. [Google Scholar] [CrossRef]
- Drazan, D.; Smith, A.G.; Anderson, N.O.; Becker, R.; Clark, M. History of Knotweed (Fallopia spp.) Invasiveness. Weed Sci. 2021, 69, 617–623. [Google Scholar] [CrossRef]
- Nentwig, W.; Bacher, S.; Kumschick, S.; Pyšek, P.; Vilà, M. More than “100 Worst” Alien Species in Europe. Biol. Invasions 2018, 20, 1611–1621. [Google Scholar] [CrossRef]
- Barney, J.N.; Tharayil, N.; Di Tommaso, A.; Bhowmik, P.C. The Biology of Invasive Alien Plants in Canada. 5. Polygonum Cuspidatum Sieb. & Zucc. [=Fallopia Japonica (Houtt.) Ronse Decr.]. Can. J. Plant Sci. 2006, 86, 887–906.17. [Google Scholar]
- Gazoulis, I.; Antonopoulos, N.; Kanatas, P.; Karavas, N.; Bertoncelj, I.; Travlos, I. Invasive Alien Plant Species—Raising Awareness of a Threat to Biodiversity and Ecological Connectivity (EC) in the Adriatic-Ionian Region. Diversity 2022, 14, 387. [Google Scholar] [CrossRef]
- Mandák, B.; Pyšek, P.; Bímová, K. History of the invasion and distribution of Reynoutria taxa in the Czech Republic: A hybrid spreading faster than its parents. Preslia 2004, 76, 15–64. [Google Scholar]
- Su, P.W.; Yang, C.H.; Yang, J.F.; Su, P.Y.; Chuang, L.Y. Antibacterial Activities and Antibacterial Mechanism of Polygonum cuspidatum Extracts against Nosocomial Drug-Resistant Pathogens. Molecules 2015, 20, 11119–11130. [Google Scholar] [CrossRef]
- Buhk, C.; Thielsch, A. Perspectives in Plant Ecology, Evolution and Systematics Hybridisation Boosts the Invasion of an Alien Species Complex: Insights into Future Invasiveness. Perspect. Plant Ecol. Evol. Syst. 2015, 17, 274–283. [Google Scholar] [CrossRef]
- Cucu, A.-A.; Pașca, C.; Cucu, A.-B.; Moise, A.R.; Bobiş, O.; Dezsi, Ș.; Blaga Petrean, A.; Dezmirean, D.S. Evaluation of the Main Macro-, Micro- and Trace Elements Found in Fallopia japonica Plants and Their Traceability in Its Honey: A Case Study from the Northwestern and Western Part of Romania. Plants 2024, 13, 428. [Google Scholar] [CrossRef]
- Bailey, J.P.; Bímová, K.; Mandák, B. Asexual Spread versus Sexual Reproduction and Evolution in Japanese knotweed Sets the Stage for the “Battle of the Clones”. Biol. Invasions 2009, 11, 1189–1203. [Google Scholar] [CrossRef]
- Hollingsworth, M.L.; Bailey, J.P. Evidence for Massive Clonal Growth in the Invasive Weed Fallopia japonica (Japanese knotweed). Bot. J. Linn. Soc. 2000, 133, 463–472. [Google Scholar] [CrossRef]
- Sołtysiak, J. Heavy Metals Tolerance in an Invasive Weed (Fallopia japonica) under Different Levels of Soils Contamination. J. Ecol. Eng. 2020, 21, 81–91. [Google Scholar] [CrossRef]
- Dassonville, N.; Vanderhoeven, S.; Gruber, W.; Meerts, P. Invasion by Fallopia japonica Increases Topsoil Mineral Nutrient Concentrations. Ecoscience 2007, 14, 230–240. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Allelopathy of Knotweeds as Invasive Plants. Plants 2022, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, A.G.; Alpert, P.; Dukes, J.S.; Harrington, R. Impacts of the Invasive Plant Fallopia japonica (Houtt.) on Plant Communities and Ecosystem Processes. Biol. Invasions 2010, 12, 1243–1252. [Google Scholar] [CrossRef]
- Maurel, N.; Salmon, S.; Ponge, J.F.; Machon, N.; Moret, J.; Muratet, A. Does the Invasive Species Reynoutria japonica Have an Impact on Soil and Flora in Urban Wastelands? Biol. Invasions 2010, 12, 1709–1719. [Google Scholar] [CrossRef]
- Rouleau, G.; Bouchard, M.; Matte, R.; Lavoie, C. Effectiveness and Cost of a Rapid Response Campaign against Japanese knotweed (Reynoutria japonica) along a Canadian River. Invasive Plant Sci. Manag. 2023, 16, 124–129. [Google Scholar] [CrossRef]
- Diagne, C.; Leroy, B.; Vaissière, A.; Gozlan, R.E.; Roiz, D.; Jarić, I.; Salles, J.; Bradshaw, C.J.A.; Courchamp, F. High and Rising Economic Costs of Biological Invasions Worldwide. Nature 2021, 592, 571–576. [Google Scholar] [CrossRef]
- Bartz, R.; Kowarik, I. Assessing the Environmental Impacts of Invasive Alien Plants: A Review of Assessment Approaches. NeoBiota 2019, 43, 69–99. [Google Scholar] [CrossRef]
- Rouifed, S.; Cottet, M.; de Battista, M.; Le Lay, Y.F.; Piola, F.; Rateau, P.; Rivière-Honegger, A. Landscape Perceptions and Social Representations of Fallopia spp. in France. Sci. Nat. 2018, 105, 67. [Google Scholar] [CrossRef] [PubMed]
- Shackleton, R.T.; Shackleton, C.M.; Kull, C.A. The Role of Invasive Alien Species in Shaping Local Livelihoods and Human Well-Being: A Review. J. Environ. Manag. 2019, 229, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Kapun, T.; Zule, J.; Fabjan, E.; Hočevar, B.; Grilc, M.; Likozar, B. Engineered Invasive Plant Cellulose fibers as Resources for Papermaking. Eur. J. Wood Wood Prod. 2022, 80, 501–514. [Google Scholar] [CrossRef]
- Van Meerbeek, K.; Sciences, E.; Leuven, K.U. On the Map Biomass of Invasive Plant Species as a Potential Feedstock for Bioenergy Production. Biofuels Bioprod. Biorefining 2015, 9, 273–282. [Google Scholar] [CrossRef]
- Anžlovar, S.; Janeš, D.; Koce, J.D. The Effect of Extracts and Essential Oil from Invasive solidago spp. and Fallopia japonica on Crop-Borne Fungi and Wheat Germination. Food Technol. Biotechnol. 2020, 58, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Hadzik, J.; Choromańska, A.; Karolewicz, B.; Matkowski, A.; Dominiak, M.; Złocińska, A.; Nawrot-Hadzik, I. Oral Wound Healing Potential of Polygoni cuspidati Rhizoma et Radix Decoction—In Vitro Study. Pharmaceuticals 2023, 16, 267. [Google Scholar] [CrossRef]
- Bensa, M.; Glavnik, V.; Vovk, I. Leaves of Invasive Plants—Japanese, Bohemian and Giant Knotweed—The Promising New Source of Flavan-3-Ols and Proanthocyanidins. Plants 2020, 9, 118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ravipati, A.S.; Koyyalamudi, S.R.; Jeong, S.C.; Reddy, N.; Bartlett, J.; Smith, P.T.; de la Cruz, M.; Monteiro, M.C.; Melguizo, Á.; et al. Anti-Fungal and Anti-Bacterial Activities of Ethanol Extracts of Selected Traditional Chinese Medicinal Herbs. Asian Pac. J. Trop. Med. 2013, 6, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; Xuan, L.; Xu, Y.; Bai, D.; Zhong, D. Constituents from Polygonum cuspidatum. Chem. Pharm. Bull. 2002, 50, 605–608. [Google Scholar] [CrossRef] [PubMed]
- Jug, U.; Naumoska, K.; Vovk, I. (−)-epicatechin—An Important Contributor to the Antioxidant Activity of Japanese knotweed Rhizome Bark Extract as Determined by Antioxidant Activity-guided Fractionation. Antioxidants 2021, 10, 133. [Google Scholar] [CrossRef]
