Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,734)

Search Parameters:
Keywords = RAW264.7macrophages

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3851 KiB  
Article
Lysozyme Amyloid for Synthetic RNA Delivery
by Benjamin Beluzo, Maytham Ismail, Sergei Chuikov, Venkateshwar G. Keshamouni and Mathumai Kanapathipillai
Pharmaceutics 2025, 17(9), 1094; https://doi.org/10.3390/pharmaceutics17091094 - 22 Aug 2025
Abstract
Background/Objectives: Lysozyme-based amyloid aggregates offer a promising platform for RNA delivery due to their stability, cationic nature, biocompatibility, and ability to form well-defined structures. In this study, we evaluated their potential as drug carriers, focusing on the delivery of polyinosinic–polycytidylic acid (Poly(I:C)), [...] Read more.
Background/Objectives: Lysozyme-based amyloid aggregates offer a promising platform for RNA delivery due to their stability, cationic nature, biocompatibility, and ability to form well-defined structures. In this study, we evaluated their potential as drug carriers, focusing on the delivery of polyinosinic–polycytidylic acid (Poly(I:C)), an immunostimulatory synthetic RNA. To validate RNA delivery capability and rule out the possibility that observed effects arose from the lysozyme–Poly(I:C) complex itself, small interfering RNA (siRNA) was also used to verify that the successful delivery of intact and functional RNA was the cause of the observed effects. Methods: The aggregates were characterized by particle size, zeta potential, morphology, and RNA encapsulation efficiency. Results: In vitro studies using RAW 264.7 macrophage-like cells demonstrated that Poly(I:C)-loaded aggregates improved RNA uptake and triggered significant immune activation without inducing toxicity. To further confirm the potential of lysozyme amyloids in RNA delivery, GFP siRNA-loaded aggregates were evaluated in A549-GFP cells. A notable decrease in GFP expression, confirmed through confocal microscopy and flow cytometry, confirmed successful intracellular delivery. Conclusions: These results highlight the potential of lysozyme amyloids as non-viral vectors for RNA delivery, with promising applications in immunotherapy. Full article
24 pages, 34589 KiB  
Article
Extracellular Vesicle-Mediated miR-155 from Visceral Adipocytes Induces Skeletal Muscle Dysplasia in Obesity
by Yunyan Ji, Zeen Gong, Rui Liang, Di Wu, Wen Sun, Xiaomao Luo, Yi Yan, Jiayin Lu, Juan Wang and Haidong Wang
Cells 2025, 14(17), 1302; https://doi.org/10.3390/cells14171302 - 22 Aug 2025
Abstract
Obesity poses a serious threat to human health, with induced skeletal muscle dysfunction significantly increasing the risk of metabolic syndrome. In obesity, it is known that visceral adipose tissue (VAT) mediates the dysregulation of the adipose–muscle axis through exosome-delivered miRNAs, but the associated [...] Read more.
Obesity poses a serious threat to human health, with induced skeletal muscle dysfunction significantly increasing the risk of metabolic syndrome. In obesity, it is known that visceral adipose tissue (VAT) mediates the dysregulation of the adipose–muscle axis through exosome-delivered miRNAs, but the associated regulatory mechanisms remain incompletely elucidated. This study established an AAV-mediated miR-155 obese mouse model and a co-culture system (HFD VAD-evs/RAW264.7 cells/C2C12 cells) to demonstrate that high-fat diet-induced VA-derived extracellular vesicles (HFD VAD-evs) preferentially accumulate in skeletal muscle and induce developmental impairment. HFD VAD-evs disrupt skeletal muscle homeostasis through dual mechanisms: the direct suppression of myoblast development via exosomal miR-155 cargo and the indirect inhibition of myogenesis through macrophage-mediated inflammatory responses in skeletal muscle. Notably, miR-155 inhibition in HFD VAD-evs reversed obesity-associated myogenic deficits. These findings provide novel mechanistic insights into obesity-induced skeletal muscle dysregulation and facilitate potential therapeutic strategies targeting exosomal miRNA signaling. Full article
Show Figures

