Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = Ras-related protein 7

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5559 KB  
Article
Effects of Different Titanium Anodized Surfaces on Peri-Implant Soft Tissue Healing Around Dental Abutments: In Vitro and Proteomic Study
by Francisco Romero-Gavilán, Andreia Cerqueira, Carlos Arias-Mainer, David Peñarrocha-Oltra, Claudia Salavert-Martínez, Juan Carlos Bernabeu-Mira, Iñaki García-Arnáez, Félix Elortza, Mariló Gurruchaga, Isabel Goñi and Julio Suay
Appl. Sci. 2025, 15(13), 7349; https://doi.org/10.3390/app15137349 - 30 Jun 2025
Viewed by 427
Abstract
Objectives: This study aimed to evaluate the effects of different titanium (Ti) anodized surfaces on soft tissue healing around dental implant abutments. Methods: Discs of machined (MC), pink anodized (PA) and yellow anodized (YA) surfaces were morphologically characterized and evaluated in vitro. Cell [...] Read more.
Objectives: This study aimed to evaluate the effects of different titanium (Ti) anodized surfaces on soft tissue healing around dental implant abutments. Methods: Discs of machined (MC), pink anodized (PA) and yellow anodized (YA) surfaces were morphologically characterized and evaluated in vitro. Cell adhesion and collagen synthesis by human gingival fibroblasts (hGFs) were assessed to evaluate the regenerative potential of the surfaces under study. Their inflammatory potential was evaluated in THP-1 cell cultures by measuring cytokine secretion, and their proteomic adsorption patterns were characterized using nano-liquid chromatography mass spectrometry (nLC-MS/MS). Statistical significance was considered at 5%. In relation to proteomics, statistical differences were evaluated using the Student t-test with the Perseus application. Results: The anodization process resulted in a reduction in the surface roughness parameter (Ra) relative to the machined titanium (p < 0.05). No differences in hGF adhesion were found between the surfaces after one day. PA induced increased hGF collagen synthesis after 7 days (p < 0.05). The secretion of TNF-α was lower for anodized surfaces than for MC, and its concentration was lower for PA than for YA (p < 0.05). In turn, TGF-β was higher for PA and YA versus MC after one and three days of culture. A total of 176 distinct proteins were identified and 26 showed differences in adhesion between the anodized surfaces and MC. These differential proteins were related to coagulation, lipid metabolism, transport activity, plasminogen activation and a reduction in the immune response. Conclusions: Anodized Ti surfaces showed promising anti-inflammatory and regenerative potential for use in dental implant abutments. Anodization reduced surface roughness, increased collagen synthesis and lowered TNF-α secretion while increasing TGF-β levels compared to machined surfaces. Identified proteins related to coagulation and lipid metabolism supported these findings. Clinical relevance: Anodized surfaces could offer improved short-term peri-implant soft tissue healing over machined surfaces. The analysis of abutment surface, instead of implant surface, is a new approach that can provide valuable information. Full article
(This article belongs to the Special Issue Application of Advanced Therapies in Oral Health)
Show Figures

Figure 1

16 pages, 3854 KB  
Article
The Proteome of Exosomes at Birth Predicts Insulin Resistance, Adrenarche and Liver Fat in Childhood
by Marta Díaz, Tania Quesada-López, Francesc Villarroya, Paula Casano, Abel López-Bermejo, Francis de Zegher and Lourdes Ibáñez
Int. J. Mol. Sci. 2025, 26(4), 1721; https://doi.org/10.3390/ijms26041721 - 18 Feb 2025
Cited by 2 | Viewed by 1151
Abstract
It is unknown whether there are differentially expressed proteins (DEPs) in the circulating exosomes of appropriate- vs. small-for-gestational-age (AGA vs. SGA) infants, and if so, whether such DEPs relate to measures of endocrine–metabolic health and body composition in childhood. Proteomic analysis in cord-blood-derived [...] Read more.
It is unknown whether there are differentially expressed proteins (DEPs) in the circulating exosomes of appropriate- vs. small-for-gestational-age (AGA vs. SGA) infants, and if so, whether such DEPs relate to measures of endocrine–metabolic health and body composition in childhood. Proteomic analysis in cord-blood-derived exosomes was performed by label-free quantitative mass spectrometry in AGA (n = 20) and SGA infants (n = 20) and 91 DEPs were identified. Enrichment analysis revealed that they were related to complement and coagulation cascades, lipid metabolism, neural development, PI3K/Akt and RAS/RAF/MAPK signaling pathways, phagocytosis and focal adhesion. Protein–protein interaction (PPI) analysis identified 39 DEPs involved in the pathways enriched by the KEGG and Reactome. Those DEPs were associated with measures of adiposity and insulin resistance and with liver fat at age 7 (all p < 0.01). Multivariate linear regression analysis uncovered that two DEPs (up-regulated in SGA), namely PCYOX1 (related to adipogenesis) and HSP90AA1 (related to lipid metabolism and metabolic-dysfunction-associated steatotic liver disease progression), were independent predictors of the hepatic fat fraction at age 7 (β = 0.634; p = 0.002; R2 = 52% and β = 0.436; p = 0.009; R2 = 24%, respectively). These data suggest that DEPs at birth may predict insulin resistance, adrenarche and/or ectopic adiposity in SGA children at age 7, when an early insulin-sensitizing intervention could be considered. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