- Jug, U.; Vovk, I.; Glavnik, V.; Makuc, D.; Naumoska, K. Off-Line Multidimensional High Performance Thin-Layer Chromatography for Fractionation of Japanese knotweed Rhizome Bark Extract and Isolation of Flavan-3-Ols, Proanthocyanidins and Anthraquinones. J. Chromatogr. A 2021, 1637, 461802. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Nam, Y.S.; Song, J.; Kim, H. Gastroprotective and Healing Effects of Polygonum cuspidatum Root on Experimentally Induced Gastric Ulcers in Rats. Nutrients 2020, 12, 2241. [Google Scholar] [CrossRef] [PubMed]
- Glavnik, V.; Vovk, I. Extraction of Anthraquinones from Japanese knotweed Rhizomes and Their Analyses by High Performance Thin-Layer Chromatography and Mass Spectrometry. Plants 2020, 9, 1753. [Google Scholar] [CrossRef]
- Kim, M.H.; Hee Park, J.; Park, C.W. Flavonoid Chemistry of Fallopia Section Fallopia (Polygonaceae). Biochem. Syst. Ecol. 2000, 28, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Nawrot-Hadzik, I.; Hadzik, J.; Fleischer, M.; Choromańska, A.; Sterczała, B.; Kubasiewicz-Ross, P.; Saczko, J.; Gałczyńska-Rusin, M.; Gedrange, T.; Matkowski, A. Chemical Composition of East Asian Invasive Knotweeds, Their Cytotoxicity and Antimicrobial Efficacy against Cariogenic Pathogens: An in-Vitro Study. Med. Sci. Monit. 2019, 25, 3279–3287. [Google Scholar] [CrossRef]
- Cucu, A.-A.; Baci, G.M.; Dezsi, Ş.; Nap, M.E.; Beteg, F.I.; Bonta, V.; Bobiş, O.; Caprio, E.; Dezmirean, D.S. New Approaches on Japanese knotweed (Fallopia japonica) Bioactive Compounds and Their Potential of Pharmacological and Beekeeping Activities: Challenges and Future Directions. Plants 2021, 10, 2621. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Peng, W.; Li, X.; Liu, M.; Li, B.; Qin, R.; Jiang, W.; Cen, Y.; Pan, X.; Yan, Z.; et al. Emodin Is Identified as the Active Component of Ether Extracts from Rhizoma Polygoni cuspidati, for Anti-MRSA Activity. Can. J. Physiol. Pharmacol. 2015, 93, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Alperth, F.; Melinz, L.; Fladerer, J.P.; Bucar, F. Uhplc Analysis of Reynoutria japonica Houtt. Rhizome Preparations Regarding Stilbene and Anthranoid Composition and Their Antimycobacterial Activity Evaluation. Plants 2021, 10, 1809. [Google Scholar] [CrossRef] [PubMed]
- Karami, A.; Fakhri, S.; Kooshki, L.; Khan, H. Polydatin: Pharmacological Mechanisms, Therapeutic Targets, Biological Activities, and Health Benefits. Molecules 2022, 27, 6474. [Google Scholar] [CrossRef]
- Moore, A.; Beidler, J.; Hong, M.Y. Resveratrol and Depression in Animal Models: A Systematic Review of the Biological Mechanisms. Molecules 2018, 23, 2197. [Google Scholar] [CrossRef]
- Nawrot-Hadzik, I.; Matkowski, A.; Pitułaj, A.; Sterczała, B.; Olchowy, C.; Szewczyk, A.; Choromańska, A. In Vitro Gingival Wound Healing Activity of Extracts from Reynoutria japonica Houtt Rhizomes. Pharmaceutics 2021, 13, 1764. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Yang, Y.; Wang, Z.; Chen, F.; Zhang, A.; Liu, C. Resveratrol-4-O-D-(2′-Galloyl)-Glucopyranoside Isolated from Polygonum cuspidatum Exhibits Anti-Hepatocellular Carcinoma Viability by Inducing Apoptosis via the JNK and ERK Pathway. Molecules 2014, 19, 1592–1602. [Google Scholar] [CrossRef] [PubMed]
- Nawrot-Hadzik, I.; Slusarczyk, S.; Granica, S.; Hadzik, J.; Matkowski, A. Phytochemical Diversity in Rhizomes of Three Reynoutria Species and Their Antioxidant Activity Correlations Elucidated by LC-ESI-MS/MS Analysis. Molecules 2019, 24, 1136. [Google Scholar] [CrossRef]
- Mattio, L.M.; Dallavalle, S.; Musso, L.; Filardi, R.; Franzetti, L.; Pellegrino, L.; D’Incecco, P.; Mora, D.; Pinto, A.; Arioli, S. Antimicrobial Activity of Resveratrol-Derived Monomers and Dimers against Foodborne Pathogens. Sci. Rep. 2019, 9, 19525. [Google Scholar] [CrossRef]
- Chen, H.; Tuck, T.; Ji, X.; Zhou, X.; Kelly, G.; Cuerrier, A.; Zhang, J. Quality Assessment of Japanese knotweed (Fallopia japonica) Grown on Prince Edward Island as a Source of Resveratrol. J. Agric. Food Chem. 2013, 61, 6383–6392. [Google Scholar] [CrossRef]
- Dias, G.P.; Cocks, G.; Do Nascimento Bevilaqua, M.C.; Nardi, A.E.; Thuret, S. Resveratrol: A Potential Hippocampal Plasticity Enhancer. Oxid. Med. Cell. Longev. 2016, 2016, 9651236. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Jiao, Y.; Guo, A.; Xu, X.; Qu, X.; Wang, S.; Zhao, J.; Li, Y.; Cao, Y. Resveratrol Sensitizes Glioblastoma-Initiating Cells to Temozolomide by Inducing Cell Apoptosis and Promoting Differentiation. Oncol. Rep. 2016, 35, 343–351. [Google Scholar] [CrossRef]
- Namsi, A.; Nury, T.; Hamdouni, H.; Yammine, A.; Vejux, A.; Vervandier-Fasseur, D.; Latruffe, N.; Masmoudi-Kouki, O.; Lizard, G. Induction of Neuronal Differentiation of Murine N2a Cells by Two Polyphenols Present in the Mediterranean Diet Mimicking Neurotrophins Activities: Resveratrol and Apigenin. Diseases 2018, 6, 67. [Google Scholar] [CrossRef]
- Smoliga, J.M.; Baur, J.A.; Hausenblas, H.A. Resveratrol and Health—A Comprehensive Review of Human Clinical Trials. Mol. Nutr. Food Res. 2011, 55, 1129–1141. [Google Scholar] [CrossRef]
- Feng, J.; Ren, H.; Gou, Q.; Zhu, L.; Ji, H.; Yi, T. Comparative Analysis of the Major Constituents in Three Related Polygonaceous Medicinal Plants Using Pressurized Liquid Extraction and HPLC-ESI/MS. Anal. Methods 2016, 8, 1557–1564. [Google Scholar] [CrossRef]
- Yu, M.; Chen, T.T.; Zhang, T.; Jia, H.M.; Li, J.J.; Zhang, H.W.; Zou, Z.M. Anti-Inflammatory Constituents in the Root and Rhizome of Polygonum Cuspidatum by UPLC-PDA-QTOF/MS and Lipopolysaccharide-Activated RAW264.7 Macrophages. J. Pharm. Biomed. Anal. 2021, 195, 113839. [Google Scholar] [CrossRef] [PubMed]
- Nawrot-Hadzik, I.; Zmudzinski, M.; Matkowski, A.; Preissner, R.; Kęsik-Brodacka, M.; Hadzik, J.; Drag, M.; Abel, R. Reynoutria Rhizomes as a Natural Source of Sars-Cov-2 Mpro Inhibitors–Molecular Docking and in Vitro Study. Pharmaceuticals 2021, 14, 742. [Google Scholar] [CrossRef]
- Naumoska, K.; Jug, U.; Kõrge, K.; Oberlintner, A.; Golob, M.; Novak, U.; Vovk, I.; Likozar, B. Antioxidant and Antimicrobial Biofoil Based on Chitosan and Japanese Knotweed (Fallopia japonica, Houtt.) Rhizome Bark Extract. Antioxidants 2022, 11, 1200. [Google Scholar] [CrossRef] [PubMed]
