Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (195)

Search Parameters:
Keywords = RPS4X

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8022 KiB  
Article
Corrosion Response of Steel to Penetration of Chlorides in DC-Treated Hardened Portland Cement Mortar
by Milan Kouřil, Jan Saksa, Vojtěch Hybášek, Ivona Sedlářová, Jiří Němeček, Martina Kohoutková and Jiří Němeček
Materials 2025, 18(14), 3365; https://doi.org/10.3390/ma18143365 - 17 Jul 2025
Viewed by 230
Abstract
Electrochemical treatment by means of direct current (DC) is usually used as a measure for steel rebar corrosion protection, e.g., cathodic protection (CP), electrochemical chloride extraction (ECE), and re-alkalization (RA). However, the passage of an electrical charge through the pore system of concrete [...] Read more.
Electrochemical treatment by means of direct current (DC) is usually used as a measure for steel rebar corrosion protection, e.g., cathodic protection (CP), electrochemical chloride extraction (ECE), and re-alkalization (RA). However, the passage of an electrical charge through the pore system of concrete or mortar, coupled with the migration of ions, concentration changes, and resulting phase changes, may alter its chloride penetration resistance and, subsequently, the time until rebar corrosion activation. Porosity changes in hardened Portland cement mortar were studied by means of mercury intrusion porosimetry (MIP) and electrochemical impedance spectroscopy (EIS), and alterations in the mortar surface phase composition were observed by means of X-ray diffraction (XRD). In order to innovatively investigate the impact of DC treatment on the properties of the mortar–electrolyte interface, the cathode-facing mortar surface and the anode-facing mortar surface were analyzed separately. The corrosion of steel coupons embedded in DC-treated hardened mortar was monitored by means of the free corrosion potential (Eoc) and polarization resistance (Rp). The results showed that the DC treatment affected the surface porosity of the hardened Portland cement mortar at the nanoscale. Up to two-thirds of the small pores (0.001–0.01 µm) were replaced by medium-sized pores (0.01–0.06 µm), which may be significant for chloride ingress. Although the porosity and phase composition alterations were confirmed using other techniques (EIS and XRD), corrosion tests revealed that they did not significantly affect the time until the corrosion activation of the steel coupons in the mortar. Full article
Show Figures

Figure 1

16 pages, 13999 KiB  
Article
The Influence of Ni Incorporation on the Surface Porosity and Corrosion Resistance of CrBN Coatings on 45 Steel in Seawater
by Zhidong Zhou, Xue Wu, Qianzhi Wang, Gai Zhao and Zhifeng Zhou
Coatings 2025, 15(7), 804; https://doi.org/10.3390/coatings15070804 - 9 Jul 2025
Viewed by 296
Abstract
By adjusting NiCr target power, five CrNiBN coatings with different Ni contents were fabricated on 45 steel by magnetron sputtering with the aim of improving corrosion resistance of CrBN coatings in seawater. The structure and morphology of CrNiBN coatings were characterized by X-ray [...] Read more.
By adjusting NiCr target power, five CrNiBN coatings with different Ni contents were fabricated on 45 steel by magnetron sputtering with the aim of improving corrosion resistance of CrBN coatings in seawater. The structure and morphology of CrNiBN coatings were characterized by X-ray diffraction and scanning electron microscope, while its electrochemical properties were evaluated by open circuit potential, electrochemical impedance spectroscopy, and potential dynamic polarization. The results demonstrated that Ni incorporation could reduce the surface porosity of CrBN coatings from 16.8% to 7.7% as Ni content increased from 4.35 at% to 19.62 at%. On this basis, when Ni increased from 4.35 at% to 7.28 at%, self-corrosion potential gradually increased, which prompted the CrNiBN coating with 7.28 at% Ni to present the highest charge transfer resistance Rct of 1.965 × 104 Ω·cm2 and the highest polarization resistance Rp of 74.9 kΩ·cm2. However, more Ni doping from 12.54 at% to 19.62 at% would decrease self-corrosion potential and trigger oxidation. Consequently, the CrNiBN coatings with Ni content from 12.54 at% to 19.62 at% presented decreasing Rct and Rp. Even so, the corrosion resistance of the CrNiBN coating was still better than that of CrBN coating indicating an improved corrosion inhibition efficiency by 12.53 times. Full article
Show Figures