34 pages, 11954 KB  
Article
Retinoic Acid Promotes Neuronal Differentiation While Increasing Proteins and Organelles Related to Autophagy
by Gloria Lazzeri, Paola Lenzi, Giulia Signorini, Sara Raffaelli, Elisa Giammattei, Gianfranco Natale, Riccardo Ruffoli, Francesco Fornai and Michela Ferrucci
Int. J. Mol. Sci. 2025, 26(4), 1691; https://doi.org/10.3390/ijms26041691 - 16 Feb 2025
Cited by 1 | Viewed by 1813
Abstract
Retinoic acid (RA) is commonly used to differentiate SH-SY5Y neuroblastoma cells. This effect is sustained by a specific modulation of gene transcription, leading to marked changes in cellular proteins. In this scenario, autophagy may be pivotal in balancing protein synthesis and degradation. The [...] Read more.
Retinoic acid (RA) is commonly used to differentiate SH-SY5Y neuroblastoma cells. This effect is sustained by a specific modulation of gene transcription, leading to marked changes in cellular proteins. In this scenario, autophagy may be pivotal in balancing protein synthesis and degradation. The present study analyzes whether some autophagy-related proteins and organelles are modified during RA-induced differentiation of SH-SY5Y cells. RA-induced effects were compared to those induced by starvation. SH-SY5Y cells were treated with a single dose of 10 µM RA or grown in starvation, for 3 days or 7 days. After treatments, cells were analyzed at light microscopy and transmission electron microscopy to assess cell morphology and immunostaining for specific markers (nestin, βIII-tubulin, NeuN) and some autophagy-related proteins (Beclin 1, LC3). We found that both RA and starvation differentiate SH-SY5Y cells. Specifically, cell differentiation was concomitant with an increase in autophagy proteins and autophagy-related organelles. However, the effects of a single dose of 10 μM RA persist for at least 7 days, while prolonged starvation produces cell degeneration and cell loss. Remarkably, the effects of RA are modulated in the presence of autophagy inhibitors or stimulators. The present data indicate that RA-induced differentiation is concomitant with an increased autophagy. Full article
(This article belongs to the Special Issue Cell Pathways Underlying Neuronal Differentiation)
Show Figures

Figure 1

13 pages, 3199 KB  
Article
FOXO3/Rab7-Mediated Lipophagy and Its Role in Zn-Induced Lipid Metabolism in Yellow Catfish (Pelteobagrus fulvidraco)
by Fei Xiao, Chuan Chen, Wuxiao Zhang, Jiawei Wang and Kun Wu
Genes 2024, 15(3), 334; https://doi.org/10.3390/genes15030334 - 4 Mar 2024
Cited by 3 | Viewed by 2139
Abstract
Lipophagy is a selective autophagy that regulates lipid metabolism and reduces hepatic lipid deposition. However, the underlying mechanism has not been understood in fish. In this study, we used micronutrient zinc (Zn) as a regulator of autophagy and lipid metabolism and found that [...] Read more.
Lipophagy is a selective autophagy that regulates lipid metabolism and reduces hepatic lipid deposition. However, the underlying mechanism has not been understood in fish. In this study, we used micronutrient zinc (Zn) as a regulator of autophagy and lipid metabolism and found that Ras-related protein 7 (rab7) was involved in Zn-induced lipophagy in hepatocytes of yellow catfish Pelteobagrus pelteobagrus. We then characterized the rab7 promoter and identified binding sites for a series of transcription factors, including Forkhead box O3 (FOXO3). Site mutation experiments showed that the −1358/−1369 bp FOXO3 binding site was responsible for Zn-induced transcriptional activation of rab7. Further studies showed that inhibition of rab7 significantly inhibited Zn-induced lipid degradation by lipophagy. Moreover, rab7 inhibitor also mitigated the Zn-induced increase of cpt1α and acadm expression. Our results suggested that Zn exerts its lipid-lowering effect partly through rab7-mediated lipophagy and FA β-oxidation in hepatocytes. Overall, our findings provide novel insights into the FOXO3/rab7 axis in lipophagy regulation and enhance the understanding of lipid metabolism by micronutrient Zn, which may help to reduce excessive lipid accumulation in fish. Full article
(This article belongs to the Special Issue Fisheries and Aquaculture Gene Expression)
Show Figures