- Shan, B.; Cai, Y.Z.; Brooks, J.D.; Corke, H. Antibacterial Properties of Polygonum cuspidatum Roots and Their Major Bioactive Constituents. Food Chem. 2008, 109, 530–537. [Google Scholar] [CrossRef]
- Pogačnik, L.; Bergant, T.; Skrt, M.; Ulrih, N.P.; Viktorová, J.; Ruml, T. In Vitro Comparison of the Bioactivities of Japanese and Bohemian Knotweed Ethanol Extracts. Foods 2020, 9, 544. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Kim, S.K.; Chang, K.W.; Han, S.K.; Yi, H.K.; Jeon, J.G. In Vitro Inhibitory Effects of Polygonum cuspidatum on Bacterial Viability and Virulence Factors of Streptococcus mutans and Streptococcus sobrinus. Arch. Oral Biol. 2006, 51, 1131–1140. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Song, X.; Yin, Z.; Jia, R.; Li, Z.; Zhou, X.; Zou, Y.; Li, L.; Yin, L.; Yue, G.; et al. The Antibacterial Activity and Action Mechanism of Emodin from Polygonum cuspidatum against Haemophilus parasuis in Vitro. Microbiol. Res. 2016, 186–187, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Magacz, M.; Oszajca, M.; Nawrot-Hadzik, I.; Drożdż, R.; Jurczak, A.; Hadzik, J.; Smakosz, A.; Krzyściak, W. Phenolic Compounds of Reynoutria sp. As Modulators of Oral Cavity Lactoperoxidase System. Antioxidants 2021, 10, 676. [Google Scholar] [CrossRef]
- Rossiter, S.E.; Fletcher, M.H.; Wuest, W.M. Natural Products as Platforms to Overcome Antibiotic Resistance. Chem. Rev. 2017, 117, 12415–12474. [Google Scholar] [CrossRef]
- Borges, A.; Abreu, A.C.; Dias, C.; Saavedra, M.J.; Borges, F.; Simões, M. New Perspectives on the Use of Phytochemicals as an Emergent Strategy to Control Bacterial Infections Including Biofilms. Molecules 2016, 21, 877. [Google Scholar] [CrossRef]
- Martinotti, S.; Ranzato, E. Honey, Wound Repair and Regenerative Medicine. J. Funct. Biomater. 2018, 9, 34. [Google Scholar] [CrossRef]
- Bogdanov, S. Honey Composition. In The Book of Honey; Bee Hexagon Knowledge Network: Burnaby, BC, Canada, 2011; pp. 27–36. [Google Scholar]
- Mandal, M.D.; Mandal, S. Honey: Its Medicinal Property and Antibacterial Activity. Asian Pac. J. Trop. Biomed. 2011, 1, 154–160. [Google Scholar] [CrossRef]
- Rossi, M.; Marrazzo, P. The Potential of Honeybee Products for Biomaterial Applications. Biomimetics 2021, 6, 6. [Google Scholar] [CrossRef]
- Albaridi, N.A. Antibacterial Potency of Honey. Int. J. Microbiol. 2019, 2019, 2464507. [Google Scholar] [CrossRef]
- Shirlaw, O.; Billah, Z.; Attar, B.; Hughes, L.; Qasaymeh, R.M.; Seidel, V.; Efthimiou, G. Antibiofilm Activity of Heather and Manuka Honeys and Antivirulence Potential of Some of Their Constituents on the DsbA1 Enzyme of Pseudomonas aeruginosa. Antibiotics 2020, 9, 911. [Google Scholar] [CrossRef]
- Dezmirean, D.S.; Mărghitaş, L.A.; Fiţ, N.; Chirilă, F.; Gherman, B.; Mărgăoan, R.; Aurori, A.; Bobiş, O. Antibacterial Effect of Heather Honey (Calluna vulgaris) against Different Microorganisms of Clinical Importance. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Anim. Sci. Biotechnol. 2015, 72, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Combarros-Fuertes, P.; Fresno, J.M.; Estevinho, M.M.; Sousa-Pimenta, M.; Tornadijo, M.E.; Estevinho, L.M. Honey: Another Alternative in the Fight against Antibiotic-Resistant Bacteria? Antibiotics 2020, 9, 774. [Google Scholar] [CrossRef]
- Miklasińska-Majdanik, M.; Kępa, M.; Wojtyczka, R.D.; Idzik, D.; Wąsik, T.J. Phenolic Compounds Diminish Antibiotic Resistance of Staphylococcus Aureus Clinical Strains. Int. J. Environ. Res. Public Health 2018, 15, 2321. [Google Scholar] [CrossRef]
- Bazaid, A.S.; Alsolami, A.; Patel, M.; Khateb, A.M.; Aldarhami, A.; Snoussi, M.; Almusheet, S.M.; Qanash, H. Antibiofilm, Antimicrobial, Anti-Quorum Sensing, and Antioxidant Activities of Saudi Sidr Honey: In Vitro and Molecular Docking Studies. Pharmaceutics 2023, 15, 2177. [Google Scholar] [CrossRef]
- Bazaid, A.S.; Aldarhami, A.; Patel, M.; Adnan, M.; Hamdi, A.; Snoussi, M.; Qanash, H.; Imam, M.; Monjed, M.K.; Khateb, A.M. The Antimicrobial Effects of Saudi Sumra Honey against Drug Resistant Pathogens: Phytochemical Analysis, Antibiofilm, Anti-Quorum Sensing, and Antioxidant Activities. Pharmaceuticals 2022, 15, 1212. [Google Scholar] [CrossRef] [PubMed]
- Escuredo, O.; Rodríguez-Flores, M.S.; Rojo-Martínez, S.; Seijo, M.C. Contribution to the Chromatic Characterization of Unifloral Honeys from Galicia (NW Spain). Foods 2019, 8, 10–13. [Google Scholar] [CrossRef]
- Da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical Composition, Stability and Authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Bobis, O.; Severus Dezmirean, D.; Bonta, V.; Moise, A.; Pașca, C.; Domokos, T.E.; Urcan, A.C. Japanese Knotweed (Fallopia japonica): Landscape Invasive Plant versus High Quality Honey Source. Ser. D. Anim. Sci. Sci. Pap. S. 2019, LXII, 231–235. [Google Scholar]
- Pătruică, S.; Alexa, E.; Obiștioiu, D.; Cocan, I.; Radulov, I.; Berbecea, A.; Lazăr, R.N.; Simiz, E.; Vicar, N.M.; Hulea, A.; et al. Chemical Composition, Antioxidant and Antimicrobial Activity of Some Types of Honey from Banat Region, Romania. Molecules 2022, 27, 4179. [Google Scholar] [CrossRef]
- Campos, M.d.G.; Markham, K.R. Structure Information from HPLC and On-Line Measured Absorption Spectra: Flavones, Flavonols and Phenolic Acids; Imprensa da Universidade de Coimbra/Coimbra University Press: Coimbra, Portugal, 2007. [Google Scholar] [CrossRef]
- Clapa, D.; Borsai, O.; Hârța, M.; Bonta, V.; Szabo, K.; Coman, V.; Bobiș, O. Micropropagation, Genetic Fidelity and Phenolic Compound Production of Rheum rhabarbarum L. Plants 2020, 9, 5–7. [Google Scholar] [CrossRef]
- Azeez, H.; Ibrahim, K.; Pop, R.; Pamfil, D.; Hârţa, M.; Bobiș, O. Changes Induced by Gamma Ray Irradiation on Biomass Production and Secondary Metabolites Accumulation in Hypericum triquetrifolium Turra Callus Cultures. Ind. Crops Prod. 2017, 108, 183–189. [Google Scholar] [CrossRef]
- Matuschek, E.; Brown, D.F.J.; Kahlmeter, G. Development of the EUCAST Disk Diffusion Antimicrobial Susceptibility Testing Method and Its Implementation in Routine Microbiology Laboratories. Clin. Microbiol. Infect. 2014, 20, O255–O266. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. M07: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically Standard, 11th ed.; Approval CDM-A; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; 91p, Available online: https://clsi.org/media/1928/m07ed11_sample.pdf (accessed on 2 June 2024).