Figure 1

14 pages, 2288 KiB  
Article
Dual Protective Effects of Postbiotics and Cichorium intybus L. Mixture in the Sarcopenic and Inflammatory Models
by Harang Park, Jinsu Choi, Eunwoo Jeong, Hye-Yeong Song, Juyeong Moon, Min-ah Kim, Chunghyeon Lee, Junsoo Park, Jong Kwang Hong and Tack-Joong Kim
Biomedicines 2025, 13(9), 2046; https://doi.org/10.3390/biomedicines13092046 - 22 Aug 2025
Abstract
Background/Objectives: Recently, concerns about age-related conditions, such as sarcopenia and chronic inflammation, have increased owing to the global acceleration of population aging. Notably, these conditions are interrelated and further exacerbate functional decline in older adults. Therefore, this study aimed to evaluate the [...] Read more.
Background/Objectives: Recently, concerns about age-related conditions, such as sarcopenia and chronic inflammation, have increased owing to the global acceleration of population aging. Notably, these conditions are interrelated and further exacerbate functional decline in older adults. Therefore, this study aimed to evaluate the efficacy of a novel bioactive compound, DuoX (a mixture of the postbiotic beLP1 and Cichorium intybus L.), in alleviating muscle wasting and chronic inflammation. Specifically, the mixture consisted of inulin-rich C. intybus L. root extract, known for its anti-inflammatory effects, and beLP1, a postbiotic previously shown to exert anti-sarcopenic effects. Methods: To assess the multifunctional effects of the DuoX, dexamethasone-induced sarcopenia models (C2C12 myotubes and an in vivo rat model) and a lipopolysaccharide-stimulated RAW 264.7 macrophage inflammation model were established. Results: Pretreatment with DuoX prevented the dexamethasone-induced reduction in myotube diameter and effectively inhibited muscle degradation by downregulating the expression of atrogin-1 caused by dexamethasone treatment. In rats with DEX-induced sarcopenia, DuoX prevented muscle weight loss, grip strength reduction, and the upregulation of atrogin-1 expression in vivo. In lipopolysaccharide-stimulated RAW 264.7 macrophages, DuoX significantly reduced nitric oxide production and cyclooxygenase-2 protein expression and suppressed p38 and ERK phosphorylation in the MAPK signaling pathway, thereby alleviating inflammatory responses. Conclusions: DuoX holds promise as a dual-functional candidate with both anti-sarcopenic and anti-inflammatory properties. Further preclinical and clinical studies are required to validate its therapeutic efficacy and safety in humans, which may contribute to the development of preventive strategies for healthy aging. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

24 pages, 2544 KiB  
Article
Edible Flowers as Bioactive Food Ingredients with Antidiabetic Potential: A Study on Paeonia officinalis L., Forsythia × intermedia, Gomphrena globosa L., and Clitoria ternatea L.
by Maciej Książkiewicz, Michalina Karczewska, Filip Nawrot, Karolina Grabowska, Marcin Szymański, Judyta Cielecka-Piontek and Elżbieta Studzińska-Sroka
Plants 2025, 14(16), 2603; https://doi.org/10.3390/plants14162603 - 21 Aug 2025
Abstract
Type 2 diabetes is a serious public health problem in the 21st century. To find new substances supporting diabetes therapy, researchers are increasingly paying attention to the biological potential of edible flowers. This study assessed the antidiabetic potential of ethanol, 50% ethanol, and [...] Read more.
Type 2 diabetes is a serious public health problem in the 21st century. To find new substances supporting diabetes therapy, researchers are increasingly paying attention to the biological potential of edible flowers. This study assessed the antidiabetic potential of ethanol, 50% ethanol, and water extracts from Paeonia officinalis L., Forsythia × intermedia, Gomphrena globosa L., and Clitoria ternatea L. flowers. Extracts were tested for antioxidant activity (DPPH, ABTS, FRAP, CUPRAC, and Fe2+ chelation), enzyme inhibition (α-glucosidase, α-amylase, hyaluronidase, and cholinesterases), and anti-inflammatory effects (NO inhibition in LPS-stimulated RAW264.7 macrophages). Phytochemical composition was also analysed. Extracts of P. officinalis stood out with the highest total phenolic content (50% ethanol extract of P. officinalis 178.49 mg GAE/g) and total flavonoid content (aqueous extracts of P. officinalis 4.27 mg QE/g), high gallic acid level, and the effective inhibition of α-glucosidase and α-amylase (α-glucosidase inhibition 98–99% for all P. officinalis extracts, and α-amylase inhibition ~ 100% for ethanolic extract). Strong hyaluronidase (76.9–95.5%) and cholinesterase inhibition was also observed. F. × intermedia extracts were rich in rutin and chlorogenic acid and showed potent inhibitory effects on α-glucosidase (50% ethanol extract 91.59%), α-amylase (aqueous extract 89.35%), and hyaluronidase (aqueous extract 73.8%). Ethanol extracts of G. globosa exhibited a high α-amylase inhibition (93–95%). Although C. ternatea showed moderate antioxidant activity, it showed an apparent anti-inflammatory effect, effectively reducing NO production in activated macrophages for 50% ethanol extract. In summary, P. officinalis and F. × intermedia flowers are promising sources of extracts with antioxidant, antidiabetic, and anti-inflammatory effects supporting their use in further research on type 2 diabetes therapy. Full article
(This article belongs to the Special Issue Bioactive Plants, Phytocompounds and Plant-Derived Food)
Show Figures