Figure 1

14 pages, 18099 KB  
Article
The Expression of Alamandine Receptor MrgD in Clear Cell Renal Cell Carcinoma Is Associated with a Worse Prognosis and Unfavorable Response to Antiangiogenic Therapy
by Gorka Larrinaga, Asier Valdivia, Inés Arrieta-Aguirre, Jon Danel Solano-Iturri, Aitziber Ugalde-Olano, Ana Loizaga-Iriarte, Aida Santos-Martín, Amparo Pérez-Fernández, Javier C. Angulo and José I. López
Int. J. Mol. Sci. 2024, 25(3), 1499; https://doi.org/10.3390/ijms25031499 - 25 Jan 2024
Cited by 3 | Viewed by 1975
Abstract
Renal cell carcinoma (RCC) ranks among the most prevalent malignancies in Western countries, marked by its notable heterogeneity, which contributes to an unpredictable clinical trajectory. The insufficiency of dependable biomarkers adds complexity to assessing this tumor progression. Imbalances of several components of the [...] Read more.
Renal cell carcinoma (RCC) ranks among the most prevalent malignancies in Western countries, marked by its notable heterogeneity, which contributes to an unpredictable clinical trajectory. The insufficiency of dependable biomarkers adds complexity to assessing this tumor progression. Imbalances of several components of the intrarenal renin–angiotensin system (iRAS) significantly impact patient prognoses and responses to first-line immunotherapies. In this study, we analyzed the immunohistochemical expression of the Mas-related G-protein-coupled receptor D (MrgD), which recognizes the novel RAS peptide alamandine (ALA), in a series of 87 clear cell renal cell (CCRCCs), 19 papillary (PRCC), 7 chromophobe (ChRCC) renal cell carcinomas, and 11 renal oncocytomas (RO). MrgD was expressed in all the renal tumor subtypes, with a higher mean staining intensity in the PRCCs, ChRCCs, and ROs. A high expression of MrgD at the tumor center and at the infiltrative front of CCRCC tissues was significantly associated with a high histological grade, large tumor diameter, local invasion, and locoregional node and distant metastasis. Patients with worse 5-year cancer-specific survival and a poorer response to antiangiogenic tyrosine-kinase inhibitors (TKIs) showed higher MrgD expression at the center of their primary tumors. These findings suggest a possible role of MrgD in renal carcinogenetic processes. Further studies are necessary to unveil its potential as a novel biomarker for CCRCC prognosis and response to frontline therapies. Full article
(This article belongs to the Special Issue Molecular Research and Treatment of Urologic Cancer)
Show Figures

Figure 1

14 pages, 697 KB  
Article
The In Vitro Evaluation of Rooster Semen Pellets Frozen with Dimethylacetamide
by Shaimaa K. Hamad, Ahmed M. Elomda, Yanyan Sun, Yunlei Li, Yunhe Zong, Jilan Chen, Ahmed O. Abbas, Farid K. R. Stino, Ali Nazmi and Gamal M. K. Mehaisen
Animals 2023, 13(10), 1603; https://doi.org/10.3390/ani13101603 - 11 May 2023
Cited by 3 | Viewed by 2493
Abstract
Sperm cryopreservation is an effective technique for conserving animal genetic diversity and transmitting superior genetic backgrounds, maintained via a non-invasive sampling and collection of huge quantities of sperm. Nevertheless, cryopreservation in avian species is not commercially viable because of the rooster sperm’s susceptibility [...] Read more.
Sperm cryopreservation is an effective technique for conserving animal genetic diversity and transmitting superior genetic backgrounds, maintained via a non-invasive sampling and collection of huge quantities of sperm. Nevertheless, cryopreservation in avian species is not commercially viable because of the rooster sperm’s susceptibility to damage. This study aims to estimate the impact of dimethylacetamide (DMA) as a cryoprotectant at different levels (3%, 6%, or 9%) on the post-thawed sperm quality, motility, antioxidant-biomarkers, and the expression of anti-freeze related genes. Semen samples were collected twice a week from twelve roosters aged 40 wk, weighing 3400 ± 70 g, and belonging to the Cairo-B2 chicken strain. Fresh semen samples were rapidly appraised, pooled, diluted with two volumes of a basic extender, and divided equally into three groups. The diluted groups were chilled at −20 °C for 7 min, then gently supplemented with 3, 6, or 9% pre-cooled DMA and equilibrated at 5 °C for a further 10 min. Semen pellets were formed by pipetting drops 7 cm above liquid nitrogen (LN2), which were then kept inside cryovials in the LN2. Thawing was performed 2 months later by taking 3–4 pellets of the frozen semen into a glass tube and warming it in a water bath for 8 s at 60 °C. The results showed that 3% DMA increased the proportion of total motile sperm, progressivity, viability, and plasma membrane integrity (%) compared to the 6% and 9% DMA groups. The lipid peroxidation and antioxidant enzyme activity were improved in the 3% group. At the same time, some anti-freeze-related genes’ (including ras homolog family member A (RHOA), heat shock protein 70 (HSP70), and small nuclear ribonucleoprotein polypeptide A (SNRPA1)) expressions were upregulated within the 3% DMA group relative to other groups. In conclusion, the 3% DMA group maintained higher post-thawed sperm quality than the other tested groups. Full article
Show Figures

