Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (309)

Search Parameters:
Keywords = R-CNN+LSTM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4789 KB  
Article
AI-Driven Ensemble Learning for Spatio-Temporal Rainfall Prediction in the Bengawan Solo River Watershed, Indonesia
by Jumadi Jumadi, Danardono Danardono, Efri Roziaty, Agus Ulinuha, Supari Supari, Lam Kuok Choy, Farha Sattar and Muhammad Nawaz
Sustainability 2025, 17(20), 9281; https://doi.org/10.3390/su17209281 - 19 Oct 2025
Viewed by 129
Abstract
Reliable spatio-temporal rainfall prediction is a key element in disaster mitigation and water resource management in dynamic tropical regions such as the Bengawan Solo River Watershed. However, high climate variability and data limitations often pose significant challenges to the accuracy of conventional prediction [...] Read more.
Reliable spatio-temporal rainfall prediction is a key element in disaster mitigation and water resource management in dynamic tropical regions such as the Bengawan Solo River Watershed. However, high climate variability and data limitations often pose significant challenges to the accuracy of conventional prediction models. This study introduces an innovative approach by applying ensemble stacking, which combines machine learning models such as Random Forest (RF), Extreme Gradient Boosting (XGB), Support Vector Regression (SVR), Multi-Layer Perceptron (MLP), Light Gradient-Boosting Machine (LGBM) and deep learning models like Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Temporal Convolutional Networks (TCN), Convolutional Neural Network (CNN), and Transformer architecture based on monthly Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) data (1981–2024). The novelty of this research lies in the systematic exploration of various model combination scenarios—both classical and deep learning and the evaluation of their performance in projecting rainfall for 2025–2030. All base models were trained on the 1981–2019 period and validated with data from the 2020–2024 period, while ensemble stacking was developed using a linear regression meta-learner. The results show that the optimal ensemble scenario reduces the MAE to 53.735 mm, the RMSE to 69.242 mm, and increases the R2 to 0.795826—better than all individual models. Spatial and temporal analyses also indicate consistent model performance at most locations and times. Annual rainfall projections for 2025–2030 were then interpolated using IDW to generate a spatio-temporal rainfall distribution map. The improved accuracy provides a strong scientific basis for disaster preparedness, flood and drought management, and sustainable water planning in the Bengawan Solo River Watershed. Beyond this case, the approach demonstrates significant transferability to other climate-sensitive and data-scarce regions. Full article
Show Figures

Figure 1

22 pages, 4571 KB  
Article
Application of the VMD-CNN-BiLSTM-Attention Model in Daily Price Forecasting of NYMEX Natural Gas Futures
by Qiuli Jiang, Zebei Lin, Jiao Hu and Xuhui Liu
Appl. Sci. 2025, 15(20), 11169; https://doi.org/10.3390/app152011169 - 18 Oct 2025
Viewed by 96
Abstract
As a core clean energy source in the global energy transition, natural gas price fluctuations directly affect the energy market supply demand balance, industrial chain cost control, etc. Thus, accurate natural gas price prediction is crucial for market participants’ decision making and policymakers’ [...] Read more.
As a core clean energy source in the global energy transition, natural gas price fluctuations directly affect the energy market supply demand balance, industrial chain cost control, etc. Thus, accurate natural gas price prediction is crucial for market participants’ decision making and policymakers’ regulation. To tackle the issue that traditional single models fail to capture data patterns of the New York Mercantile Exchange (NYMEX) natural gas futures daily prices—due to their nonlinearity, high volatility, and multi-scale features—this study proposes a hybrid model: VMD-CNN-BiLSTM-attention, integrating Variational Mode Decomposition (VMD), Convolutional Neural Network (CNN), Bidirectional Long Short-Term Memory (BiLSTM), and an attention mechanism. A one-step to four-step forecasting comparison was conducted using NYMEX natural gas futures daily closing prices, with the proposed model vs. CNN-BiLSTM-Attention and Autoregressive Integrated Moving Average (ARIMA) models. The empirical results show that the VMD-CNN-BiLSTM-attention model outperforms the comparison models in terms of Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), etc. Specifically, its four-step forecast MAPE stays ≤3.5% and R2 ≥ 98%, demonstrating a stronger ability to capture complex price fluctuations, better accuracy, and stability than traditional single models and deep learning models without VMD, and provides reliable technical support for short-to-medium-term natural gas price prediction. Full article
Show Figures