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Merghni, A.; Marzouki, H.; Hentati, H.; Aouni, M.; Mastouri, M. Antibacterial and Antibiofilm Activities of Laurus nobilis L. Essential Oil against Staphylococcus aureus Strains Associated with Oral Infections. Curr. Res. Transl. Med. 2016, 64, 29–34. [Google Scholar] [CrossRef]
- Djordjevic, D.; Wiedmann, M.; McLandsborough, L.A. Microtiter Plate Assay for Assessment of Listeria monocytogenes Biofilm Formation. Appl. Environ. Microbiol. 2002, 68, 2950–2958. [Google Scholar] [CrossRef]
- Hwang, D.; Lim, Y.H. Resveratrol antibacterial activity against Escherichia coli is mediated by Z-ring formation inhibition via suppression of FtsZ expression. Sci. Rep. 2015, 5, 10029. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, M.; Ingmer, H. Antibacterial and antifungal properties of resveratrol. Int. J. Antimicrob. Agents 2019, 53, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Mikulic-Petkovsek, M.; Veberic, R.; Hudina, M.; Misic, E. HPLC-DAD-MS Identification and Quantification of Phenolic Components in Japanese knotweed and American Pokeweed Extracts and Their Phytotoxic Effect on Seed Germination. Plants 2022, 11, 3053. [Google Scholar] [CrossRef] [PubMed]
- Lachowicz, S.; Oszmianski, J. Profile of Bioactive Compounds in the Morphological Parts of Wild Fallopia japonica (Houtt) and Fallopia sachalinensis (F. Schmidt) and Their Antioxidative Activity. Molecules 2019, 24, 1436. [Google Scholar] [CrossRef] [PubMed]
- Yi, T.A.O.; Zhang, H.A.O.; Cai, Z. Analysis of Rhizoma Polygoni cuspidati by HPLC and HPLC-ESI/MS. Phytochem. Anal. 2007, 392, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Nawrot-Hadzik, I.; Granica, S.; Domaradzki, K.; Matkowski, A.; Systems, S.T.; State, P.C.; Quality, C.; State, P.C.; Medical, W. Isolation and Determination of Phenolic Glycosides and Anthra- Quinones from Rhizomes of Various Reynoutria Species Authors. Planta Med. 2018, 84, 1118–1126. [Google Scholar]
- Vrchotová, N.; Šerá, B.; Tříska, J. The Stilbene and Catechin Content of the Spring Sprouts of Reynoutria Species. Acta Chromatogr. 2007, 19, 21–28. [Google Scholar]
- Sousa, J.M.; de Souza, E.L.; Marques, G.; Meireles, B.; de Magalhães Cordeiro, Â.T.; Gullón, B.; Pintado, M.M.; Magnani, M. Polyphenolic Profile and Antioxidant and Antibacterial Activities of Monofloral Honeys Produced by Meliponini in the Brazilian Semiarid Region. Food Res. Int. 2016, 84, 61–68. [Google Scholar] [CrossRef]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.P.; Zhang, J.; Lamas, L.B.; Flórez, S.M.; Toyos, P.A.; et al. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef]
- Bucekova, M.; Jardekova, L.; Juricova, V.; Bugarova, V.; Di Marco, G.; Gismondi, A.; Leonardi, D.; Farkasovska, J.; Godocikova, J.; Laho, M.; et al. Antibacterial Activity of Different Blossom Honeys: New Findings. Molecules 2019, 24, 1573. [Google Scholar] [CrossRef]
- Dimitriu, L.; Constantinescu-Aruxandei, D.; Preda, D.; Nichițean, A.L.; Nicolae, C.A.; Faraon, V.A.; Ghiurea, M.; Ganciarov, M.; Băbeanu, N.E.; Oancea, F. Honey and Its Biomimetic Deep Eutectic Solvent Modulate the Antioxidant Activity of Polyphenols. Antioxidants 2022, 11, 2194. [Google Scholar] [CrossRef] [PubMed]
- Cheung, Y.; Meenu, M.; Yu, X.; Xu, B. Phenolic Acids and Flavonoids Profiles of Commercial Honey from Different Floral Sources and Geographic Sources. Int. J. Food Prop. 2019, 22, 290–308. [Google Scholar] [CrossRef]
- Machado De-Melo, A.A.; de Almeida-Muradian, L.B.; Sancho, M.T.; Pascual-Maté, A. Composición y Propiedades de La Miel de Apis Mellifera: Una Revisión. J. Apic. Res. 2017, 57, 5–37. [Google Scholar] [CrossRef]
- do Nascimento, K.S.; Gasparotto Sattler, J.A.; Lauer Macedo, L.F.; Serna González, C.V.; Pereira de Melo, I.L.; da Silva Araújo, E.; Granato, D.; Sattler, A.; de Almeida-Muradian, L.B. Phenolic Compounds, Antioxidant Capacity and Physicochemical Properties of Brazilian Apis Mellifera Honeys. LWT—Food Sci. Technol. 2018, 91, 85–94. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, Y.; Wang, J.; Li, X.; Wang, W.; Huang, Z. Sugaring-out Assisted Liquid-Liquid Extraction Coupled with High Performance Liquid Chromatography-Electrochemical Detection for the Determination of 17 Phenolic Compounds in Honey. J. Chromatogr. A 2019, 1601, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Kečkeš, S.; Gašić, U.; Veličković, T.Ć.; Milojković-Opsenica, D.; Natić, M.; Tešić, Ž. The Determination of Phenolic Profiles of Serbian Unifloral Honeys Using Ultra-High-Performance Liquid Chromatography/High Resolution Accurate Mass Spectrometry. Food Chem. 2013, 138, 32–40. [Google Scholar] [CrossRef]
- Pyrzynska, K.; Biesaga, M. Analysis of Phenolic Acids and Flavonoids in Honey. TrAC-Trends Anal. Chem. 2009, 28, 893–902. [Google Scholar] [CrossRef]
- Lawag, I.L.; Islam, M.K.; Sostaric, T.; Lim, L.Y.; Hammer, K.; Locher, C. Antioxidant Activity and Phenolic Compound Identification and Quantification in Western Australian Honeys. Antioxidants 2023, 12, 189. [Google Scholar] [CrossRef]