Figure 1

13 pages, 20223 KB  
Article
Goss’s Wilt Resistance in Corn Is Mediated via Salicylic Acid and Programmed Cell Death but Not Jasmonic Acid Pathways
by Alexander Shumilak, Mohamed El-Shetehy, Atta Soliman, James T. Tambong and Fouad Daayf
Plants 2023, 12(7), 1475; https://doi.org/10.3390/plants12071475 - 28 Mar 2023
Cited by 6 | Viewed by 2470
Abstract
A highly aggressive strain (CMN14-5-1) of Clavibacter nebraskensis bacteria, which causes Goss’s wilt in corn, induced severe symptoms in a susceptible corn line (CO447), resulting in water-soaked lesions followed by necrosis within a few days. A tolerant line (CO450) inoculated with the same [...] Read more.
A highly aggressive strain (CMN14-5-1) of Clavibacter nebraskensis bacteria, which causes Goss’s wilt in corn, induced severe symptoms in a susceptible corn line (CO447), resulting in water-soaked lesions followed by necrosis within a few days. A tolerant line (CO450) inoculated with the same strain exhibited only mild symptoms such as chlorosis, freckling, and necrosis that did not progress after the first six days following infection. Both lesion length and disease severity were measured using the area under the disease progression curve (AUDPC), and significant differences were found between treatments. We analyzed the expression of key genes related to plant defense in both corn lines challenged with the CMN14-5-1 strain. Allene oxide synthase (ZmAOS), a gene responsible for the production of jasmonic acid (JA), was induced in the CO447 line in response to CMN14-5-1. Following inoculation with CMN14-5-1, the CO450 line demonstrated a higher expression of salicylic acid (SA)-related genes, ZmPAL and ZmPR-1, compared to the CO447 line. In the CO450 line, four genes related to programmed cell death (PCD) were upregulated: respiratory burst oxidase homolog protein D (ZmrbohD), polyphenol oxidase (ZmPPO1), ras-related protein 7 (ZmRab7), and peptidyl-prolyl cis-trans isomerase (ZmPPI). The differential gene expression in response to CMN14-5-1 between the two corn lines provided an indication that SA and PCD are involved in the regulation of corn defense responses against Goss’s wilt disease, whereas JA may be contributing to disease susceptibility. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