Figure 1

27 pages, 3065 KB  
Article
Chinese Financial News Analysis for Sentiment and Stock Prediction: A Comparative Framework with Language Models
by Hsiu-Min Chuang, Hsiang-Chih He and Ming-Che Hu
Big Data Cogn. Comput. 2025, 9(10), 263; https://doi.org/10.3390/bdcc9100263 - 16 Oct 2025
Viewed by 372
Abstract
Financial news has a significant impact on investor sentiment and short-term stock price trends. While many studies have applied natural language processing (NLP) techniques to financial forecasting, most have focused on single tasks or English corpora, with limited research in non-English language contexts [...] Read more.
Financial news has a significant impact on investor sentiment and short-term stock price trends. While many studies have applied natural language processing (NLP) techniques to financial forecasting, most have focused on single tasks or English corpora, with limited research in non-English language contexts such as Taiwan. This study develops a joint framework to perform sentiment classification and short-term stock price prediction using Chinese financial news from Taiwan’s top 50 listed companies. Five types of word embeddings—one-hot, TF-IDF, CBOW, skip-gram, and BERT—are systematically compared across 17 traditional, deep, and Transformer models, as well as a large language model (LLaMA3) fully fine-tuned on the Chinese financial texts. To ensure annotation quality, sentiment labels were manually assigned by annotators with finance backgrounds and validated through a double-checking process. Experimental results show that a CNN using skip-gram embeddings achieves the strongest performance among deep learning models, while LLaMA3 yields the highest overall F1-score for sentiment classification. For regression, LSTM consistently provides the most reliable predictive power across different volatility groups, with Bayesian Linear Regression remaining competitive for low-volatility firms. LLaMA3 is the only Transformer-based model to achieve a positive R2 under high-volatility conditions. Furthermore, forecasting accuracy is higher for the five-day horizon than for the fifteen-day horizon, underscoring the increasing difficulty of medium-term forecasting. These findings confirm that financial news provides valuable predictive signals for emerging markets and that short-term sentiment-informed forecasts enhance real-time investment decisions. Full article
(This article belongs to the Special Issue Natural Language Processing Applications in Big Data)
Show Figures

Figure 1

24 pages, 12281 KB  
Article
Prediction Method of Available Nitrogen in Red Soil Based on BWO-CNN-LSTM
by Yun Deng, Yuchen Cao and Chang Liu
Appl. Sci. 2025, 15(20), 11077; https://doi.org/10.3390/app152011077 - 16 Oct 2025
Viewed by 189
Abstract
Accurate assessment of forest soil nitrogen from hyperspectral spectra is critical for precision fertilization, yet conventional preprocessing and baseline CNNs constrain predictive accuracy. We introduce streamlined spectral preprocessing and an optimized CNN–LSTM framework and evaluate it on Guangxi forest soils against competitive models [...] Read more.
Accurate assessment of forest soil nitrogen from hyperspectral spectra is critical for precision fertilization, yet conventional preprocessing and baseline CNNs constrain predictive accuracy. We introduce streamlined spectral preprocessing and an optimized CNN–LSTM framework and evaluate it on Guangxi forest soils against competitive models using standard validation metrics. Results: The proposed approach outperformed comparative models (CNN, LSTM, and BiLSTM), achieving a validation set R2 of 0.889 and RMSE of 16.5722, representing improvements of 6.79–10.37% in R2 and 18.60–24.44% in RMSE over baseline methods. The method delivers accurate, scalable nitrogen estimation from spectra, supporting timely fertilization decisions and sustainable soil management. Full article
Show Figures