- Nešović, M.; Gašić, U.; Tosti, T.; Horvacki, N.; Šikoparija, B.; Nedić, N.; Blagojević, S.; Ignjatović, L.; Tešić, Ž. Polyphenol Profile of Buckwheat Honey, Nectar and Pollen: Polyphenolics in Buckwheat. R. Soc. Open Sci. 2020, 7, 201576. [Google Scholar] [CrossRef]
- Socha, R.; Juszczak, L.; Pietrzyk, S.; Gałkowska, D.; Fortuna, T.; Witczak, T. Phenolic Profile and Antioxidant Properties of Polish Honeys. Int. J. Food Sci. Technol. 2011, 46, 528–534. [Google Scholar] [CrossRef]
- Kędzierska-Matysek, M.; Florek, M.; Wolanciuk, A.; Barłowska, J.; Litwińczuk, Z. Concentration of Minerals in Nectar Honeys from Direct Sale and Retail in Poland. Biol. Trace Elem. Res. 2018, 186, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Puścion-Jakubik, A.; Karpińska, E.; Moskwa, J.; Socha, K. Content of Phenolic Acids as a Marker of Polish Honey Varieties and Relationship with Selected Honey-Quality-Influencing Variables. Antioxidants 2022, 11, 1312. [Google Scholar] [CrossRef] [PubMed]
- Gašić, U.M.; Natić, M.M.; Mišić, D.M.; Lušić, D.V.; Milojković-Opsenica, D.M.; Tešić, Ž.L.; Lušić, D. Chemical Markers for the Authentication of Unifloral Salvia officinalis L. Honey. J. Food Compos. Anal. 2015, 44, 128–138. [Google Scholar] [CrossRef]
- Uddin, Z.; Song, Y.H.; Curtis-Long, M.J.; Kim, J.Y.; Yuk, H.J.; Park, K.H. Potent Bacterial Neuraminidase Inhibitors, Anthraquinone Glucosides from Polygonum cuspidatum and Their Inhibitory Mechanism. J. Ethnopharmacol. 2016, 193, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Ban, S.H.; Kwon, Y.R.; Pandit, S.; Lee, Y.S.; Yi, H.K.; Jeon, J.G. Effects of a Bio-Assay Guided Fraction from Polygonum Cuspidatum Root on the Viability, Acid Production and Glucosyltranferase of Mutans Streptococci. Fitoterapia 2010, 81, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Peng, Q.; Xiu-Feng, L.; Zhang, S.; Zhi-Gang, Z.; Yong-Qiang, T. Comparative Analysis of Chemical Constituents, Antimicrobial and Antioxidant Activities of Ethylacetate Extracts of Polygonum cuspidatum and Its Endophytic Actinomycete, Streptomyces sp. A0916. Chin. J. Nat. Med. 2016, 14, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Nielsen, M.; Staerk, D.; Jäger, A.K. High-Resolution Bacterial Growth Inhibition Profiling Combined with HPLC-HRMS-SPE-NMR for Identification of Antibacterial Constituents in Chinese Plants Used to Treat Snakebites. J. Ethnopharmacol. 2014, 155, 1276–1283. [Google Scholar] [CrossRef]
- Fatima, M.; Amin, A.; Alharbi, M.; Ishtiaq, S.; Sajjad, W.; Ahmad, F.; Ahmad, S.; Hanif, F.; Faheem, M.; Khalil, A.A.K. Quorum Quenchers from Reynoutria japonica in the Battle against Methicillin-Resistant Staphylococcus aureus (MRSA). Molecules 2023, 28, 2635. [Google Scholar] [CrossRef]
- Frantík, T.; Kovářová, M.; Koblihová, H.; Bartůňková, K.; Nývltová, Z.; Vosátka, M. Production of Medically Valuable Stilbenes and Emodin in Knotweed. Ind. Crops Prod. 2013, 50, 237–243. [Google Scholar] [CrossRef]
- Fyfe, L.; Okoro, P.; Paterson, E.; Coyle, S.; McDougall, G.J. Compositional Analysis of Scottish Honeys with Antimicrobial Activity against Antibiotic-Resistant Bacteria Reveals Novel Antimicrobial Components. LWT—Food Sci. Technol. 2017, 79, 52–59. [Google Scholar] [CrossRef]
- Ahmad, A.; Kaleem, M.; Ahmed, Z.; Shafiq, H. Therapeutic Potential of Flavonoids and Their Mechanism of Action against Microbial and Viral Infections-A Review. Food Res. Int. 2015, 77, 221–235. [Google Scholar] [CrossRef]
- Cilia, G.; Fratini, F.; Marchi, M.; Sagona, S.; Turchi, B.; Adamchuk, L.; Felicioli, A.; Kačániová, M. Antibacterial Activity of Honey Samples from Ukraine. Vet. Sci. 2020, 7, 181. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, I.; Baptista-Silva, S.; Pintado, M.; Oliveira, A.L. Polyphenols: A Promising Avenue in Therapeutic Solutions for Wound Care. Appl. Sci. 2021, 11, 1230. [Google Scholar] [CrossRef]
- Martin, R.A.P.; Hortiguela, L.V.; Lozano, P.L.; Cortina, M.D.R.; De Lorenzo Carretero, C. In Vitro Antioxidant and Antimicrobial Activities of Spanish Honeys. Int. J. Food Prop. 2008, 11, 727–737. [Google Scholar] [CrossRef]
- Taş-Küçükaydın, M.; Tel-Çayan, G.; Çayan, F.; Küçükaydın, S.; Hazar Çiftçi, B.; Ceylan, Ö.; Emin Duru, M. Chemometric Classification of Chestnut Honeys from Different Regions in Turkey Based on Their Phenolic Compositions and Biological Activities. Food Chem. 2023, 415, 135727. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.; Pang, E.; Livanos, G.; Mantri, N. Characterization of Physico-Chemical Properties and Antioxidant Capacities of Bioactive Honey Produced from Australian Grown Agastache Rugosa and Its Correlation with Colour and Poly-Phenol Content. Molecules 2018, 23, 108. [Google Scholar] [CrossRef]
- Dżugan, M.; Grabek-Lejko, D.; Swacha, S.; Tomczyk, M.; Bednarska, S.; Kapusta, I. Physicochemical Quality Parameters, Antibacterial Properties and Cellular Antioxidant Activity of Polish Buckwheat Honey. Food Biosci. 2020, 34, 100538. [Google Scholar] [CrossRef]