Graphical abstract

19 pages, 322 KiB  
Article
Nutraceutical Potential of Havardia pallens and Vachellia rigidula in the Diet Formulation for Male Goat
by Jesús Humberto Reyna-Fuentes, Cecilia Carmela Zapata-Campos, Jorge Ariel Torres-Castillo, Daniel López-Aguirre, Juan Antonio Núñez-Colima, Luis Eliezer Cruz-Bacab, Fabián Eliseo Olazarán-Santibáñez, Fernando Sánchez-Dávila, Aida Isabel Leal-Robles and Juan Antonio Granados-Montelongo
Metabolites 2025, 15(7), 457; https://doi.org/10.3390/metabo15070457 - 5 Jul 2025
Viewed by 525
Abstract
Background: Xerophilous scrubland is a semi-desert ecosystem characterized by a wide diversity of shrubs, which have secondary compounds with nutraceutical potential that could be used as feed for livestock, specifically by goats, since this species has developed behavioral and physiological adaptations that [...] Read more.
Background: Xerophilous scrubland is a semi-desert ecosystem characterized by a wide diversity of shrubs, which have secondary compounds with nutraceutical potential that could be used as feed for livestock, specifically by goats, since this species has developed behavioral and physiological adaptations that allow it to take advantage of the plant resources of said scrubland. Objective: To evaluate the nutraceutical potential of Havardia pallens and Vachellia rigidula, native species of the xerophilous scrubland, when incorporated as ingredients in goat diets. Methods: Integral diets for male goats were prepared, formulated with 35% inclusion of Havardia pallens, Vachellia rigidula, and Medicago sativa, the latter used as a plant control species. The content of flavonoids and total phenols was compared using colorimetric methods, and the antioxidant capacity was measured using the FRAP method. RP-HPLC-ESI-MS characterized the bioactive compounds in the different extracts. Statistical analysis was performed by ANOVA. Results: The aqueous extraction of Vachellia rigidula showed the highest concentration of total phenols (x¯ = 18.22 mg GAE/g−1), followed by the ethanolic extract in the same species (x¯ = 17.045 mg GAE/g−1). Similarly, Vachellia rigidula presented the highest antioxidant capacity (x¯ = 144,711.53 µmol TE/g−1), while Medicago sativa presented the lowest (x¯ = 11,701.92 µmol TE/g). The RP-HPLC-ESI-MS analysis revealed that Vachellia rigidula presented a higher abundance of flavones, catechins, flavonols, methoxyflavones, and tyrosols. However, Harvardia pallens presented higher levels of methoxycinnamic and hydroxycinnamic acids. One-way ANOVA results showed that diets containing 35% Vachellia rigidula and Havardia pallens significantly contrasted (p < 0.05), increased the content of secondary compounds and antioxidant capacity compared to the control species. Furthermore, including Vachellia rigidula led to a significantly higher antioxidant capacity (p < 0.05) than diets with Havardia pallens or Medicago sativa. Conclusions: Incorporating the leguminous shrubs Vachellia rigidula and Havardia pallens into the formulation of comprehensive diets for buck goats improves the content and availability of phenols, flavonoids, and antioxidants. However, in vivo evaluation of these diets is important to determine their physiological and productive effects on the animals. Full article
(This article belongs to the Section Food Metabolomics)
22 pages, 6303 KiB  
Article
A Novel Regulatory Role for RPS4Y1 in Inflammatory and Fibrotic Processes
by Karosham D. Reddy, Senani N. H. Rathnayake, Sobia Idrees, Fia Boedijono, Dikaia Xenaki, Matthew P. Padula, Maarten van den Berge, Alen Faiz and Brian G. G. Oliver
Int. J. Mol. Sci. 2025, 26(13), 6213; https://doi.org/10.3390/ijms26136213 - 27 Jun 2025
Viewed by 443
Abstract
Asthma is a chronic inflammatory respiratory disease well-known to demonstrate sexual dimorphism in incidence and severity, although the mechanisms causing these differences remain incompletely understood. RPS4X and RPS4Y1 are X and Y-chromosome-linked genes coding ribosomal subunits previously associated with inflammation, airway remodelling and [...] Read more.
Asthma is a chronic inflammatory respiratory disease well-known to demonstrate sexual dimorphism in incidence and severity, although the mechanisms causing these differences remain incompletely understood. RPS4X and RPS4Y1 are X and Y-chromosome-linked genes coding ribosomal subunits previously associated with inflammation, airway remodelling and asthma medication efficacy. Particularly, RPS4Y1 has been under-investigated within the context of disease, with little examination of molecular mechanisms and pathways regulated by this gene. The ribosome, a vital cellular machinery, facilitates the translation of mRNA into peptides and then proteins. Imbalance or dysfunction in ribosomal components may lead to malfunctioning proteins. Using CRISPR-Cas9 knockout cellular models for RPS4Y1 and RPS4X, we characterised the function of RPS4Y1 in the context of the asthma-relevant processes, inflammation and fibrosis. No viable RPS4X knockouts could be generated. We highlight novel molecular mechanisms such as specific translation of IL6 and tenascin-C mRNA by RPS4Y1 containing ribosomes. Furthermore, an RPS4Y1-centric gene signature correlates with clinical lung function measurements, specifically in adult male asthma patients. These findings inform the current understanding of sex differences in asthma, as females do not produce the RPS4Y1 protein. Therefore, the pathologically relevant functions of RPS4Y1 may contribute to the complex sexually dimorphic pattern of asthma susceptibility and progression. Full article
Show Figures