Figure 1

28 pages, 7034 KB  
Article
Water Quality Prediction Model Based on Temporal Attentive Bidirectional Gated Recurrent Unit Model
by Hongyu Yang, Lei Guo and Qingqing Tian
Sustainability 2025, 17(20), 9155; https://doi.org/10.3390/su17209155 - 16 Oct 2025
Viewed by 268
Abstract
Water pollution has caused serious consequences for human health and aquatic systems. Therefore, analyzing and predicting water quality is of great significance for the early prevention and control of water pollution. Aiming at the shortcomings of the Gated Recurrent Unit (GRU) water quality [...] Read more.
Water pollution has caused serious consequences for human health and aquatic systems. Therefore, analyzing and predicting water quality is of great significance for the early prevention and control of water pollution. Aiming at the shortcomings of the Gated Recurrent Unit (GRU) water quality prediction model, such as the low utilization rate of early information and poor deep feature extraction ability of the hidden state mechanism, this study combines the temporal attention (TA) mechanism with the bidirectional superimposed neural network. A time-focused bidirectional gated recurrent unit (TA-Bi-GRU) model is proposed. Taking the actual water quality data of the water source reservoir in Xiduan Village as the research object, this model was used to predict four core water quality indicators, namely pH, ammonia nitrogen (NH3N), total nitrogen (TN), and dissolved oxygen (DOX). Predictions are made within multiple time ranges, with prediction periods of 7 days, 10 days, 15 days, and 30 days. In the long-term prediction of the TA-Bi-GRU model, its average R2 was 0.858 (7 days), 0.772 (10 days), 0.684 (15 days), and 0.553 (30 days), and the corresponding average MAE and MSE were both lower than those of the comparison models. The experimental results show that the TA-Bi-GRU model has higher prediction accuracy and stronger generalization ability compared with the existing GRU, bidirectional GRU (Bi-GRU), Time-focused Gated Recurrent Unit (TA-GRU), Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) and Deep Temporal Convolutional Networks-Long Short-Term Memory (DeepTCN-LSTM) models. Full article
Show Figures

Figure 1

31 pages, 8374 KB  
Article
Distributed Photovoltaic Short-Term Power Forecasting Based on Seasonal Causal Correlation Analysis
by Zhong Wang, Mao Yang, Jianfeng Che, Wei Xu, Wei He and Kang Wu
Appl. Sci. 2025, 15(20), 11063; https://doi.org/10.3390/app152011063 - 15 Oct 2025
Viewed by 146
Abstract
In recent years, with the development of distributed photovoltaic (PV) systems, their impact on power grids has become increasingly significant. However, the complexity of meteorological variations makes the prediction of distributed PV power challenging and often ineffective. This study proposes a short-term power [...] Read more.
In recent years, with the development of distributed photovoltaic (PV) systems, their impact on power grids has become increasingly significant. However, the complexity of meteorological variations makes the prediction of distributed PV power challenging and often ineffective. This study proposes a short-term power forecasting method for distributed photovoltaics that can identify seasonal characteristics matching weather types, enabling a deeper analysis of complex meteorological changes. First, historical power data is decomposed seasonally using the adaptive noise complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). Next, each component is reconstructed based on a characteristic similarity approach, and a two-stage feature selection process is applied to identify the most relevant features for reconstruction, addressing the issue of nonlinear variable selection. A CNN-LSTM-KAN model with multi-dimensional spatial representation is then proposed to model different weather types obtained by the K-shape clustering method, enabling the segmentation of weather processes. Finally, the proposed method is applied to a case study of distributed PV users in a certain province for short-term power prediction. The results indicate that, compared to traditional methods, the average RMSE decreases by 8.93%, the average MAE decreases by 4.82%, and the R2 increases by 9.17%, demonstrating the effectiveness of the proposed method. Full article
Show Figures