- Panseri, S.; Manzo, A.; Chiesa, L.M.; Giorgi, A. Melissopalynological and Volatile Compounds Analysis of Buckwheat Honey from Different Geographical Origins and Their Role in Botanical Determination. J. Chem. 2013, 2013, 904202. [Google Scholar] [CrossRef]
- Lukasiewicz, M.; Kowalski, S.; Makarewicz, M. Antimicrobial an Antioxidant Activity of Selected Polish Herbhoneys. LWT 2015, 64, 547–553. [Google Scholar] [CrossRef]
- Kačániová, M.; Borotová, P.; Galovičová, L.; Kunová, S.; Štefániková, J.; Kowalczewski, P.Ł.; Šedík, P. Antimicrobial and Antioxidant Activity of Different Honey Samples from Beekeepers and Commercial Producers. Antibiotics 2022, 11, 1163. [Google Scholar] [CrossRef]
- Schmidt, C.; Eichelberger, K.; Rohm, H. New Zealand Mānuka Honey—A Review on Specific Properties and Possibilities to Distinguish Mānuka from Kānuka Honey. LWT 2021, 136, 110311. [Google Scholar] [CrossRef]
- Rajamanickam, K.; Yang, J.; Sakharkar, M.K. Gallic Acid Potentiates the Antimicrobial Activity of Tulathromycin against Two Key Bovine Respiratory Disease (BRD) Causing-Pathogens. Front. Pharmacol. 2019, 9, 1486. [Google Scholar] [CrossRef] [PubMed]
- Lou, Z.; Wang, H.; Rao, S.; Sun, J.; Ma, C.; Li, J. P-Coumaric Acid Kills Bacteria through Dual Damage Mechanisms. Food Control 2012, 25, 550–554. [Google Scholar] [CrossRef]
- Gurbuzer, A. Investigation of in Vitro Antimicrobial Activities of Some Hydroxybenzoic and Hydroxycinnamic Acids Commonly Found in Medicinal and Aromatic Plants. Int. J. Plant Based Pharm. 2021, 1, 42–47. [Google Scholar] [CrossRef]
- Pinheiro, P.G.; Santiago, G.M.P.; da Silva, F.E.F.; de Araújo, A.C.J.; de Oliveira, C.R.T.; Freitas, P.R.; Rocha, J.E.; de Araújo Neto, J.B.; da Silva, M.M.C.; Tintino, S.R.; et al. Ferulic Acid Derivatives Inhibiting Staphylococcus aureus TetK and MsrA Efflux Pumps. Biotechnol. Rep. 2022, 34, e00717. [Google Scholar] [CrossRef] [PubMed]
- Bonincontro, G.; Scuderi, S.A.; Marino, A.; Simonetti, G. Synergistic Effect of Plant Compounds in Combination with Conventional Antimicrobials against Biofilm of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida spp. Pharmaceuticals 2023, 16, 1531. [Google Scholar] [CrossRef] [PubMed]
- Vipin, C.; Saptami, K.; Fida, F.; Mujeeburahiman, M.; Rao, S.S.; Athmika; Arun, A.B.; Rekha, P.D. Potential Synergistic Activity of Quercetin with Antibiotics against Multidrug-Resistant Clinical Strains of Pseudomonas aeruginosa. PLoS ONE 2020, 15, e0241304. [Google Scholar] [CrossRef] [PubMed]
- Hengge, R. Targeting Bacterial Biofilms by the Green Tea Polyphenol EGCG. Molecules 2019, 24, 15–17. [Google Scholar] [CrossRef] [PubMed]
- Sathiya Deepika, M.; Thangam, R.; Sakthidhasan, P.; Arun, S.; Sivasubramanian, S.; Thirumurugan, R. Combined Effect of a Natural Flavonoid Rutin from Citrus Sinensis and Conventional Antibiotic Gentamicin on Pseudomonas Aeruginosa Biofilm Formation. Food Control 2018, 90, 282–294. [Google Scholar] [CrossRef]
- Ruan, X.; Deng, X.; Tan, M.; Yu, C.; Zhang, M.; Sun, Y.; Jiang, N. In Vitro Antibiofilm Activity of Resveratrol against Avian Pathogenic Escherichia coli. BMC Vet. Res. 2021, 17, 249. [Google Scholar] [CrossRef]
- Bonadies, I.; Di Cristo, F.; Valentino, A.; Peluso, G.; Calarco, A.; Salle, A.D. Ph-Responsive Resveratrol-Loaded Electrospun Membranes for the Prevention of Implant-Associated Infections. Nanomaterials 2020, 10, 1175. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Chen, D.; Lv, C.; Qin, K.; Zhou, Q.; Pu, N.; Song, S.; Wang, X. Activity of Polygonum chinense L. Aqueous Extract against Staphylococcus aureus Antimicrobial and Anti-Biofilm. Sci. Rep. 2022, 12, 21988. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wu, X.; Li, J.; Liu, L.; Zhang, R.; Shao, D.; Du, X. The Specific Anti-Biofilm Effect of Gallic Acid on Staphylococcus aureus by Regulating the Expression of the Ica Operon. Food Control 2017, 73, 613–618. [Google Scholar] [CrossRef]
- Grabek-Lejko, D.; Hyrchel, T. The Antibacterial Properties of Polish Honey against Streptococcus mutans—A Causative Agent of Dental Caries. Antibiotics 2023, 12, 1640. [Google Scholar] [CrossRef] [PubMed]
- Skadiņš, I.; Labsvārds, K.D.; Grava, A.; Amirian, J.; Tomsone, L.E.; Ruško, J.; Viksna, A.; Bandere, D.; Brangule, A. Antimicrobial and Antibiofilm Properties of Latvian Honey against Causative Agents of Wound Infections. Antibiotics 2023, 12, 816. [Google Scholar] [CrossRef]
- Grecka, K.; Kús, P.M.; Worobo, R.W.; Szweda, P. Study of the Anti-Staphylococcal Potential of Honeys Produced in Northern Poland. Molecules 2019, 23, 260. [Google Scholar] [CrossRef]
Group | Compound | Merișor | Valea Vinului | Bocsig | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Roots | Rhizomes | Stems | Leaves | Roots | Rhizomes | Stems | Leaves | Roots | Rhizomes | Stems | Leaves | ||