Graphical abstract

16 pages, 472 KiB  
Article
Exploring Concomitant Ophthalmic Comorbidities in Portuguese Patients with Inherited Retinal Diseases: A Comprehensive Clinical Study
by Rita Mesquita, Ana Marta, Pedro Marques-Couto, José Costa, Sérgio Estrela-Silva, Diogo Cabral, João Pedro Marques and Sara Vaz-Pereira
Genes 2025, 16(7), 743; https://doi.org/10.3390/genes16070743 - 26 Jun 2025
Viewed by 428
Abstract
Background/Objectives: Inherited retinal diseases (IRDs) are a heterogeneous group of rare eye disorders characterized by progressive photoreceptor degeneration, leading to severe visual impairment or even blindness. This study aims to investigate the prevalence, types, and clinical significance of ophthalmic comorbidities in Portuguese [...] Read more.
Background/Objectives: Inherited retinal diseases (IRDs) are a heterogeneous group of rare eye disorders characterized by progressive photoreceptor degeneration, leading to severe visual impairment or even blindness. This study aims to investigate the prevalence, types, and clinical significance of ophthalmic comorbidities in Portuguese patients with IRDs. Methods: This nationwide Portuguese population-based retrospective study was based on the IRD-PT registry (retina.com.pt). Statistical analysis was conducted using Microsoft® Excel® for Microsoft 365 and IBM SPSS Statistics version 29.0.2.0. Informed consent was obtained from all participants. Results: A total of 1531 patients (1254 families) from six centers were enrolled. The cohort consisted of 51% males, with a mean age of 45.8 ± 19.3 years and a mean age at diagnosis of 39.4 ± 19.5 years. Overall, ocular comorbidities were reported in 644 patients (42.1%). In 176 individuals (11.5%), multiple concurrent comorbidities were found. Cataract was the most common comorbidity (21.3%), followed by amblyopia (6.3%) and high myopia (5.9%). Statistically significant associations with ocular comorbidities were observed in isolated progressive IRDs. Specifically, AR RP was associated with cataract (p < 0.001), and gene analysis revealed several significant associations. CRB1 was statistically linked to epiretinal membrane (ERM) (p = 0.003), EYS with cataract (p = 0.001), PROM1 with choroidal neovascularization (CNV) (p = 0.0026), and USH2A with macular hole (p = 0.01). Patients with the RPE65 mutation in Leber congenital amaurosis were associated with ERM (p = 0.019). There was also a significant association between X-linked RP and high myopia (p < 0.001) and CNV in Best disease (p < 0.001); in syndromic IRDs, cataract, cystoid macular edema, and ERM were observed in Usher syndrome, p = 0.002, p = 0.002, and p = 0.005, respectively, and the MYO7A gene was linked to cataract (p = 0.041) and strabismus (p = 0.013); pseudoxanthoma elasticum was significantly associated with CNV (p = 0.002); and foveal hypoplasia was associated with anterior segment dysgenesis (p < 0.001). Conclusions: This study enhances the current understanding of ocular comorbidities in IRDs in Portuguese patients. Common findings were cataract, refractive error, and CME. Stationary IRDs and pattern dystrophies showed fewer concomitant comorbidities, supporting their classification as non-progressive or benign conditions. The significance of registries like IRD-PT cannot be overstated, particularly in the context of rare diseases. These databases serve multiple crucial functions in enabling detailed documentation of disease characteristics and long-term monitoring of disease progression. Full article
(This article belongs to the Special Issue Genetics in Retinal Diseases—2nd Edition)
Show Figures