Graphical abstract

19 pages, 3217 KiB  
Article
Highly Soluble Mussel Foot Protein and Its Derivatives Inhibit Inflammation by Targeting NF-κB/PI3K-Akt Signaling and Promoting M2 Macrophage Polarization
by Na Li, Yu Li, Jiren Xu, Jeevithan Elango and Wenhui Wu
Antioxidants 2025, 14(8), 1021; https://doi.org/10.3390/antiox14081021 - 21 Aug 2025
Viewed by 238
Abstract
Chronic inflammation is closely associated with various diseases, underscoring the need for natural, biocompatible anti-inflammatory candidates. For this purpose, mussel foot protein could be an excellent candidate due to its diverse biological activities. Hence, this study systematically evaluates the anti-inflammatory effects of a [...] Read more.
Chronic inflammation is closely associated with various diseases, underscoring the need for natural, biocompatible anti-inflammatory candidates. For this purpose, mussel foot protein could be an excellent candidate due to its diverse biological activities. Hence, this study systematically evaluates the anti-inflammatory effects of a highly soluble mussel foot protein (HMFP) and HMFP-PEG using LPS-stimulated RAW264.7 cells as an in vitro inflammation model. The results reveal that both HMFP and HMFP-PEG markedly reduced intracellular reactive oxygen species (ROS) levels and suppressed the secretion of pro-inflammatory mediators, including IL-1β, TNF-α, and NO, while promoting the production of anti-inflammatory cytokines such as IL-10 and TGF-β. Mechanistically, both agents markedly inhibited the LPS-induced phosphorylation of PI3K, Akt, NF-κB, and IκB, indicating that their anti-inflammatory effects are mediated via suppression of the PI3K/Akt and NF-κB signaling pathways. Furthermore, HMFP and HMFP-PEG downregulated the expression of the inflammatory marker iNOS and markedly upregulated the M2 macrophage marker CD206, suggesting a role in promoting macrophage polarization toward an anti-inflammatory M2 phenotype. Notably, NF-κB signaling was identified as a key mediator in the anti-inflammatory mechanisms of both HMFP and its PEG-modified form. Collectively, these findings demonstrate that HMFP and HMFP-PEG exert significant anti-inflammatory effects through dual inhibition of NF-κB and PI3K/Akt signaling and by promoting M2 macrophage polarization, indicating their potential as promising candidates for the treatment of inflammation-related diseases. Full article
(This article belongs to the Section ROS, RNS and RSS)
Show Figures

Figure 1

20 pages, 2328 KiB  
Article
Effect of Silk Fibroin as a Sustainable Solvent on the Extraction of Bixin from Annatto Seeds (Bixa orellana L.)
by Swanny Ferreira Borges, Fabricio H. e Holanda, Kaio C. De Maria, Sônia do Socorro do C. Oliveira, David E. Q. Jimenez, Celisnolia Morais Leite, Valtencir Zucolotto and Irlon M. Ferreira
Sustainability 2025, 17(16), 7518; https://doi.org/10.3390/su17167518 - 20 Aug 2025
Viewed by 201
Abstract
Bixin, an apocarotenoid from Bixa orellana seeds, is a valuable natural pigment with industrial and pharmacological applications. Traditional extraction methods rely on organic solvents, but eco-friendly alternatives like silk fibroin solution (SFS) are emerging. This study evaluated SFS for bixin extraction from annatto [...] Read more.
Bixin, an apocarotenoid from Bixa orellana seeds, is a valuable natural pigment with industrial and pharmacological applications. Traditional extraction methods rely on organic solvents, but eco-friendly alternatives like silk fibroin solution (SFS) are emerging. This study evaluated SFS for bixin extraction from annatto seeds, optimizing conditions using Box-Behnken Design (BBD). The optimal parameters 1.5% SFS, 60 °C, and 60 min yielded 10.87 mg/mL (liquid extract of annatto seeds, LEAS + SFS) and 150.72 mg/g (solid extract of annatto seeds, SEAS + SFS). Cell viability was assessed in human dermal fibroblasts (HDFn) and RAW 264.7 murine macrophages via MTT assay. After 24 and 72 h, LEAS + SFS, SEAS + SFS, purified bixin (PB), and SFS maintained >70% viability in HDFn cells. Similarly, RAW 264.7 cells showed >70% viability after 24 h, indicating low cytotoxicity. These results highlight the biocompatibility of SFS-extracted bixin, supporting its potential in food, cosmetics, and biomedicine. The study demonstrates that SFS is an effective, sustainable alternative to traditional solvents, offering high extraction efficiency and minimal toxicity. This method aligns with green chemistry principles, providing a promising solution for bixin production. Full article
Show Figures