Figure 1

23 pages, 7368 KB  
Article
Construction and Comparative Analysis of a Water Quality Simulation and Prediction Model for Plain River Networks
by Yue Lan, Cundong Xu, Lianying Ding, Mingyan Wang, Zihao Ren and Zhihang Wang
Water 2025, 17(20), 2948; https://doi.org/10.3390/w17202948 - 13 Oct 2025
Viewed by 300
Abstract
In plain river networks, a sluggish flow due to the flat terrain and hydraulic structures significantly reduces water’s capacity for self-purification, leading to persistent water pollution that threatens aquatic ecosystems and human health. Despite being critical, effective water quality prediction proves challenging in [...] Read more.
In plain river networks, a sluggish flow due to the flat terrain and hydraulic structures significantly reduces water’s capacity for self-purification, leading to persistent water pollution that threatens aquatic ecosystems and human health. Despite being critical, effective water quality prediction proves challenging in such regions, with current models lacking either physical interpretability or temporal accuracy. To address this gap, both a process-based model (MIKE 21) and a deep learning model (CNN-LSTM-Attention) were developed in this study to predict key water quality indicators—dissolved oxygen (DO), total nitrogen (TN), and total phosphorus (TP)—in a typical river network area in Jiaxing, China. This site was selected for its representative complexity and acute pollution challenges. The MIKE 21 model demonstrated strong performance, with R2 values above 0.88 for all indicators, offering high spatial resolution and mechanistic insight. The CNN-LSTM-Attention model excelled in capturing temporal dynamics, achieving an R2 of 0.9934 for DO. The results indicate the complementary nature of these two approaches: while MIKE 21 supports scenario-based planning, the deep learning model enables highly accurate real-time forecasting. The findings are transferable to similar river network systems, providing a robust reference for selecting modeling frameworks in the design of water pollution control strategies. Full article
Show Figures

Figure 1

25 pages, 18664 KB  
Article
Study on Lower Limb Motion Intention Recognition Based on PO-SVMD-ResNet-GRU
by Wei Li, Mingsen Wang, Daxue Sun, Zhuoda Jia and Zhengwei Yue
Processes 2025, 13(10), 3252; https://doi.org/10.3390/pr13103252 - 13 Oct 2025
Viewed by 242
Abstract
This study aims to enhance the accuracy of human lower limb motion intention recognition based on surface electromyography (sEMG) signals and proposes a signal denoising method based on Sequential Variational Mode Decomposition (SVMD) optimized by the Parrot Optimization (PO) algorithm and a joint [...] Read more.
This study aims to enhance the accuracy of human lower limb motion intention recognition based on surface electromyography (sEMG) signals and proposes a signal denoising method based on Sequential Variational Mode Decomposition (SVMD) optimized by the Parrot Optimization (PO) algorithm and a joint motion angle prediction model combining Residual Network (ResNet) with Gated Recurrent Unit (GRU) for the two aspects of signal processing and predictive modeling, respectively. First, for the two motion conditions of level walking and stair climbing, sEMG signals from the rectus femoris, vastus lateralis, semitendinosus, and biceps femoris, as well as the motion angles of the hip and knee joints, were simultaneously collected from five healthy subjects, yielding a total of 400 gait cycle data points. The sEMG signals were denoised using the method combining PO-SVMD with wavelet thresholding. Compared with denoising methods such as Empirical Mode Decomposition, Partial Ensemble Empirical Mode Decomposition, Independent Component Analysis, and wavelet thresholding alone, the signal-to-noise ratio (SNR) of the proposed method was increased to a maximum of 23.42 dB. Then, the gait cycle information was divided into training and testing sets at a 4:1 ratio, and five models—ResNet-GRU, Transformer-LSTM, CNN-GRU, ResNet, and GRU—were trained and tested individually using the processed sEMG signals as input and the hip and knee joint movement angles as output. Finally, the root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2) were used as evaluation metrics for the test results. The results show that for both motion conditions, the evaluation metrics of the ResNet-GRU model in the test results are superior to those of the other four models. The optimal evaluation metrics for level walking are 2.512 ± 0.415°, 1.863 ± 0.265°, and 0.979 ± 0.007, respectively, while the optimal evaluation metrics for stair climbing are 2.475 ± 0.442°, 2.012 ± 0.336°, and 0.98 ± 0.009, respectively. The method proposed in this study achieves improvements in both signal processing and predictive modeling, providing a new method for research on lower limb motion intention recognition. Full article
Show Figures