Figure 1

24 pages, 9006 KiB  
Article
X-Ray Exposure Induces Structural Changes in Human Breast Proteins
by Ren Jie Tuieng, Sarah H. Cartmell, Cliona C. Kirwan, Alexander Eckersley and Michael J. Sherratt
Int. J. Mol. Sci. 2025, 26(12), 5696; https://doi.org/10.3390/ijms26125696 - 13 Jun 2025
Viewed by 553
Abstract
During radiotherapy, X-rays can deliver significant doses of ionising radiation to both cancerous and healthy tissue, often leading to undesirable side effects that compromise patient outcomes. While the cellular effects of such therapeutic X-ray exposures are well studied, the impact on extracellular matrix [...] Read more.
During radiotherapy, X-rays can deliver significant doses of ionising radiation to both cancerous and healthy tissue, often leading to undesirable side effects that compromise patient outcomes. While the cellular effects of such therapeutic X-ray exposures are well studied, the impact on extracellular matrix (ECM) proteins remains poorly understood. This study characterises the response of ECM proteins, including the major tissue components collagen I and fibronectin (FN), to X-ray doses similar to those used in clinical practice (50 Gy, as employed in breast radiotherapy, and 100 Gy), using a combination of gel electrophoresis, biochemical assays, and mass spectrometry-based peptide location fingerprinting (PLF) analysis. In purified protein solutions, 50 Gy X-ray exposure led to the fragmentation of constituent collagen I α chains. Irradiation of purified plasma FN (pFN) induced localised changes in peptide yields (detected by liquid chromatography and tandem mass spectrometry (LC-MS/MS) and PLF) and enhanced its binding to collagen I. In complex environments, such as newly synthesised fibroblast-derived ECM and mature ex vivo breast tissue, X-ray exposure induced peptide yield changes in not only collagen I and FN but also key basement membrane proteins, including collagen IV, laminin, and perlecan. Intracellular proteins associated with gene expression (RPS3, MeCP2), the cytoskeleton (moesin, plectin), and the endoplasmic reticulum (calnexin) were also found to be impacted. These X-ray-induced structural changes may impair the ECM integrity and alter cell–ECM interactions, with potential implications for tissue stiffening, fibrosis, and impaired wound healing in irradiated tissues. Full article
Show Figures

Figure 1

17 pages, 5924 KiB  
Article
Activation of the Rat P2X7 Receptor by Functionally Different ATP Activation Sites
by Fritz Markwardt, Malte Berthold, Sanaria Hawro Yakoob and Günther Schmalzing
Cells 2025, 14(12), 855; https://doi.org/10.3390/cells14120855 - 6 Jun 2025
Viewed by 409
Abstract
The homotrimeric P2X7 receptor (P2X7R) contains three ATP4− binding sites in its ectodomain. Here, we investigated the role of individual ATP4− activation sites in rat P2X7R (rP2X7R) using trimeric concatemers consisting of either three wild-type subunits (7-7-7) or one to three [...] Read more.
The homotrimeric P2X7 receptor (P2X7R) contains three ATP4− binding sites in its ectodomain. Here, we investigated the role of individual ATP4− activation sites in rat P2X7R (rP2X7R) using trimeric concatemers consisting of either three wild-type subunits (7-7-7) or one to three subunits with ATP binding sites knocked out by the K64A mutation. Following expression in Xenopus laevis oocytes, ATP4−-elicited ion currents were recorded using the two-microelectrode voltage clamp technique. The 7-7-7 concatamer exhibited a biphasic ATP4− concentration dependence, best fit by the sum of two Hill functions, confirming the existence of functionally distinct ATP4− activation sites. The activation time course of the 7-7-7 was best approximated by the sum of a fast and a slow exponential saturating activation component. Similarly, deactivation exhibited both fast and slow exponential decay. Only one Hill function was required to best fit the ATP4− concentration dependence of concatamers with only two or one ATP4− binding sites, and their deactivation time courses largely lacked the slowly deactivating components. We conclude that the binding of one ATP4− is sufficient for partial activation of the rP2X7R and that allosteric effects occur when all three ATP4− binding sites are occupied, leading to distinct functional activation sites. Full article
Show Figures