Graphical abstract

15 pages, 2640 KiB  
Article
Benzofuran Derivatives with Antimicrobial and Anti-Inflammatory Activities from Penicillium crustosum SCNU-F0046
by Chen Chen, Jinbi Kang, Ruiqi Zhang, Hao Jia, Zirong Lin, Zhengming Liu, Rongrong Liu, Xinyi Zou and Yuhua Long
Int. J. Mol. Sci. 2025, 26(16), 7861; https://doi.org/10.3390/ijms26167861 - 14 Aug 2025
Viewed by 218
Abstract
A chemical investigation on the marine-derived fungus Penicillium crustosum SCNU-F0046 resulted in the isolation and characterization of four new benzofurans (1, 2, 5, 6) and four known analogues (3, 4, 7, 8). Their [...] Read more.
A chemical investigation on the marine-derived fungus Penicillium crustosum SCNU-F0046 resulted in the isolation and characterization of four new benzofurans (1, 2, 5, 6) and four known analogues (3, 4, 7, 8). Their structures were elucidated by a combination of mass, NMR spectroscopy, electronic circular dichroism (ECD) calculations and X-ray crystallographic analyses. The antimicrobial experiments disclosed compound 1 exhibited moderate antibacterial activity, while compound 6 showed antifungal activity. In addition, the anti-inflammatory activity of aza-benzofuran compounds (14) was also evaluated. Bioassays revealed that compounds 1 and 4 exhibited anti-inflammatory activity by inhibiting nitric oxide release without cytotoxicity in lipopolysaccharide (LPS)-stimulated RAW 264.7 mouse macrophages with IC50 values of 17.3 and 16.5 μM, respectively. The docking study revealed that compounds 1 and 4 exhibited an ideal fit within the active site of the murine inducible nitric oxide synthase (iNOS), establishing characteristic hydrogen bonds. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

15 pages, 1514 KiB  
Article
Injectable Thermosensitive Hydrogel Containing Bakuchiol Reduces Periodontal Inflammation and Alveolar Bone Loss in a Rat Model
by Seong-Jin Shin, Gyu-Yeon Shim, Seong-Hee Moon, Yu-Jin Kim, Hyun-Jin Kim, Seunghan Oh, Jung-Hwan Lee and Ji-Myung Bae
J. Funct. Biomater. 2025, 16(8), 292; https://doi.org/10.3390/jfb16080292 - 13 Aug 2025
Viewed by 752
Abstract
This study aimed to develop and evaluate a bakuchiol-loaded thermosensitive hydrogel (BTH) as a novel local drug delivery system for the management of periodontitis. Bakuchiol, a natural phenolic compound extracted from Psoralea corylifolia, was incorporated into a hydrogel composed of poloxamers and [...] Read more.
This study aimed to develop and evaluate a bakuchiol-loaded thermosensitive hydrogel (BTH) as a novel local drug delivery system for the management of periodontitis. Bakuchiol, a natural phenolic compound extracted from Psoralea corylifolia, was incorporated into a hydrogel composed of poloxamers and carboxymethylcellulose. The gelation behavior, physicochemical properties, and drug release profile were analyzed. Additionally, antibacterial activity against Porphyromonas gingivalis was assessed. Cytotoxicity was evaluated in human gingival fibroblasts and RAW 264.7 cells. Anti-inflammatory effects were determined by measuring proinflammatory cytokine expression in lipopolysaccharide-stimulated RAW 264.7 macrophages. Furthermore, alveolar bone loss, cytokine expression, and histological findings were assessed in a rat model of ligature-induced periodontitis. BTH demonstrated sol–gel transition at body temperature, with sustained drug release over 15 days. Moreover, it exhibited significant antibacterial activity against P. gingivalis and was non-cytotoxic at an extract concentration of 6.25%. In vitro, it significantly downregulated inflammatory cytokines in activated macrophages. In vivo, BTH application reduced alveolar bone loss and interleukin-1β expression in gingival tissues. Histological analysis confirmed decreased inflammatory cell infiltration and alveolar bone destruction. Thus, BTH demonstrated both antibacterial and anti-inflammatory activities, exhibiting potential as a promising therapeutic strategy for localized periodontal treatment. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