Figure 1

22 pages, 3920 KB  
Article
An Applied Study on Predicting Natural Gas Prices Using Mixed Models
by Shu Tang, Dongphil Chun and Xuhui Liu
Energies 2025, 18(19), 5303; https://doi.org/10.3390/en18195303 - 8 Oct 2025
Viewed by 295
Abstract
Accurate natural gas price forecasting is vital for risk management, trading strategies, and policy-making in energy markets. This study proposes and evaluates four hybrid deep learning architectures—CNN-LSTM-Attention, CNN-BiLSTM-Attention, TCN-LSTM-Attention, and TCN-BiLSTM-Attention—integrating convolutional feature extraction, sequential learning, and attention mechanisms. Using Henry Hub and [...] Read more.
Accurate natural gas price forecasting is vital for risk management, trading strategies, and policy-making in energy markets. This study proposes and evaluates four hybrid deep learning architectures—CNN-LSTM-Attention, CNN-BiLSTM-Attention, TCN-LSTM-Attention, and TCN-BiLSTM-Attention—integrating convolutional feature extraction, sequential learning, and attention mechanisms. Using Henry Hub and NYMEX datasets, the models are trained on long historical periods and tested under multi-step horizons. The results show that all hybrid models significantly outperform the traditional moving average benchmark, achieving R2 values above 95% for one-step-ahead forecasts and maintaining an accuracy of over 87% at longer horizons. CNN-BiLSTM-Attention performs best in short-term prediction due to its ability to capture bidirectional dependencies, while TCN-based models demonstrate greater robustness over extended horizons due to their effective modeling of long-range temporal structures. These findings confirm the advantages of deep learning hybrids in energy forecasting and emphasize the importance of horizon-sensitive evaluation. This study contributes methodological innovation and provides practical insights for market participants, with future directions including the integration of macroeconomic and climatic factors, exploration of advanced architectures such as Transformers, and probabilistic forecasting for uncertainty quantification. Full article
Show Figures

Figure 1

21 pages, 8249 KB  
Article
Short-Term Passenger Flow Forecasting for Rail Transit Inte-Grating Multi-Scale Decomposition and Deep Attention Mechanism
by Youpeng Lu and Jiming Wang
Sustainability 2025, 17(19), 8880; https://doi.org/10.3390/su17198880 - 6 Oct 2025
Viewed by 452
Abstract
Short-term passenger flow prediction provides critical data-driven support for optimizing resource allocation, guiding passenger mobility, and enhancing risk response capabilities in urban rail transit systems. To further improve prediction accuracy, this study proposes a hybrid SMA-VMD-Informer-BiLSTM prediction model. Addressing the challenge of error [...] Read more.
Short-term passenger flow prediction provides critical data-driven support for optimizing resource allocation, guiding passenger mobility, and enhancing risk response capabilities in urban rail transit systems. To further improve prediction accuracy, this study proposes a hybrid SMA-VMD-Informer-BiLSTM prediction model. Addressing the challenge of error propagation caused by non-stationary components (e.g., noise and abrupt fluctuations) in conventional passenger flow signals, the Variational Mode Decomposition (VMD) method is introduced to decompose raw flow data into multiple intrinsic mode functions (IMFs). A Slime Mould Algorithm (SMA)-based optimization mechanism is designed to adaptively tune VMD parameters, effectively mitigating mode redundancy and information loss. Furthermore, to circumvent error accumulation inherent in serial modeling frameworks, a parallel prediction architecture is developed: the Informer branch captures long-term dependencies through its ProbSparse self-attention mechanism, while the Bidirectional Long Short-Term Memory (BiLSTM) network extracts localized short-term temporal patterns. The outputs of both branches are fused via a fully connected layer, balancing global trend adherence and local fluctuation characterization. Experimental validation using historical entry flow data from Weihouzhuang Station on Xi’an Metro demonstrated the superior performance of the SMA-VMD-Informer-BiLSTM model. Compared to benchmark models (CNN-BiLSTM, CNN-BiGRU, Transformer-LSTM, ARIMA-LSTM), the proposed model achieved reductions of 7.14–53.33% in fmse, 3.81–31.14% in frmse, and 8.87–38.08% in fmae, alongside a 4.11–5.48% improvement in R2. Cross-station validation across multiple Xi’an Metro hubs further confirmed robust spatial generalizability, with prediction errors bounded within fmse: 0.0009–0.01, frmse: 0.0303–0.1, fmae: 0.0196–0.0697, and R2: 0.9011–0.9971. Furthermore, the model demonstrated favorable predictive performance when applied to forecasting passenger inflows at multiple stations in Nanjing and Zhengzhou, showcasing its excellent spatial transferability. By integrating multi-level, multi-scale data processing and adaptive feature extraction mechanisms, the proposed model significantly mitigates error accumulation observed in traditional approaches. These findings collectively indicate its potential as a scientific foundation for refined operational decision-making in urban rail transit management, thereby significantly promoting the sustainable development and long-term stable operation of urban rail transit systems. Full article
Show Figures