Graphical abstract

14 pages, 3791 KiB  
Article
Deposition of HfO2 by Remote Plasma ALD for High-Aspect-Ratio Trench Capacitors in DRAM
by Jiwon Kim, Inkook Hwang, Byungwook Kim, Wookyung Lee, Juha Song, Yeonwoong Jung and Changbun Yoon
Nanomaterials 2025, 15(11), 783; https://doi.org/10.3390/nano15110783 - 23 May 2025
Viewed by 1006
Abstract
Dynamic random-access memory (DRAM) is a vital component in modern computing systems. Enhancing memory performance requires maximizing capacitor capacitance within DRAM cells, which is achieved using high-k dielectric materials deposited as thin, uniform films via atomic layer deposition (ALD). Precise film deposition that [...] Read more.
Dynamic random-access memory (DRAM) is a vital component in modern computing systems. Enhancing memory performance requires maximizing capacitor capacitance within DRAM cells, which is achieved using high-k dielectric materials deposited as thin, uniform films via atomic layer deposition (ALD). Precise film deposition that minimizes electronic defects caused by charged vacancies is essential for reducing leakage current and ensuring high dielectric strength. In this study, we fabricated metal–insulator–metal (MIM) capacitors in high-aspect-ratio trench structures using remote plasma ALD (RP-ALD) and direct plasma ALD (DP-ALD). The trenches, etched into silicon, featured a 7:1 aspect ratio, 76 nm pitch, and 38 nm critical dimension. We evaluated the electrical characteristics of HfO2-based capacitors with TiN top and bottom electrodes, focusing on leakage current density and equivalent oxide thickness. Capacitance–voltage analysis and X-ray photoelectron spectroscopy (XPS) revealed that RP-ALD effectively suppressed plasma-induced damage, reducing defect density and leakage current. While DP-ALD offered excellent film properties, it suffered from degraded lateral uniformity due to direct plasma exposure. Given its superior lateral uniformity, lower leakage, and defect suppression, RP-ALD shows strong potential for improving DRAM capacitor performance and serves as a promising alternative to the currently adopted thermal ALD process. Full article
Show Figures

Graphical abstract

14 pages, 3237 KiB  
Article
Identification of Novel Gene-Specific Markers for Differentiating Various Pathogenic Campylobacter Species Using a Pangenome Analysis Approach
by Emmanuel Kuufire, Kingsley E. Bentum, Rejoice Nyarku, Viona Osei, Asmaa Elrefaey, Tyric James, Yilkal Woube, Raphael Folitse, Temesgen Samuel and Woubit Abebe
Pathogens 2025, 14(5), 477; https://doi.org/10.3390/pathogens14050477 - 14 May 2025
Viewed by 774
Abstract
Campylobacter spp. are the causative agents of campylobacteriosis, a major foodborne illness globally, with millions of cases reported annually. These pathogens pose significant risks to both human and animal health. Conventional culture-based diagnostic methods are labor-intensive and time-consuming, underscoring the need for more [...] Read more.
Campylobacter spp. are the causative agents of campylobacteriosis, a major foodborne illness globally, with millions of cases reported annually. These pathogens pose significant risks to both human and animal health. Conventional culture-based diagnostic methods are labor-intensive and time-consuming, underscoring the need for more efficient molecular detection strategies. This study employed a pangenomic analysis to identify novel gene-specific markers for pathogenic Campylobacter species and subspecies, laying the groundwork for their application in diverse diagnostic assays. A curated dataset of 105 high-quality genomes, representing 33 species and 9 subspecies, was analyzed using the Roary ILP Bacterial Annotation Pipeline. The results revealed substantial genomic diversity within the genus, with core gene counts varying across different nucleotide identity thresholds. Ribosomal genes such as rpsL, rpsJ, rpsS, rpmA, rpsK, rpsU, rpsG, rpmH, and rpsZ were consistently identified in the core genome, whereas accessory genes exhibited marked variability. This study uncovered novel and highly specific genetic markers for various Campylobacter species, including petB, clpX, and carB for C. coli; hypothetical proteins for C. jejuni and C. fetus; porA2 for C. lari; and mdtJ for C. upsaliensis. These markers demonstrated a specificity of at least 90% with minimal cross-reactivity with non-target organisms. The findings underscore the genomic heterogeneity within Campylobacter and provide essential genetic targets for the enhanced molecular detection of its pathogenic species, subspecies, and biovars. Full article
Show Figures