22 pages, 7562 KiB  
Article
Mannan-Containing Polymers from Hadal Bacterium Psychrobacter pulmonis: Preparation, Structural Analysis, Immunological Activity and Antitumor Effects
by Mingxing Qi, Shuqiang Yan, Yukun Cui, Yanan Huang, Yang Liu, Wenhui Wu, Xi Yu and Peipei Wang
Mar. Drugs 2025, 23(8), 326; https://doi.org/10.3390/md23080326 - 12 Aug 2025
Viewed by 356
Abstract
Microbial exopolysaccharides from extreme environments are increasingly becoming valuable candidates for drug development. In this study, four fractions named XL-1, XMRS-1, XL-1-D, and XMRS-1-D were isolated and purified from the hadal bacterium Psychrobacter pulmonis by column chromatography. The structural features of these fractions [...] Read more.
Microbial exopolysaccharides from extreme environments are increasingly becoming valuable candidates for drug development. In this study, four fractions named XL-1, XMRS-1, XL-1-D, and XMRS-1-D were isolated and purified from the hadal bacterium Psychrobacter pulmonis by column chromatography. The structural features of these fractions were characterized by molecular weight, monosaccharide composition, Fourier transform infrared (FTIR) spectrum, amino acid analysis and NMR. The results showed that XL-1 and XMRS-1 were mainly composed of mannose, glucose, and glucosamine, while XL-1-D and XMRS-1-D were mainly composed of mannose. In vitro bioactivity assays demonstrated that all four fractions significantly enhanced RAW264.7 macrophage proliferation and phagocytosis, stimulated nitric oxide (NO) and reactive oxygen species (ROS) production, and induced the secretion of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and the expression of inducible nitric oxide synthase (iNOS) mRNA. Moreover, plate cloning tests, cell scratch tests, and apoptosis assays, along with RT-qPCR analysis, demonstrated that the four fractions significantly inhibited A549 cells’ proliferation. Specifically, XMRS-1 and XMRS-1-D upregulated Bax, Caspase-3, Caspase-8, and Caspase-9, while downregulating Bcl-2, suggesting transcriptional activation of apoptosis-related pathways. These results offered a reference for the further development and utilization of this hadal bacterium in the future. Full article
(This article belongs to the Special Issue Exopolysaccharide Isolated from Marine Microorganisms)
Show Figures