Figure 1

24 pages, 73520 KB  
Article
2C-Net: A Novel Spatiotemporal Dual-Channel Network for Soil Organic Matter Prediction Using Multi-Temporal Remote Sensing and Environmental Covariates
by Jiale Geng, Chong Luo, Jun Lu, Depiao Kong, Xue Li and Huanjun Liu
Remote Sens. 2025, 17(19), 3358; https://doi.org/10.3390/rs17193358 - 3 Oct 2025
Viewed by 354
Abstract
Soil organic matter (SOM) is essential for ecosystem health and agricultural productivity. Accurate prediction of SOM content is critical for modern agricultural management and sustainable soil use. Existing digital soil mapping (DSM) models, when processing temporal data, primarily focus on modeling the changes [...] Read more.
Soil organic matter (SOM) is essential for ecosystem health and agricultural productivity. Accurate prediction of SOM content is critical for modern agricultural management and sustainable soil use. Existing digital soil mapping (DSM) models, when processing temporal data, primarily focus on modeling the changes in input data across successive time steps. However, they do not adequately model the relationships among different input variables, which hinders the capture of complex data patterns and limits the accuracy of predictions. To address this problem, this paper proposes a novel deep learning model, 2-Channel Network (2C-Net), leveraging sequential multi-temporal remote sensing images to improve SOM prediction. The network separates input data into temporal and spatial data, processing them through independent temporal and spatial channels. Temporal data includes multi-temporal Sentinel-2 spectral reflectance, while spatial data consists of environmental covariates including climate and topography. The Multi-sequence Feature Fusion Module (MFFM) is proposed to globally model spectral data across multiple bands and time steps, and the Diverse Convolutional Architecture (DCA) extracts spatial features from environmental data. Experimental results show that 2C-Net outperforms the baseline model (CNN-LSTM) and mainstream machine learning model for DSM, with R2 = 0.524, RMSE = 0.884 (%), MAE = 0.581 (%), and MSE = 0.781 (%)2. Furthermore, this study demonstrates the significant importance of sequential spectral data for the inversion of SOM content and concludes the following: for the SOM inversion task, the bare soil period after tilling is a more important time window than other bare soil periods. 2C-Net model effectively captures spatiotemporal features, offering high-accuracy SOM predictions and supporting future DSM and soil management. Full article
(This article belongs to the Special Issue Remote Sensing in Soil Organic Carbon Dynamics)
Show Figures