Figure 1

15 pages, 1924 KiB  
Article
Determination of Fluconazole in Children in Small Blood Volumes Using Volumetric Absorptive Microsampling (VAMS) and Isocratic High-Performance Liquid Chromatography–Ultraviolet (HPLC–UV) Detection
by Franziska Zimbelmann, Andreas H. Groll and Georg Hempel
Pharmaceutics 2025, 17(5), 592; https://doi.org/10.3390/pharmaceutics17050592 - 1 May 2025
Viewed by 427
Abstract
Objectives: A simple method for quantifying fluconazole in small blood volumes has been developed using volumetric absorptive microsampling (VAMS®) technology and isocratic high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection. Methods: For sample collection, Mitra® devices are used [...] Read more.
Objectives: A simple method for quantifying fluconazole in small blood volumes has been developed using volumetric absorptive microsampling (VAMS®) technology and isocratic high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection. Methods: For sample collection, Mitra® devices are used to keep the sample volume at 10 µL. For the quantitative determination of fluconazole, the Mitra® samples are extracted using acetonitrile as the extraction agent, containing 2-(4-chlorophenyl)-1,3-bis(1,2,4-triazol-1-yl)propan-2-ol as the internal standard. A Synergi 4 μm Polar-RP 80 Å (150 × 2 mm) column forms the stationary phase, and a mixture of acetonitrile and phosphate buffer is the mobile phase. The UV detection is set at a wavelength of 210 nm. The therapeutic concentration range of 5 to 160 mg/L is covered, and the linear equation with 1/x2 weighting is used to determine unknown samples. This method has been validated according to the current EMA and FDA guidelines for bioanalytical methods. Results: The validation data obtained after analysing whole blood samples (EDTA) showed within- and between-run accuracy between 94.4% and 115% and precision between 0.4% and 9.4%, respectively. A lower limit of quantification (LLOQ) of 5 mg/L was sufficient for therapeutic drug monitoring in paediatric patients receiving fluconazole as antifungal prophylaxis after haematopoietic cell transplantation. Conclusions: So far, 211 samples from 49 patients were successfully analysed, and concentrations between 5.84 mg/L and 107 mg/L were determined for whole blood Mitra® samples. To our knowledge, this is the first application of VAMS® technology using simple and cheap HPLC-UV quantification. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Figure 1

11 pages, 1800 KiB  
Communication
The α-Glucosidase Inhibition Activities of Phaeochromycins D and E Isolated from Marine Streptomyces sp. FJ0218
by Pingfa Lin, Mianmian Shi, Feifei Wang, Yong Lin and Yongbiao Zheng
Molecules 2025, 30(9), 1993; https://doi.org/10.3390/molecules30091993 - 30 Apr 2025
Viewed by 461
Abstract
Marine Streptomyces are an important source of naturally occurring active compounds. Out of 23 marine Streptomyces strains, 1 strain of Streptomyces sp. FJ0218 was selected for its high activity in inhibiting α-glucosidase. Two polyketides, phaeochromycins D (2) and E (1 [...] Read more.
Marine Streptomyces are an important source of naturally occurring active compounds. Out of 23 marine Streptomyces strains, 1 strain of Streptomyces sp. FJ0218 was selected for its high activity in inhibiting α-glucosidase. Two polyketides, phaeochromycins D (2) and E (1), were isolated from the fermentation broth of this strain using bioactivity-guided column chromatography over RP-18, Sephadex LH-20, and silica gel. Their structures were determined using NMR data, HR-EI-MS, and single-crystal X-ray crystallography. Phaeochromycins D (2) and E (1) exhibited inhibitory activity against α-glucosidase, with IC50 values of 10 mM and 25 mM, respectively. Lineweaver–Burk plots revealed that phaeochromycin E (1) acts as an uncompetitive inhibitor, while phaeochromycin D (2) acts as a non-competitive inhibitor. These findings suggest that there is potential for the pharmacological regulation of glucose levels through the use of polyketide phaeochromycins, emphasizing their significant impact on glucose management. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