Figure 1

24 pages, 12879 KiB  
Article
Evaluation of Sterilized Bioactive-Glass-Coated Magnetic Nanoparticles: Physicochemical Integrity and Biological Compatibility After Gamma Irradiation
by João Gabriel Acioli de Siqueira, Ângela Leão Andrade, Rodrigo Ribeiro de Andrade, Pedro Igor Macário Viana, Lucas Resende Dutra Sousa, Paula Melo de Abreu Vieira, Gabriel Maia Vieira, Tatiane Cristine Silva de Almeida, Maximiliano Delany Martins, Samantha Roberta Machado de Oliveira, Flaviano dos Santos Martins, Marcelo Barbosa de Andrade, Rosana Zacarias Domingues, Alfredo Miranda de Goes, Guilherme Mattos Jardim Costa and Thalita Marcolan Valverde
Pharmaceutics 2025, 17(8), 1048; https://doi.org/10.3390/pharmaceutics17081048 - 12 Aug 2025
Viewed by 586
Abstract
Background/Objectives: Gamma irradiation is a promising terminal sterilization method for nanoparticle-based biomedical systems. However, its potential effects on the physicochemical properties and biological performance of multifunctional nanomaterials must be carefully evaluated. This study aimed to assess the structural integrity, sterility, and cytocompatibility [...] Read more.
Background/Objectives: Gamma irradiation is a promising terminal sterilization method for nanoparticle-based biomedical systems. However, its potential effects on the physicochemical properties and biological performance of multifunctional nanomaterials must be carefully evaluated. This study aimed to assess the structural integrity, sterility, and cytocompatibility of magnetic nanoparticles (MNPs) and bioactive-glass-coated magnetic nanoparticles (MNPBGs), both based on magnetite (Fe3O4), after gamma irradiation. Methods: MNPs and MNPBGs were synthesized and subjected to gamma irradiation at 25 kGy, with additional doses explored in preliminary evaluations. Physicochemical characterizations were performed using XRD, TEM, SAED, and Raman spectroscopy. FTIR analyses were conducted on bioactive glass (BG) controls without magnetite. Sterility was evaluated via microbiological assays. Cytocompatibility and nitric oxide (NO) production were assessed using RAW 264.7 macrophages and Saos-2 osteosarcoma cells. Prussian blue staining was used to evaluate cellular uptake. Results: Gamma irradiation preserved the crystal structure, morphology, and size distribution of the nanoparticles. FTIR revealed only minor changes in the silicate network of BG, such as reduced intensity and slight shifting of Si-O-Si and Si-O-NBO bands, indicating limited radiation-induced structural rearrangement without affecting the material’s stability or cytocompatibility. Microbiological assays confirmed complete inhibition of microbial growth. All irradiated samples exhibited high cytocompatibility, with MNPBGs demonstrating enhanced biological responses. Notably, MNPBGs induced a more pronounced NO production in macrophages. Cellular uptake of nanoparticles by Saos-2 cells remained unaffected after irradiation. Conclusions: Gamma irradiation at 25 kGy is an effective sterilization strategy that maintains the structural and functional integrity of MNPs and MNPBGs. These findings support their safe use in sterile biomedical applications, particularly for bone-related therapies involving immunomodulation and drug delivery, with potential relevance for cancer treatment strategies such as osteosarcoma. Full article
Show Figures

Figure 1

16 pages, 2365 KiB  
Article
Surface Charge Affects the Intracellular Fate and Clearance Dynamics of CdSe/ZnS Quantum Dots in Macrophages
by Yuan-Yuan Liu, Yong-Yue Sun, Yuan Guo, Lu-Lu Chen, Jun-Hao Guo and Haifang Wang
Nanomaterials 2025, 15(15), 1189; https://doi.org/10.3390/nano15151189 - 3 Aug 2025
Viewed by 423
Abstract
The biological effects of nanoparticles are closely related to their intracellular content and location, both of which are influenced by various factors. This study investigates the effects of surface charge on the uptake, intracellular distribution, and exocytosis of CdSe/ZnS quantum dots (QDs) in [...] Read more.
The biological effects of nanoparticles are closely related to their intracellular content and location, both of which are influenced by various factors. This study investigates the effects of surface charge on the uptake, intracellular distribution, and exocytosis of CdSe/ZnS quantum dots (QDs) in Raw264.7 macrophages. Negatively charged 3-mercaptopropanoic acid functionalized QDs (QDs-MPA) show higher cellular uptake than positively charged 2-mercaptoethylamine functionalized QDs (QDs-MEA), and serum enhances the uptake of both types of QDs via protein corona-mediated receptor endocytosis. QDs-MEA primarily enter the cells through clathrin/caveolae-mediated pathways and predominantly accumulate in lysosomes, while QDs-MPA are mainly internalized through clathrin-mediated endocytosis and localize to both lysosomes and mitochondria. Exocytosis of QDs-MPA is faster and more efficient than that of QDs-MEA, though both exhibit limited excretion. In addition to endocytosis and exocytosis, cell division influences intracellular QD content over time. These results reveal the charge-dependent interactions between QDs and macrophages, providing a basis for designing biocompatible nanomaterials. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