Phenolic acids | protocatechuic acid | n.d. | 20.92 ± 6.72 b | n.d. | n.d. | 18.53 ± 5.22 bc | 17.53 ± 2.375 bc | 16.15 ± 1.97 c | n.d. | n.d. | 26.60 ± 9.58 b | 16.47 ± 3.82 b | 90.85 ± 17.89 a |
p-hydroxybenzoic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 5.75 ± 2.51 b | 18.85 ± 8.45 a | n.d. | |
vanillic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 12.8 ± 6.44 | n.d. | |
chlorogenic acid | n.d. | n.d. | 218.05 ± 15.34 e | 1677.05 ± 19.85 c | n.d. | n.d. | 92.83 ± 13.64 f | 1132.75 ± 31.57 d | n.d. | n.d. | 5188.60 ± 85.86 a | 2152.90 ± 68.59 b | |
caffeic acid | n.d. | n.d. | n.d. | 153.11 ± 23.45 a | n.d. | n.d. | n.d. | 51.37 ± 13.45 b | n.d. | n.d. | n.d. | 65.58 ± 24.56 b | |
p-coumaric acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 14.75 ± 8.45 | n.d. | |
ferulic acid | 289.58 ± 34.56 c | 809.75 ± 39.78 b | n.d. | n.d. | 834.75 ± 67.89 ab | 951.33 ± 45.67 a | n.d. | n.d. | 168.64 ± 27.83 d | 236.35 ± 56.78 c | 21.65 ± 11.45 e | n.d. | |
rosmarinic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 4638.53 ± 89.45 | n.d. | |
Flavonoids | catechin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 511.95 ± 56.87 | n.d. | n.d. |
epicatechin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 216.95 ± 61.45 | n.d. | n.d. | n.d. | n.d. | n.d. | |
rutin | n.d. | n.d. | 162.52 ± 21.45 c | 3042.48 ± 86.78 a | n.d. | n.d. | 78.36 ± 23.56 d | 948.83 ± 45.67 b | n.d. | n.d. | n.d. | 2940.76 ± 73.64 a | |
naringin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 5513.05 ± 189.45 | n.d. | |
quercitrin | n.d. | n.d. | n.d. | 3030.25 ± 89.45 b | n.d. | n.d. | 302.32 ± 23.56 c | 6480.95 ± 113.56 a | n.d. | n.d. | 2081.31 ± 34.56 b | 2695.23 ± 78.94 b | |
isoquercitrin | n.d. | n.d. | n.d. | 681.05 ± 78.34 b | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 964.15 ± 89.62 a | |
quercetin | n.d. | n.d. | n.d. | 144.65 ± 45.70 b | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 221.52 ± 23.45 a | n.d. | |
kaempferol | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 5504.65 ± 197.45 a | 3.18 ± 0.73 b | |
naringenin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 5326.05 ± 128.31 | n.d. | |
apigenin | n.d. | n.d. | n.d. | 141.15 ± 38.56 a | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 38.75 ± 9.08 b | |
Phenolic aldehydes | vanillin | n.d. | n.d. | n.d. | 77.15 ± 11.28 b | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 4385.55 ± 108.77 a | 21.05 ± 7.41 c |
Stilbenes | resveratrol | 320.55 ± 48.91 cd | 106.25 ± 30.61 e | 242.87 ± 52.62 d | 92.80 ± 21.88 e | 596.05 ± 82.49 b | 373.52 ± 23.81 c | 55.95 ± 29.64 f | n.d. | 1234.50 ± 55.29 a | 578.33 ± 76.25 b | 88.55 ± 12.67 ef | 111.35 ± 29.83 e |
Group | Compound | Merișor | Valea Vinului | Bocsig | ||||||
---|---|---|---|---|---|---|---|---|---|---|
FJH1 | FJH2 | FJH3 | FJH4 | FJH5 | FJH6 | FJH7 | FJH8 | FJH9 | ||
Phenolic acids | gallic acid | 6.28 ± 1.09 b | 6.81 ± 1.03 ab | 5.10 ± 0.03 c | 5.83 ± 0.11 c | 5.21 ± 0.09 d | 4.87 ± 0.03 d | 8.50 ± 2.01 a | 6.00 ± 1.09 b | 7.20 ± 1.31 a |
p-hydroxybenzoic acid | 8.36 ± 0.68 a | 7.71 ± 0.81 b | 7.60 ± 0.31 b | 8.47 ± 0.96 a | 6.53 ± 2.02 bc | 8.02 ± 1.37 ab | 8.42 ± 1.28 a | 4.89 ± 0.02 d | 5.04 ± 0.06 c | |
vanillic acid | 0.53 ± 0.05 c | 0.70 ± 0.07 b | 0.73 ± 0.04 b | 0.80 ± 0.02 a | 0.76 ± 0.13 b | 0.61 ± 0.02 bc | 0.34 ± 0.1 d | 0.64 ± 0.01 bc | 0.46 ± 0.06 d | |
chlorogenic acid | n.d. | 0.16 ± 0.0 de | 0.60 ± 0.00 b | 0.62 ± 0.03 b | 0.32 ± 0.09 c | 0.58 ± 0.02 b | 0.15 ± 0.0 e | 1.02 ± 0.01 a | 0.27 ± 0.01 d | |
caffeic acid | 0.88 ± 0.06 e | 0.80 ± 0.03 e | 2.03 ± 0.06 b | 2.38 ± 0.16 a | 2.11 ± 0.08 b | 1.85 ± 0.00 c | 0.80 ± 0.1 e | 1.71 ± 0.01 c | 1.38 ± 0.03 d | |
syringic acid | 1.30 ± 0.04 c | 2.04 ± 0.01 a | 1.82 ± 0.03 a | 1.62 ± 0.02 ab | 1.50 ± 0.01 b | 1.63 ± 0.09 ab | 1.31 ± 0.5 c | 0.51 ± 0.03 d | 0.64 ± 0.09 d | |
p-coumaric acid | 7.95 ± 0.36 a | 5.48 ± 0.18 bc | 6.27 ± 0.1 bc | 6.82 ± 0.63 b | 6.77 ± 0.46 b | 6.60 ± 0.38 b | 4.02 ± 0.87 d | 3.84 ± 0.97 d | 3.72 ± 0.86 d | |
ferulic acid | 5.94 ± 0.87 a | 4.82 ± 0.86 a | 3.16 ± 0.36 bc | 3.20 ± 0.45 b | 3.24 ± 0.25 b | 3.07 ± 0.97 bc | 2.33 ± 0.63 d | 2.97 ± 0.17 c | 2.54 ± 0.06 cd | |
rosmarinic acid | n.d. | 1.17 ± 0.23 c | 2.22 ± 0.75 b | n.d. | n.d. | n.d. | n.d. | 3.21 ± 0.17 a | 0.51 ± 0.08 d | |
Flavonoids | quercitrin | 1.91 ± 0.75 a | 0.97 ± 0.16 b | 1.20 ± 0.15 ab | 2.10 ± 0.36 a | 1.59 ± 0.75 ab | 1.93 ± 0.73 a | 0.50 ± 0.06 c | n.d. | 0.25 ± 0.11 c |
quercetin | 1.15 ± 0.03 cd | 1.25 ± 0.05 c | 1.79 ± 0.08 b | 3.57 ± 0.96 a | 2.97 ± 0.04 a | 3.04 ± 0.27 a | 1.01 ± 0.03 e | 1.89 ± 0.03 b | 1.24 ± 0.07 c | |
naringenin | 1.538 ± 0.011 c | 0.75 ± 0.1 d | 1.09 ± 0.05 cd | 3.38 ± 0.09 a | 3.24 ± 0.03 a | 3.14 ± 0.09 a | 0.41 ± 0.9 d | 2.20 ± 0.04 b | 0.60 ± 0.03 d | |
kaempferol | 0.33 ± 0.03 d | 0.31 ± 0.08 d | 0.80 ± 0.1 c | 3.19 ± 0.09 a | 1.68 ± 0.01 b | 2.58 ± 0.06 a | 0.42 ± 0.04 d | 0.91 ± 0.06 c | 0.35 ± 0.09 d | |
galangin | 0.06 ± 0.00 c | n.d. | 0.08 ± 0.00 c | 0.17 ± 0.00 b | n.d. | 0.08 ± 0.00 c | n.d. | 0.26 ± 0.00 a | 0.10 ± 0.00 b | |