Figure 1

33 pages, 7835 KB  
Article
PyGEE-ST-MEDALUS: AI Spatiotemporal Framework Integrating MODIS and Sentinel-1/-2 Data for Desertification Risk Assessment in Northeastern Algeria
by Zakaria Khaldi, Jingnong Weng, Franz Pablo Antezana Lopez, Guanhua Zhou, Ilyes Ghedjatti and Aamir Ali
Remote Sens. 2025, 17(19), 3350; https://doi.org/10.3390/rs17193350 - 1 Oct 2025
Viewed by 508
Abstract
Desertification threatens the sustainability of dryland ecosystems, yet many existing monitoring frameworks rely on static maps, coarse spatial resolution, or lack temporal forecasting capacity. To address these limitations, this study introduces PyGEE-ST-MEDALUS, a novel spatiotemporal framework combining the full MEDALUS desertification model with [...] Read more.
Desertification threatens the sustainability of dryland ecosystems, yet many existing monitoring frameworks rely on static maps, coarse spatial resolution, or lack temporal forecasting capacity. To address these limitations, this study introduces PyGEE-ST-MEDALUS, a novel spatiotemporal framework combining the full MEDALUS desertification model with deep learning (CNN, LSTM, DeepMLP) and machine learning (RF, XGBoost, SVM) techniques on the Google Earth Engine (GEE) platform. Applied across Tebessa Province, Algeria (2001–2028), the framework integrates MODIS and Sentinel-1/-2 data to compute four core indices—climatic, soil, vegetation, and land management quality—and create the Desertification Sensitivity Index (DSI). Unlike prior studies that focus on static or spatial-only MEDALUS implementations, PyGEE-ST-MEDALUS introduces scalable, time-series forecasting, yielding superior predictive performance (R2 ≈ 0.96; RMSE < 0.03). Over 71% of the region was classified as having high to very high sensitivity, driven by declining vegetation and thermal stress. Comparative analysis confirms that this study advances the state-of-the-art by integrating interpretable AI, near-real-time satellite analytics, and full MEDALUS indicators into one cloud-based pipeline. These contributions make PyGEE-ST-MEDALUS a transferable, efficient decision-support tool for identifying degradation hotspots, supporting early warning systems, and enabling evidence-based land management in dryland regions. Full article
Show Figures

Graphical abstract

24 pages, 22010 KB  
Article
Improving the Temporal Resolution of Land Surface Temperature Using Machine and Deep Learning Models
by Mohsen Niroomand, Parham Pahlavani, Behnaz Bigdeli and Omid Ghorbanzadeh
Geomatics 2025, 5(4), 50; https://doi.org/10.3390/geomatics5040050 - 1 Oct 2025
Viewed by 426
Abstract
Land Surface Temperature (LST) is a critical parameter for analyzing urban heat islands, surface–atmosphere interactions, and environmental management. This study enhances the temporal resolution of LST data by leveraging machine learning and deep learning models. A novel methodology was developed using Landsat 8 [...] Read more.
Land Surface Temperature (LST) is a critical parameter for analyzing urban heat islands, surface–atmosphere interactions, and environmental management. This study enhances the temporal resolution of LST data by leveraging machine learning and deep learning models. A novel methodology was developed using Landsat 8 thermal data and Sentinel-2 multispectral imagery to predict LST at finer temporal intervals in an urban setting. Although Sentinel-2 lacks a thermal band, its high-resolution multispectral data, when integrated with Landsat 8 thermal observations, provide valuable complementary information for LST estimation. Several models were employed for LST prediction, including Random Forest Regression (RFR), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) network, and Gated Recurrent Unit (GRU). Model performance was assessed using the coefficient of determination (R2) and Mean Absolute Error (MAE). The CNN model demonstrated the highest predictive capability, achieving an R2 of 74.81% and an MAE of 1.588 °C. Feature importance analysis highlighted the role of spectral bands, spectral indices, topographic parameters, and land cover data in capturing the dynamic complexity of LST variations and directional patterns. A refined CNN model, trained with the features exhibiting the highest correlation with the reference LST, achieved an improved R2 of 84.48% and an MAE of 1.19 °C. These results underscore the importance of a comprehensive analysis of the factors influencing LST, as well as the need to consider the specific characteristics of the study area. Additionally, a modified TsHARP approach was applied to enhance spatial resolution, though its accuracy remained lower than that of the CNN model. The study was conducted in Tehran, a rapidly urbanizing metropolis facing rising temperatures, heavy traffic congestion, rapid horizontal expansion, and low energy efficiency. The findings contribute to urban environmental management by providing high-temporal-resolution LST data, essential for mitigating urban heat islands and improving climate resilience. Full article
Show Figures