22 pages, 4793 KB  
Article
Systems Biology in Chronic Heart Failure—Identification of Potential miRNA Regulators
by Alba Vilella-Figuerola, Alex Gallinat, Rafael Escate, Sònia Mirabet, Teresa Padró and Lina Badimon
Int. J. Mol. Sci. 2022, 23(23), 15226; https://doi.org/10.3390/ijms232315226 - 3 Dec 2022
Cited by 17 | Viewed by 2753
Abstract
Heart failure (HF) is a complex disease entity with high clinical impact, poorly understood pathophysiology and scantly known miRNA-mediated epigenetic regulation. We have analysed miRNA patterns in patients with chronic HF (cHF) and a sex- and age-matched reference group and pursued an in [...] Read more.
Heart failure (HF) is a complex disease entity with high clinical impact, poorly understood pathophysiology and scantly known miRNA-mediated epigenetic regulation. We have analysed miRNA patterns in patients with chronic HF (cHF) and a sex- and age-matched reference group and pursued an in silico system biology analysis to discern pathways involved in cHF pathophysiology. Twenty-eight miRNAs were identified in cHF that were up-regulated in the reference group, and eight of them were validated by RT-qPCR. In silico analysis of predicted targets by STRING protein-protein interaction networks revealed eight cluster networks (involving seven of the identified miRNAs) enriched in pathways related to cell cycle, Ras, chemokine, PI3K-AKT and TGF-β signaling. By ROC curve analysis, combined probabilities of these seven miRNAs (let-7a-5p, miR-107, miR-125a-5p, miR-139-5p, miR-150-5p, miR-30b-5p and miR-342-3p; clusters 1–4 [C:1–4]), discriminated between HF with preserved ejection fraction (HFpEF) and HF with reduced ejection fraction (HFrEF), and ischaemic and non-ischaemic aetiology. A combination of miR-107, miR-139-5p and miR-150-5p, involved in clusters 5 and 7 (C:5+7), discriminated HFpEF from HFrEF. Pathway enrichment analysis of miRNAs present in C:1–4 (let-7a-5p, miR-125a-5p, miR-30b-5p and miR-342-3p) revealed pathways related to HF pathogenesis. In conclusion, we have identified a differential signature of down-regulated miRNAs in the plasma of HF patients and propose novel cellular mechanisms involved in cHF pathogenesis. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 2597 KB  
Article
Melatonin Attenuates Ischemic-like Cell Injury by Promoting Autophagosome Maturation via the Sirt1/FoxO1/Rab7 Axis in Hippocampal HT22 Cells and in Organotypic Cultures
by Francesca Luchetti, Maria G. Nasoni, Sabrina Burattini, Atefeh Mohammadi, Marica Pagliarini, Barbara Canonico, Patrizia Ambrogini, Walter Balduini, Russel J. Reiter and Silvia Carloni
Cells 2022, 11(22), 3701; https://doi.org/10.3390/cells11223701 - 21 Nov 2022
Cited by 12 | Viewed by 3040
Abstract
Dysfunctional autophagy is linked to neuronal damage in ischemia/reperfusion injury. The Ras-related protein 7 (Rab7), a member of the Rab family of small GTPases, appears crucial for the progression of the autophagic flux, and its activity is strictly interconnected with the histone deacetylase [...] Read more.
Dysfunctional autophagy is linked to neuronal damage in ischemia/reperfusion injury. The Ras-related protein 7 (Rab7), a member of the Rab family of small GTPases, appears crucial for the progression of the autophagic flux, and its activity is strictly interconnected with the histone deacetylase Silent information regulator 1 (Sirt1) and transcription factor Forkhead box class O1 (FoxO1). The present study assessed the neuroprotective role of melatonin in the modulation of the Sirt1/FoxO1/Rab7 axis in HT22 cells and organotypic hippocampal cultures exposed to oxygen-glucose deprivation followed by reoxygenation (OGD/R). The results showed that melatonin re-established physiological levels of autophagy and reduced propidium iodide-positive cells, speeding up autophagosome (AP) maturation and increasing lysosomal activity. Our study revealed that melatonin modulates autophagic pathways, increasing the expression of both Rab7 and FoxO1 and restoring the Sirt1 expression affected by OGD/R. In addition, the Sirt1 inhibitor EX-527 significantly reduced Rab7, Sirt1, and FoxO1 expression, as well as autolysosomes formation, and blocked the neuroprotective effect of melatonin. Overall, our findings provide, for the first time, new insights into the neuroprotective role of melatonin against ischemic injury through the activation of the Sirt1/FoxO1/Rab7 axis. Full article
Show Figures

Figure 1

20 pages, 3937 KB  
Article
Comprehensive Analysis of Subcellular Localization, Immune Function and Role in Bacterial wilt Disease Resistance of Solanum lycopersicum Linn. ROP Family Small GTPases
by Qiong Wang, Dan Zhang, Chaochao Liu, Yuying Li and Yanni Miao
Int. J. Mol. Sci. 2022, 23(17), 9727; https://doi.org/10.3390/ijms23179727 - 27 Aug 2022
Cited by 5 | Viewed by 2333
Abstract
ROPs (Rho-like GTPases from plants) belong to the Rho-GTPase subfamily and serve as molecular switches for regulating diverse cellular events, including morphogenesis and stress responses. However, the immune functions of ROPs in Solanum lycopersicum Linn. (tomato) is still largely unclear. The tomato genome [...] Read more.
ROPs (Rho-like GTPases from plants) belong to the Rho-GTPase subfamily and serve as molecular switches for regulating diverse cellular events, including morphogenesis and stress responses. However, the immune functions of ROPs in Solanum lycopersicum Linn. (tomato) is still largely unclear. The tomato genome contains nine genes encoding ROP-type small GTPase family proteins (namely SlRop1–9) that fall into five distinct groups as revealed by phylogenetic tree. We studied the subcellular localization and immune response induction of nine SlRops by using a transient overexpression system in Nicotiana benthamiana Domin. Except for SlRop1 and SlRop3, which are solely localized at the plasma membrane, most of the remaining ROPs have additional nuclear and/or cytoplasmic distributions. We also revealed that the number of basic residues in the polybasic region of ROPs tends to be correlated with their membrane accumulation. Though nine SlRops are highly conserved at the RHO (Ras Homology) domains, only seven constitutively active forms of SlRops were able to trigger hypersensitive responses. Furthermore, we analyzed the tissue-specific expression patterns of nine ROPs and found that the expression levels of SlRop3, 4 and 6 were generally high in different tissues. The expression levels of SlRop1, 2 and 7 significantly decreased in tomato seedlings after infection with Ralstonia solanacearum (E.F. Smith) Yabuuchi et al. (GMI1000); the others did not respond. Infection assays among nine ROPs showed that SlRop3 and SlRop4 might be positive regulators of tomato bacterial wilt disease resistance, whereas the rest of the ROPs may not contribute to defense. Our study provides systematic evidence of tomato Rho-related small GTPases for localization, immune response, and disease resistance. Full article
(This article belongs to the Special Issue Plant Disease Resistance 2.0)
Show Figures