23 pages, 3243 KiB  
Article
Design of Experiments Leads to Scalable Analgesic Near-Infrared Fluorescent Coconut Nanoemulsions
by Amit Chandra Das, Gayathri Aparnasai Reddy, Shekh Md. Newaj, Smith Patel, Riddhi Vichare, Lu Liu and Jelena M. Janjic
Pharmaceutics 2025, 17(8), 1010; https://doi.org/10.3390/pharmaceutics17081010 - 1 Aug 2025
Viewed by 401
Abstract
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription [...] Read more.
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription medication for pain reaching approximately USD 17.8 billion. Theranostic pain nanomedicine therefore emerges as an attractive analgesic strategy with the potential for increased efficacy, reduced side-effects, and treatment personalization. Theranostic nanomedicine combines drug delivery and diagnostic features, allowing for real-time monitoring of analgesic efficacy in vivo using molecular imaging. However, clinical translation of these nanomedicines are challenging due to complex manufacturing methodologies, lack of standardized quality control, and potentially high costs. Quality by Design (QbD) can navigate these challenges and lead to the development of an optimal pain nanomedicine. Our lab previously reported a macrophage-targeted perfluorocarbon nanoemulsion (PFC NE) that demonstrated analgesic efficacy across multiple rodent pain models in both sexes. Here, we report PFC-free, biphasic nanoemulsions formulated with a biocompatible and non-immunogenic plant-based coconut oil loaded with a COX-2 inhibitor and a clinical-grade, indocyanine green (ICG) near-infrared fluorescent (NIRF) dye for parenteral theranostic analgesic nanomedicine. Methods: Critical process parameters and material attributes were identified through the FMECA (Failure, Modes, Effects, and Criticality Analysis) method and optimized using a 3 × 2 full-factorial design of experiments. We investigated the impact of the oil-to-surfactant ratio (w/w) with three different surfactant systems on the colloidal properties of NE. Small-scale (100 mL) batches were manufactured using sonication and microfluidization, and the final formulation was scaled up to 500 mL with microfluidization. The colloidal stability of NE was assessed using dynamic light scattering (DLS) and drug quantification was conducted through reverse-phase HPLC. An in vitro drug release study was conducted using the dialysis bag method, accompanied by HPLC quantification. The formulation was further evaluated for cell viability, cellular uptake, and COX-2 inhibition in the RAW 264.7 macrophage cell line. Results: Nanoemulsion droplet size increased with a higher oil-to-surfactant ratio (w/w) but was no significant impact by the type of surfactant system used. Thermal cycling and serum stability studies confirmed NE colloidal stability upon exposure to high and low temperatures and biological fluids. We also demonstrated the necessity of a solubilizer for long-term fluorescence stability of ICG. The nanoemulsion showed no cellular toxicity and effectively inhibited PGE2 in activated macrophages. Conclusions: To our knowledge, this is the first instance of a celecoxib-loaded theranostic platform developed using a plant-derived hydrocarbon oil, applying the QbD approach that demonstrated COX-2 inhibition. Full article
(This article belongs to the Special Issue Quality by Design in Pharmaceutical Manufacturing)
Show Figures

Graphical abstract

15 pages, 1487 KiB  
Article
Protective Effects of a Bifidobacterium-Based Probiotic Mixture on Gut Inflammation and Barrier Function
by Yeji You, Tae-Rahk Kim, Minn Sohn, Dongmin Yoo and Jeseong Park
Microbiol. Res. 2025, 16(8), 168; https://doi.org/10.3390/microbiolres16080168 - 1 Aug 2025
Viewed by 474
Abstract
Disruption of the intestinal epithelial barrier is a key driver of gut-derived inflammation in various disorders, yet strategies to preserve or restore barrier integrity remain limited. To address this, we evaluated a four-strain Bifidobacterium mixture—selected for complementary anti-inflammatory potency and industrial scalability—in lipopolysaccharide [...] Read more.
Disruption of the intestinal epithelial barrier is a key driver of gut-derived inflammation in various disorders, yet strategies to preserve or restore barrier integrity remain limited. To address this, we evaluated a four-strain Bifidobacterium mixture—selected for complementary anti-inflammatory potency and industrial scalability—in lipopolysaccharide (LPS)-challenged RAW 264.7 macrophages and a Caco-2/THP-1 transwell co-culture model. Pretreatment with the probiotic blend reduced nitric oxide (NO) release in a dose-dependent manner by 25.9–48.3% and significantly down-regulated the pro-inflammatory markers in macrophages. In the co-culture system, the formulation decreased these markers, increased transepithelial electrical resistance (TEER) by up to 31% at 105 colony-forming unit (CFU)/mL after 48 h, and preserved the membrane localization of tight junction (TJ) proteins. Adhesion to Caco-2 cells (≈ 6%) matched that of the benchmark probiotic Lacticaseibacillus rhamnosus GG, suggesting direct epithelial engagement. These in vitro findings demonstrate that this probiotic mixture can attenuate LPS-driven inflammation and reinforce epithelial architecture, providing a mechanistic basis for its further evaluation in animal models and clinical studies of intestinal inflammatory disorders. Full article
Show Figures