16 pages, 3373 KiB  
Article
Oxygen Deficiency Modulated La-Doped BaSnO3 Films Showing Improved Light Transmittance
by Kai Wu, Wan-Rong Geng, Yin-Lian Zhu and Xiu-Liang Ma
Materials 2025, 18(8), 1696; https://doi.org/10.3390/ma18081696 - 8 Apr 2025
Viewed by 549
Abstract
As one of the representative transparent conducting oxides, perovskite-typed La-doped BaSnO3 (LBSO) films could be integrated with other perovskite materials to create all-perovskite oxide devices exhibiting exotic physical properties. To overcome the intricate trade-off between conductivity and transmittance in LBSO-based devices, understanding [...] Read more.
As one of the representative transparent conducting oxides, perovskite-typed La-doped BaSnO3 (LBSO) films could be integrated with other perovskite materials to create all-perovskite oxide devices exhibiting exotic physical properties. To overcome the intricate trade-off between conductivity and transmittance in LBSO-based devices, understanding the structural modulating mechanisms of transmittance is definitely crucial. In this paper, the influences of the prevailing Ruddlesden–Popper faults (RP faults) on the transmittance of LBSO films were systematically illuminated, whose density were regulated by the oxygen partial pressures during film growth. High-angle annular dark field (HAADF) STEM and X-ray diffraction (XRD) were employed to characterize the microstructures of the films growing under various oxygen partial pressures and annealing under different oxygen partial pressures. A decrease in RP fault density was observed in the films grown and annealed at high oxygen partial pressures, which displayed improved visible light transmittance. Atomic-scale energy-dispersive spectroscopy (EDS) and electron energy-loss spectroscopy (EELS) analyses revealed the different electronic structure at RP faults compared with the bulk material, including the double concentration of La and increased M5/M4 white line ratio, which is modulative by the oxygen deficiency in LBSO film. It is revealed that the RP defaults in LBSO films annealed at low oxygen pressures displayed larger changes in electronic structure compared with the counterparts with low oxygen deficiency. This work suggests that the oxygen deficiency in LSBO films plays a crucial role in changing the density of RP faults and their electronic structures, thereby regulating the transmittance of LBSO films, which would provide guidance for fabricating high-performance LBSO films. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

17 pages, 1815 KiB  
Article
Region Partitioning Framework (RCF) for Scatterplot Analysis: A Structured Approach to Absolute and Normalized Data Interpretation
by Eungi Kim
Metrics 2025, 2(2), 6; https://doi.org/10.3390/metrics2020006 - 8 Apr 2025
Viewed by 660
Abstract
Scatterplots can reveal important data relationships, but their visual complexity can make pattern identification challenging. Systematic analytical approaches help structure interpretation by dividing scatterplots into meaningful regions. This paper introduces the region partitioning framework (RCF), a systematic method for dividing scatterplots into interpretable [...] Read more.
Scatterplots can reveal important data relationships, but their visual complexity can make pattern identification challenging. Systematic analytical approaches help structure interpretation by dividing scatterplots into meaningful regions. This paper introduces the region partitioning framework (RCF), a systematic method for dividing scatterplots into interpretable regions using k × k grids, in order to enhance visual data analysis and quantify structural changes through transformation metrics. RCF partitions the x and y dimensions into k × k grids (e.g., 4 × 4 or 16 regions), balancing granularity and readability. Each partition is labeled using an R(p, q) notation, where p and q indicate the position along each axis. Two perspectives are supported: the absolute mode, based on raw values (e.g., “very short, narrow”), and the relative mode, based on min–max normalization (e.g., “short relative to population”). I propose a set of transformation metrics—density, net flow, relative change ratio, and redistribution index—to quantify how data structures change between modes. The framework is demonstrated using both the Iris dataset and a subset of the airquality dataset, showing how RCF captures clustering behavior, reveals outlier effects, and exposes normalization-induced redistributions. Full article
Show Figures