Figure 1

18 pages, 6066 KB  
Article
Application of Transcriptome Analysis to Understand the Adverse Effects of Hypotonic Stress on Different Development Stages in the Giant Freshwater Prawn Macrobrachium rosenbergii Post-Larvae
by Bo Liu, Qiang Gao, Bo Liu, Changyou Song, Cunxin Sun, Mingyang Liu, Xin Liu, Yunke Liu, Zhengzhong Li, Qunlan Zhou and Hao Zhu
Antioxidants 2022, 11(3), 440; https://doi.org/10.3390/antiox11030440 - 22 Feb 2022
Cited by 22 | Viewed by 3347
Abstract
Salinity is one of the important environmental factors affecting survival and growth of aquatic animals. However, the impact of low-salinity stress on M. rosenbergii post-larvae at different development stages remains elusive. Therefore, the aim of this study was to explore the underlying mechanisms [...] Read more.
Salinity is one of the important environmental factors affecting survival and growth of aquatic animals. However, the impact of low-salinity stress on M. rosenbergii post-larvae at different development stages remains elusive. Therefore, the aim of this study was to explore the underlying mechanisms of hypotonic stress at different development stages of M. rosenbergii post-larvae through transcriptome analysis and antioxidant parameters detection. The salinity of the control group was 15 psu (S15) and the hypotonic stress group was 6 psu (S6). Samples were collected at 7 days-post-hatch (dph), 14 dph and 21 dph larvae. The results showed that hypotonic stress caused oxidative damage in post-larvae evidenced by decreased glutathione peroxidase (GSH-Px); superoxide dismutase (SOD); anti-superoxide anion free radical (ASAFR); and increased malondialdehyde (MDA); nitric oxide (NO); and inducible nitric oxide synthase (iNOS) levels. Transcriptome analysis showed that there were 1428, 1187, 132 DEGs including 301, 366, 4 up-regulated genes and 1127, 821, 128 down-regulated genes at 7 dph, 14 dph and 21 dph larvae under hypotonic stress, respectively. Furthermore, GO and KEGG enrichment indicated that hypotonic stress led to dysregulation of immune signals including lysosome and autophagy in the 7 dph larvae. The autophagy-related genes including beclin 1-associated autophagy-related key regulator (Barkor); ubiquitin-like modifier-activating enzyme ATG7 (ATG7); Beclin; autophagy-related protein 13 (ATG13); nuclear receptor-binding factor 2 (Nrbf2); ubiquitin-like-conjugating enzyme ATG3 (ATG3); vacuole membrane protein 1 (VMP1); and autophagy-related protein 2 (ATG2) decreased at 7 dph, and 14 dph larvae, and then increased at 21 dph larvae under hypotonic stress. In the 14 dph and 21 dph larvae, the renin-angiotensin system was activated. In conclusion, our data indicated that hypotonic stress reduced the antioxidant capacity and impaired the immune system in post-larvae, but as development progresses, the adaptability of post-larvae to hypotonic stress gradually increased, and might reach a new homeostasis through the RAS signaling pathway. Full article
(This article belongs to the Special Issue Oxidative Stress in Marine Environment)
Show Figures