Stilbenes | resveratrol | 0.20 ± 0.02 de | n.d. | 1.03 ± 0.02 b | 1.69 ± 0.07 a | 1.50 ± 0.05 a | 1.20 ± 0.06 b | 0.17 ± 0.01 e | 0.82 ± 0.02 cd | 0.35 ± 0.05 d |
Sample | Bacterial Strains | Yeast | |||||
---|---|---|---|---|---|---|---|
S. aureus | B. cereus | E. faecalis | E. coli | P. aeruginosa | S. enteritidis | C. albicans | |
Merișor roots | 24.54 ± 0.35 b | 16.23 ± 0.24 b | 20.50 ± 0.34 a | 27.75 ± 0.61 a | 21.05 ± 0.21 b | 22.78 ± 0.57 b | 16.25 ± 0.50 a |
Merișor rhizomes | 22.43 ± 0.39 b | 14.13 ± 0.39 cd | 17.36 ± 0.25 c | 25.03 ± 0.31 ab | 17.90 ± 0.72 cd | 18.35 ± 0.56 c | 14.51 ± 0.23 b |
Merișor stems | 15.23 ± 0.25 ef | 12.77 ± 0.28 d | 16.42 ± 0.21 c | 20.82 ± 0.11 c | 15.86 ± 0.29 d | 14.59 ± 0.32 e | 12.06 ± 0.33 c |
Merișor leaves | 14.58 ± 0.40 f | 10.43 ± 0.17 f | 13.56 ± 0.42 cd | 16.53 ± 0.35 d | 14.72 ± 0.37 de | 10.67 ± 0.22 g | 11.25 ± 0.25 c |
Valea Vinului roots | 28.05 ± 0.22 a | 17.50 ± 0.34 ab | 21.25 ± 0.38 a | 26.08 ± 0.45 a | 23.05 ± 0.25 a | 22.24 ± 0.45 b | 17.52 ± 0.35 a |
Valea Vinului rhizomes | 27.03 ± 0.13 a | 15.17 ± 0.29 c | 19.25 ± 0.22 b | 23.50 ± 0.55 b | 19.24 ± 0.24 c | 20.65 ± 0.72 bc | 12.78 ± 0.22 c |
Valea Vinului stems | 18.21 ± 0.26 d | 15.32 ± 0.22 bc | 15.25 ± 0.52 c | 17.15 ± 0.37 d | 16.48 ± 0.35 cd | 14.78 ± 0.23 e | 14.35 ± 0.46 b |
Valea Vinului leaves | 16.15 ± 0.63 e | 9.28 ± 0.13 g | 10.50 ± 0.24 f | 15.35 ± 0.13 de | 12.17 ± 0.33 f | 12.75 ± 0.38 f | 10.21 ± 0.24 cd |
Bocsig roots | 25.32 ± 0.21 c | 18.54 ± 0.37 a | 19.56 ± 0.11 b | 24.50 ± 0.24 b | 20.45 ± 0.18 b | 24.56 ± 0.19 a | 15.67 ± 0.34 a |
Bocsig rhizomes | 24.78 ± 0.52 a | 15.35 ± 0.42 c | 17.55 ± 0.25 d | 21.65 ± 0.17 c | 22.54 ± 0.52 b | 19.35 ± 0.38 c | 12.89 ± 0.33 c |
Bocsig stems | 18.78 ± 0. 11 d | 10.56 ± 0.38 f | 13.56 ± 0.41 d | 14.91 ± 0.32 e | 17.13 ± 0.27 cd | 17.33 ± 0.32 cd | 9.54 ± 0.19 d |
Bocsig leaves | 18.23 ± 0.23 d | 9.53 ± 0.25 fg | 14.73 ± 0.34 cd | 16.52 ± 0.15 d | 13.77 ± 0.22 e | 16.63 ± 0.31 d | 8.52 ± 0.25 e |
Sample | Bacterial Strain | Yeast | |||||
---|---|---|---|---|---|---|---|
S. aureus | B. cereus | E. faecalis | E. coli | P. aeruginosa | S. enteritidis | C. albicans | |
FJH 1 | 14.67 ± 0.56 cd | 11.53 ± 0.34 b | 14.78 ± 0.25 b | 10.45 ± 0.18 d | 10.34 ± 0.21 d | 12.65 ± 0.43 c | 9.24 ± 0.11 b |
FJH 2 | 14.51 ± 0.27 cd | 8.34 ± 0.14 d | 12.65 ± 0.18 c | 10.56 ± 0.25 d | 12.45 ± 0.16 c | 11.32 ± 0.29 c | 7.24 ± 0.98 d |
FJH 3 | 13.63 ± 0.41 d | 7.32 ± 0.12 e | 11.54 ± 0.11 d | 9.48 ± 0.29 e | 8.55 ± 0.38 e | 8.76 ± 0.81 d | 7.34 ± 0.10 d |
FJH 4 | 17.35 ± 0.12 bc | 7.55 ± 0.95 e | 6.45 ± 0.78 e | 9.54 ± 0.12 e | 6.12 ± 0.32 f | 7.54 ± 0.51 e | 6.34 ± 0.75 e |
FJH 5 | 16.78 ± 0.32 c | 10.06 ± 0.26 c | 12.65 ± 0.11 c | 11.34 ± 0.23 c | 6.750 ± 0.47 f | 8.50 ± 0.24 d | 7.54 ± 0.56 d |
FJH 6 | 15.23 ± 0.11 c | 9.53 ± 0.75 c | 10.34 ± 0.35 d | 12.21 ± 0.68 c | 10.35 ± 0.55 d | 14.24 ± 0.15 b | 8.33 ± 0.13 c |
FJH 7 | 21.56 ± 0.43 a | 15.54 ± 0.29 a | 16.73 ± 0.41 a | 19.95 ± 0.52 a | 18.65 ± 0.13 a | 19.25 ± 0.27 a | 14.54 ± 0.12 a |
FJH 8 | 18.23 ± 0.21 b | 12.97 ± 0.32 b | 13.06 ± 0.37 c | 14.83 ± 0.14 b | 13.51 ± 0.26 b | 10.87 ± 0.35 cd | 8.94 ± 0.45 bc |
FJH 9 | 14.78 ± 0.75 cd | 8.63 ± 0.29 d | 10.78 ± 0.50 d | 8.26 ± 0.34 f | 10.23 ± 0.49 d | 9.23 ± 0.17 cd | 6.26 ± 0.50 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cucu, A.-A.; Urcan, A.C.; Bobiș, O.; Bonta, V.; Cornea-Cipcigan, M.; Moise, A.R.; Dezsi, Ș.; Pașca, C.; Baci, G.-M.; Dezmirean, D.S. Preliminary Identification and Quantification of Individual Polyphenols in Fallopia japonica Plants and Honey and Their Influence on Antimicrobial and Antibiofilm Activities. Plants 2024, 13, 1883. https://doi.org/10.3390/plants13131883
Cucu A-A, Urcan AC, Bobiș O, Bonta V, Cornea-Cipcigan M, Moise AR, Dezsi Ș, Pașca C, Baci G-M, Dezmirean DS. Preliminary Identification and Quantification of Individual Polyphenols in Fallopia japonica Plants and Honey and Their Influence on Antimicrobial and Antibiofilm Activities. Plants. 2024; 13(13):1883. https://doi.org/10.3390/plants13131883
Chicago/Turabian StyleCucu, Alexandra-Antonia, Adriana Cristina Urcan, Otilia Bobiș, Victorița Bonta, Mihaiela Cornea-Cipcigan, Adela Ramona Moise, Ștefan Dezsi, Claudia Pașca, Gabriela-Maria Baci, and Daniel Severus Dezmirean. 2024. "Preliminary Identification and Quantification of Individual Polyphenols in Fallopia japonica Plants and Honey and Their Influence on Antimicrobial and Antibiofilm Activities" Plants 13, no. 13: 1883. https://doi.org/10.3390/plants13131883
APA StyleCucu, A.-A., Urcan, A. C., Bobiș, O., Bonta, V., Cornea-Cipcigan, M., Moise, A. R., Dezsi, Ș., Pașca, C., Baci, G.-M., & Dezmirean, D. S. (2024). Preliminary Identification and Quantification of Individual Polyphenols in Fallopia japonica Plants and Honey and Their Influence on Antimicrobial and Antibiofilm Activities. Plants, 13(13), 1883. https://doi.org/10.3390/plants13131883