Figure 1

11 pages, 1450 KiB  
Article
Epidemiological and Genetic Characteristics of Sapovirus in Shandong, China, 2022–2023
by Mingxin Guo, Meijia Li, Ti Liu, Wenkui Sun, Kaige Du, Shuopeng Yang, Zhongyan Fu and Zengqiang Kou
Viruses 2025, 17(4), 469; https://doi.org/10.3390/v17040469 - 26 Mar 2025
Cited by 1 | Viewed by 490
Abstract
Sapovirus (SaV) is a major pathogen responsible for acute gastroenteritis (AGE), and its incidence has been increasing in recent years. This study investigates the prevalence and the genetic characteristics of SaV in Shandong Province during 2022–2023, based on a surveillance network covering all [...] Read more.
Sapovirus (SaV) is a major pathogen responsible for acute gastroenteritis (AGE), and its incidence has been increasing in recent years. This study investigates the prevalence and the genetic characteristics of SaV in Shandong Province during 2022–2023, based on a surveillance network covering all age groups. Samples were obtained from a viral diarrhea surveillance network in Shandong Province during 2022–2023. SaVs were identified through quantitative reverse-transcription polymerase chain reaction (RT-qPCR). PCR amplification and Sanger sequencing were performed on positive samples, and whole-genome sequencing was conducted using metagenomic sequencing technology. Sequence analysis was conducted using BioEdit 7.0.9.0 and MEGA X, while statistical analysis was performed with SPSS 26.0. A total of 157 SaV-positive cases were identified, resulting in a positivity rate of 1.12%. The positivity rate for SaV was 0.75% in 2022 and it increased significantly to 1.42% in 2023. The highest positivity rates for both 2022 and 2023 were observed in November. The highest positivity rate was observed in the 3–5-year-old age group. In 2022, Dongying City had the highest positivity rate, while Zaozhuang City exhibited the highest rate in 2023. The incidence of vomiting in SaV-positive patients was significantly higher compared to SaV-negative patients (P = 0.002). Eight genotypes were identified in both the VP1 and RdRp regions. The complete genome sequence analysis of a GI.3 strain showed that NS1 (5.88%, 4/68) was the region most prone to amino acid variation, followed by VP2 (5.45%, 9/165) within the same genotype. SaV infections are more prevalent in cold weather, with young children being particularly susceptible. The SaV positivity rate in 2023 increased significantly accompanied by an increased diversity of genotypes, compared to that of 2022. The NS1 region exhibits the biggest variation within the same genotype, indicating that more attention should be paid to other regions besides VP1 in the future study. Ongoing surveillance of SaV is recommended for effective prevention and control. Full article
(This article belongs to the Special Issue Viruses Associated with Gastroenteritis)
Show Figures

Figure 1

18 pages, 8268 KiB  
Article
Comparative Study of the Corrosive Behaviors of Rust Layers on Bronze Ware in Different Corrosive Environments
by Bingbing Li, Qixing Xia and Wenqiang Dong
Materials 2025, 18(6), 1359; https://doi.org/10.3390/ma18061359 - 19 Mar 2025
Cited by 1 | Viewed by 588
Abstract
It is of great significance to clarify the corrosion mechanism of rust layers on bronze ware for appropriate conservation measures. In this study, the corrosion behavior of Cu-Sn bronze alloys in a 3.5 wt.% NaCl solution and a simulated archaeological soil solution was [...] Read more.
It is of great significance to clarify the corrosion mechanism of rust layers on bronze ware for appropriate conservation measures. In this study, the corrosion behavior of Cu-Sn bronze alloys in a 3.5 wt.% NaCl solution and a simulated archaeological soil solution was studied and compared using electrochemical measurements, microscopic observations, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results showed that the presence of Cl was the key factor leading to the formation of harmful rust such as Cu2(OH)Cl3. In the NaCl solution, the rapid accumulation of Cl-containing corrosion products provided a certain degree of protection to Cu-Sn alloys, but the products easily fell off, thus increasing the continuous corrosion reactions again. This resulted in a significant increase in the corrosion rate of the alloy (icorr from 4.845 μA·cm−2 to 27.21 μA·cm−2) and a decrease in polarization resistance (Rp from 5.17 kΩ·cm2 to 3.27 kΩ·cm2). In contrast, the corrosion reactions of the Cu-Sn alloy were dominated by complex ions other than Cl in archaeological soil environments, and the corrosion products tended to form stable and dense rust layers (icorr was always lower than 1.6 μA·cm−2, and Rp was maintained above 24 kΩ·cm2), which improved corrosion resistance by two orders of magnitude compared to the unstable rust layer that formed in NaCl solution. In addition, Cl-containing corrosion products boosted the wettability of rust layers, thereby facilitating penetration of corrosive media that strengthened corrosion reactions. This study deepens our understanding of the degradation mechanisms of bronze artifacts and provides a scientific basis for developing bronze conservation strategies. Full article
(This article belongs to the Special Issue Corrosion Electrochemistry and Protection of Metallic Materials)
Show Figures

Graphical abstract

Back to TopTop