Figure 1

16 pages, 1395 KB  
Article
SWATH-Based Comprehensive Determination of the Localization of Apical and Basolateral Membrane Proteins Using Mouse Liver as a Model Tissue
by Satoshi Hirano, Ryohei Goto and Yasuo Uchida
Biomedicines 2022, 10(2), 383; https://doi.org/10.3390/biomedicines10020383 - 5 Feb 2022
Cited by 2 | Viewed by 5000
Abstract
The purpose of this study was to develop a method to comprehensively determine the localization of apical and basolateral membrane proteins, using a combination of apical/basolateral membrane separation and accurate SWATH (Sequential Window Acquisition of all THeoretical fragment [...] Read more.
The purpose of this study was to develop a method to comprehensively determine the localization of apical and basolateral membrane proteins, using a combination of apical/basolateral membrane separation and accurate SWATH (Sequential Window Acquisition of all THeoretical fragment ion spectra) proteomics. The SWATH analysis of basolateral and apical plasma membrane fractions in mouse liver quantified the protein expression of 1373 proteins. The basolateral/apical ratios of the protein expression levels were compared with the reported immunohistochemical localization for 41 model proteins (23 basolateral, 11 apical and 7 both membrane-localized proteins). Three groups were perfectly distinguished. Border lines to distinguish the apical-, both- and basolateral localizations were determined to be 0.766 and 1.42 based on probability density. The method that was established was then applied to the comprehensive determination of the proteins in mouse liver. The findings indicated that 154 and 125 proteins were localized in the apical and basolateral membranes, respectively. The levels of receptors, CD antigens and integrins, enzymes and Ras-related molecules were much higher in apical membranes than in basolateral membranes. In contrast, the levels of adhesion molecules, scaffold proteins and transporters in basolateral membranes were much higher than in apical membranes. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Graphical abstract

18 pages, 4233 KB  
Article
Withholding of M-CSF Supplement Reprograms Macrophages to M2-Like via Endogenous CSF-1 Activation
by Yu-Chih Chen, Yin-Siew Lai, Yan-Der Hsuuw and Ko-Tung Chang
Int. J. Mol. Sci. 2021, 22(7), 3532; https://doi.org/10.3390/ijms22073532 - 29 Mar 2021
Cited by 27 | Viewed by 5976
Abstract
Macrophage colony-stimulating factor (M-CSF or CSF-1) is known to have a broad range of actions on myeloid cells maturation, including the regulation of macrophage differentiation, proliferation and survival. Macrophages generated by M-CSF stimulus have been proposed to be alternatively activated or M2 phenotype. [...] Read more.
Macrophage colony-stimulating factor (M-CSF or CSF-1) is known to have a broad range of actions on myeloid cells maturation, including the regulation of macrophage differentiation, proliferation and survival. Macrophages generated by M-CSF stimulus have been proposed to be alternatively activated or M2 phenotype. M-CSF is commonly overexpressed by tumors and is also known to enhance tumor growth and aggressiveness via stimulating pro-tumor activities of tumor-associated macrophages (TAMs). Currently, inhibition of CSF-1/CSF-1R interaction by therapeutic antibody to deplete TAMs and their pro-tumor functions is becoming a prevalent strategy in cancer therapy. However, its antitumor activity shows a limited single-agent effect. Therefore, macrophages in response to M-CSF interruption are pending for further investigation. To achieve this study, bone marrow derived macrophages were generated in vitro by M-CSF stimulation for 7 days and then continuously grown until day 21 in M-CSF absence. A selective pressure for cell survival was initiated after withdrawal of M-CSF. The surviving cells were more prone to M2-like phenotype, even after receiving interleukin-4 (IL-4) stimulation. The transcriptome analysis unveiled that endogenous CSF-1 level was dramatically up-regulated and numerous genes downstream to CSF-1 covering tumor necrosis factor (TNF), ras-related protein 1 (Rap1) and phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway were significantly modulated, especially for proliferation, migration and adhesion. Moreover, the phenomenal increase of miR-21-5p and genes related to pro-tumor activity were observed in parallel. In summary, withholding of CSF-1/CSF-1R interaction would rather augment than suspend the M-CSF-driven pro-tumor activities of M2 macrophages in a long run. Full article
(This article belongs to the Special Issue Signaling Pathways between Cancer and Immune Cells)
Show Figures