Figure 1

26 pages, 5143 KB  
Article
SymOpt-CNSVR: A Novel Prediction Model Based on Symmetric Optimization for Delivery Duration Forecasting
by Kun Qi, Wangyu Wu and Yao Ni
Symmetry 2025, 17(10), 1608; https://doi.org/10.3390/sym17101608 - 28 Sep 2025
Viewed by 392
Abstract
Accurate prediction of food delivery time is crucial for enhancing operational efficiency and customer satisfaction in real-world logistics and intelligent dispatch systems. To address this challenge, this study proposes a novel symmetric optimization prediction framework, termed SymOpt-CNSVR. The framework is designed to leverage [...] Read more.
Accurate prediction of food delivery time is crucial for enhancing operational efficiency and customer satisfaction in real-world logistics and intelligent dispatch systems. To address this challenge, this study proposes a novel symmetric optimization prediction framework, termed SymOpt-CNSVR. The framework is designed to leverage the strengths of both deep learning and statistical learning models in a complementary architecture. It employs a Convolutional Neural Network (CNN) to extract and assess the importance of multi-feature data. An Enhanced Superb Fairy-Wren Optimization Algorithm (ESFOA) is utilized to optimize the diverse hyperparameters of the CNN, forming an optimal adaptive feature extraction structure. The significant features identified by the CNN are then fed into a Support Vector Regression (SVR) model, whose hyperparameters are optimized using Bayesian optimization, for final prediction. This combination reduces the overall parameter search time and incorporates probabilistic reasoning. Extensive experimental evaluations demonstrate the superior performance of the proposed SymOpt-CNSVR model. It achieves outstanding results with an R2 of 0.9269, MAE of 3.0582, RMSE of 4.1947, and MSLE of 0.1114, outperforming a range of benchmark and state-of-the-art models. Specifically, the MAE was reduced from 4.713 (KNN) and 5.2676 (BiLSTM) to 3.0582, and the RMSE decreased from 6.9073 (KNN) and 6.9194 (BiLSTM) to 4.1947. The results confirm the framework’s powerful capability and robustness in handling high-dimensional delivery time prediction tasks. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

39 pages, 10741 KB  
Article
Modeling the Dynamics of the Jebel Zaghouan Karst Aquifer Using Artificial Neural Networks: Toward Improved Management of Vulnerable Water Resources
by Emna Gargouri-Ellouze, Tegawende Arnaud Ouedraogo, Fairouz Slama, Jean-Denis Taupin, Nicolas Patris and Rachida Bouhlila
Hydrology 2025, 12(10), 250; https://doi.org/10.3390/hydrology12100250 - 26 Sep 2025
Viewed by 532
Abstract
Karst aquifers are critical yet vulnerable water resources in semi-arid Mediterranean regions, where structural complexity, nonlinearity, and delayed hydrological responses pose significant modeling challenges under increasing climatic and anthropogenic pressures. This study examines the Jebel Zaghouan aquifer in northeastern Tunisia, aiming to simulate [...] Read more.
Karst aquifers are critical yet vulnerable water resources in semi-arid Mediterranean regions, where structural complexity, nonlinearity, and delayed hydrological responses pose significant modeling challenges under increasing climatic and anthropogenic pressures. This study examines the Jebel Zaghouan aquifer in northeastern Tunisia, aiming to simulate its natural discharge dynamics prior to intensive exploitation (1915–1944). Given the fragmented nature of historical datasets, meteorological inputs (rainfall, temperature, and pressure) were reconstructed using a data recovery process combining linear interpolation and statistical distribution fitting. The hyperparameters of the artificial neural network (ANN) model were optimized through a Bayesian search. Three deep learning architectures—Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM)—were trained to model spring discharge. Model performance was evaluated using Kling–Gupta Efficiency (KGE′), Nash–Sutcliffe Efficiency (NSE), and R2 metrics. Hydrodynamic characterization revealed moderate variability and delayed discharge response, while isotopic analyses (δ18O, δ2H, 3H, 14C) confirmed a dual recharge regime from both modern and older waters. LSTM outperformed other models at the weekly scale (KGE′ = 0.62; NSE = 0.48; R2 = 0.68), effectively capturing memory effects. This study demonstrates the value of combining historical data rescue, ANN modeling, and hydrogeological insight to support sustainable groundwater management in data-scarce karst systems. Full article
Show Figures

Graphical abstract

Back to TopTop