Figure 1

19 pages, 10625 KiB  
Article
SZC-6 Promotes Diabetic Wound Healing in Mice by Modulating the M1/M2 Macrophage Ratio and Inhibiting the MyD88/NF-χB Pathway
by Ang Xuan, Meng Liu, Lingli Zhang, Guoqing Lu, Hao Liu, Lishan Zheng, Juan Shen, Yong Zou and Shengyao Zhi
Pharmaceuticals 2025, 18(8), 1143; https://doi.org/10.3390/ph18081143 - 31 Jul 2025
Viewed by 473
Abstract
Background/Objectives: The prolonged M1-like pro-inflammatory polarization of macrophages is a key factor in the delayed healing of diabetic ulcers (DU). SIRT3, a primary mitochondrial deacetylase, has been identified as a regulator of inflammation and represents a promising new therapeutic target for DU [...] Read more.
Background/Objectives: The prolonged M1-like pro-inflammatory polarization of macrophages is a key factor in the delayed healing of diabetic ulcers (DU). SIRT3, a primary mitochondrial deacetylase, has been identified as a regulator of inflammation and represents a promising new therapeutic target for DU treatment. Nonetheless, the efficacy of existing SIRT3 agonists remains suboptimal. Methods: Here, we introduce a novel compound, SZC-6, demonstrating promising activity levels. Results: SZC-6 treatment down-regulated the expression of inflammatory factors in LPS-treated RAW264.7 cells and reduced the proportion of M1 macrophages. Mitosox, IF, and JC-1 staining revealed that SZC-6 preserved cellular mitochondrial homeostasis and reduced the accumulation of reactive oxygen species. In vivo experiments demonstrated that SZC-6 treatment accelerated wound healing in diabetic mice. Furthermore, HE and Masson staining revealed increased neovascularization at the wound site with SZC-6 treatment. Tissue immunofluorescence results indicated that SZC-6 effectively decreased the proportion of M1-like cells and increased the proportion of M2-like cells at the wound site. We also found that SZC-6 significantly reduced MyD88, p-IκBα, and NF-χB p65 protein levels and inhibited the nuclear translocation of P65 in LPS-treated cells. Conclusions: The study concluded that SZC-6 inhibited the activation of the NF-χB pathway, thereby reducing the inflammatory response and promoting skin healing in diabetic ulcers. SZC-6 shows promise as a small-molecule compound for promoting diabetic wound healing. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

13 pages, 2596 KiB  
Article
Bark Extracts of Chamaecyparis obtusa (Siebold & Zucc.) Endl. Attenuate LPS-Induced Inflammatory Responses in RAW264.7 Macrophages
by Bo-Ae Kim, Ji-A Byeon, Young-Ah Jang and Yong-Jin Kwon
Plants 2025, 14(15), 2346; https://doi.org/10.3390/plants14152346 - 29 Jul 2025
Viewed by 438
Abstract
Chamaecyparis obtusa (Siebold & Zucc.) Endl. (C. obtusa) is an evergreen conifer native to temperate regions such as South Korea and Japan, traditionally used for its anti-inflammatory properties. However, the molecular mechanisms underlying the anti-inflammatory effects of C. obtusa bark extracts [...] Read more.
Chamaecyparis obtusa (Siebold & Zucc.) Endl. (C. obtusa) is an evergreen conifer native to temperate regions such as South Korea and Japan, traditionally used for its anti-inflammatory properties. However, the molecular mechanisms underlying the anti-inflammatory effects of C. obtusa bark extracts remain poorly understood. In this study, I compared the biological activities of C. obtusa bark extracts prepared using boiling water (COWB) and 70% ethanol (COEB), and investigated their anti-inflammatory mechanisms in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. COEB significantly suppressed both mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), along with decreased production of their respective inflammatory mediators, nitric oxide (NO) and prostaglandin E2 (PGE2). Additionally, COEB selectively downregulated interleukin (IL)-1β expression, without affecting tumor necrosis factor-α (TNF-α), and unexpectedly upregulated IL-6. Notably, COEB did not inhibit the LPS-induced activation of major inflammatory signaling pathways, including mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), and Janus kinase/signal transducer and activator of transcription (JAK/STAT). These findings suggest that COEB exerts anti-inflammatory effects by modulating key inflammatory mediators independently of canonical signaling pathways and may offer a novel therapeutic strategy for controlling inflammation. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

Back to TopTop