Figure 1

17 pages, 2638 KB  
Article
Anti-Inflammatory Effects of Rosmarinic Acid-Loaded Nanovesicles in Acute Colitis through Modulation of NLRP3 Inflammasome
by Sonia Marinho, Matilde Illanes, Javier Ávila-Román, Virginia Motilva and Elena Talero
Biomolecules 2021, 11(2), 162; https://doi.org/10.3390/biom11020162 - 26 Jan 2021
Cited by 70 | Viewed by 4728
Abstract
Ulcerative colitis (UC), one of the two main types of inflammatory bowel disease, has no effective treatment. Rosmarinic acid (RA) is a polyphenol that, when administered orally, is metabolised in the small intestine, compromising its beneficial effects. We used chitosan/nutriose-coated niosomes loaded with [...] Read more.
Ulcerative colitis (UC), one of the two main types of inflammatory bowel disease, has no effective treatment. Rosmarinic acid (RA) is a polyphenol that, when administered orally, is metabolised in the small intestine, compromising its beneficial effects. We used chitosan/nutriose-coated niosomes loaded with RA to protect RA from gastric degradation and target the colon and evaluated their effect on acute colitis induced by 4% dextran sodium sulphate (DSS) for seven days in mice. RA-loaded nanovesicles (5, 10 and 20 mg/kg) or free RA (20 mg/kg) were orally administered from three days prior to colitis induction and during days 1, 3, 5 and 7 of DSS administration. RA-loaded nanovesicles improved body weight loss and disease activity index as well as increased mucus production and decreased myeloperoxidase activity and TNF-α production. Moreover, RA-loaded nanovesicles downregulated protein expression of inflammasome components such as NLR family pyrin domain-containing 3 (NLRP3), adaptor protein (ASC) and caspase-1, and the consequent reduction of IL-1β levels. Furthermore, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) protein expression increased after the RA-loaded nanovesicles treatment However, these mechanistic changes were not detected with the RA-free treatment. Our findings suggest that the use of chitosan/nutriose-coated niosomes to increase RA local bioavailability could be a promising nutraceutical strategy for oral colon-targeted UC therapy. Full article
Show Figures

Figure 1

17 pages, 2654 KB  
Article
Genetic Aberration Analysis in Thai Colorectal Adenoma and Early-Stage Adenocarcinoma Patients by Whole-Exome Sequencing
by Thoranin Intarajak, Wandee Udomchaiprasertkul, Chakrit Bunyoo, Jutamas Yimnoon, Kamonwan Soonklang, Kriangpol Wiriyaukaradecha, Wisut Lamlertthon, Thaniya Sricharunrat, Worawit Chaiwiriyawong, Bunchorn Siriphongpreeda, Sawannee Sutheeworapong, Kanthida Kusonmano, Weerayuth Kittichotirat, Chinae Thammarongtham, Piroon Jenjaroenpun, Thidathip Wongsurawat, Intawat Nookaew, Chirayu Auewarakul and Supapon Cheevadhanarak
Cancers 2019, 11(7), 977; https://doi.org/10.3390/cancers11070977 - 12 Jul 2019
Cited by 10 | Viewed by 6084
Abstract
Colorectal adenomas are precursor lesions of colorectal adenocarcinoma. The transition from adenoma to carcinoma in patients with colorectal cancer (CRC) has been associated with an accumulation of genetic aberrations. However, criteria that can screen adenoma progression to adenocarcinoma are still lacking. This present [...] Read more.
Colorectal adenomas are precursor lesions of colorectal adenocarcinoma. The transition from adenoma to carcinoma in patients with colorectal cancer (CRC) has been associated with an accumulation of genetic aberrations. However, criteria that can screen adenoma progression to adenocarcinoma are still lacking. This present study is the first attempt to identify genetic aberrations, such as the somatic mutations, copy number variations (CNVs), and high-frequency mutated genes, found in Thai patients. In this study, we identified the genomic abnormality of two sample groups. In the first group, five cases matched normal-colorectal adenoma-colorectal adenocarcinoma. In the second group, six cases matched normal-colorectal adenomas. For both groups, whole-exome sequencing was performed. We compared the genetic aberration of the two sample groups. In both normal tissues compared with colorectal adenoma and colorectal adenocarcinoma analyses, somatic mutations were observed in the tumor suppressor gene APC (Adenomatous polyposis coli) in eight out of ten patients. In the group of normal tissue comparison with colorectal adenoma tissue, somatic mutations were also detected in Catenin Beta 1 (CTNNB1), Family With Sequence Similarity 123B (FAM123B), F-Box And WD Repeat Domain Containing 7 (FBXW7), Sex-Determining Region Y-Box 9 (SOX9), Low-Density Lipoprotein Receptor-Related Protein 5 (LRP5), Frizzled Class Receptor 10 (FZD10), and AT-Rich Interaction Domain 1A (ARID1A) genes, which are involved in the Wingless-related integration site (Wnt) signaling pathway. In the normal tissue comparison with colorectal adenocarcinoma tissue, Kirsten retrovirus-associated DNA sequences (KRAS), Tumor Protein 53 (TP53), and Ataxia-Telangiectasia Mutated (ATM) genes are found in the receptor tyrosine kinase-RAS (RTK–RAS) signaling pathway and p53 signaling pathway, respectively. These results suggest that APC and TP53 may act as a potential screening marker for colorectal adenoma and early-stage CRC. This preliminary study may help identify patients with adenoma and early-stage CRC and may aid in establishing prevention and surveillance strategies to reduce the incidence of CRC. Full article
(This article belongs to the Special Issue Colorectal Cancers)
Show Figures

Figure 1

Back to TopTop