Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (108)

Search Parameters:
Keywords = QTAIM-C

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1941 KiB  
Article
Structural, Quantum Chemical, and Cytotoxicity Analysis of Acetylplatinum(II) Complexes with PASO2 and DAPTA Ligands
by Stefan Richter, Dušan Dimić, Milena R. Kaluđerović, Fabian Mohr and Goran N. Kaluđerović
Inorganics 2025, 13(8), 253; https://doi.org/10.3390/inorganics13080253 - 27 Jul 2025
Viewed by 331
Abstract
The development of novel platinum-based anticancer agents remains a critical objective in medicinal inorganic chemistry, particularly in light of resistance and toxicity limitations associated with cisplatin. In this study, the synthesis, structural characterization, quantum chemical analysis, and cytotoxic evaluation of four new acetylplatinum(II) [...] Read more.
The development of novel platinum-based anticancer agents remains a critical objective in medicinal inorganic chemistry, particularly in light of resistance and toxicity limitations associated with cisplatin. In this study, the synthesis, structural characterization, quantum chemical analysis, and cytotoxic evaluation of four new acetylplatinum(II) complexes (cis-[Pt(COMe)2(PASO2)2], cis-[Pt(COMe)2(DAPTA)2], trans-[Pt(COMe)Cl(DAPTA)2], and trans-[Pt(COMe)Cl(PASO2)]: 14, respectively) bearing cage phosphine ligands PASO2 (2-thia-1,3,5-triaza-phosphaadamantane 2,2-dioxide) and DAPTA (3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane) are presented. The coordination geometries and NMR spectral features of the cis/trans isomers were elucidated through multinuclear NMR and DFT calculations at the B3LYP/6-311++G(d,p)/LanL2DZ level, with strong agreement between experimental and theoretical data. Quantum Theory of Atoms in Molecules (QTAIM) analysis was applied to investigate bonding interactions and assess the covalent character of Pt–ligand bonds. Cytotoxicity was evaluated against five human cancer cell lines. The PASO2-containing complex in cis-configuration, 1, demonstrated superior activity against thyroid (8505C) and head and neck (A253) cancer cells, with potency surpassing that of cisplatin. The DAPTA complex 2 showed enhanced activity toward ovarian (A2780) cancer cells. These findings highlight the influence of ligand structure and isomerism on biological activity, supporting the rational design of phosphine-based Pt(II) anticancer drugs. Full article
Show Figures

Figure 1

20 pages, 4322 KiB  
Article
The 1D Hybrid Material Allylimidazolium Iodoantimonate: A Combined Experimental and Theoretical Study
by Hela Ferjani, Rim Bechaieb, Diego M. Gil and Axel Klein
Inorganics 2025, 13(7), 243; https://doi.org/10.3390/inorganics13070243 - 15 Jul 2025
Viewed by 432
Abstract
The one-dimensional (1D) Sb(III)-based organic–inorganic hybrid perovskite (AImd)21[SbI5] (AImd = 1-allylimidazolium) crystallizes in the orthorhombic, centrosymmetric space group Pnma. The structure consists of corner-sharing [SbI6] octahedra forming 1D chains separated by allylimidazolium cations. Void [...] Read more.
The one-dimensional (1D) Sb(III)-based organic–inorganic hybrid perovskite (AImd)21[SbI5] (AImd = 1-allylimidazolium) crystallizes in the orthorhombic, centrosymmetric space group Pnma. The structure consists of corner-sharing [SbI6] octahedra forming 1D chains separated by allylimidazolium cations. Void analysis through Mercury CSD software confirmed a densely packed lattice with a calculated void volume of 1.1%. Integrated quantum theory of atoms in molecules (QTAIM) and non-covalent interactions index (NCI) analyses showed that C–H···I interactions between the cations and the 1[SbI5]2− network predominantly stabilize the supramolecular assembly followed by N–H···I hydrogen bonds. The calculated growth morphology (GM) model fits very well to the experimental morphology. UV–Vis diffuse reflectance spectroscopy allowed us to determine the optical band gap to 3.15 eV. Density functional theory (DFT) calculations employing the B3LYP, CAM-B3LYP, and PBE0 functionals were benchmarked against experimental data. CAM-B3LYP best reproduced Sb–I bond lengths, while PBE0 more accurately captured the HOMO–LUMO gap and the associated electronic descriptors. These results support the assignment of an inorganic-to-organic [Sb–I] → π* charge-transfer excitation, and clarify how structural dimensionality and cation identity shape the material’s optoelectronic properties. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

28 pages, 4509 KiB  
Article
Targeted Drug Delivery of Anticancer Agents Using C5N2 Substrate: Insights from Density Functional Theory
by Syeda Huda Mehdi Zaidi, Muhammad Ajmal, Muhammad Ali Hashmi and Ahmed Lakhani
Chemistry 2025, 7(3), 98; https://doi.org/10.3390/chemistry7030098 - 13 Jun 2025
Viewed by 609
Abstract
Cancer has a threatening impact on human health, and it is one of the primary causes of fatalities worldwide. Different conventional treatments have been employed to treat cancer, but their non-specific nature reduces their therapeutic efficacy. This study employs a C5N [...] Read more.
Cancer has a threatening impact on human health, and it is one of the primary causes of fatalities worldwide. Different conventional treatments have been employed to treat cancer, but their non-specific nature reduces their therapeutic efficacy. This study employs a C5N2-based targeted drug carrier to study the delivery mechanism of anticancer drugs, particularly cisplatin, carmustine, and mechlorethamine, using density functional theory (DFT). The geometries of the drugs, the C5N2 substrate, and the drug@C5N2 complexes were optimized at the PBE0-D3BJ/def2SVP level of theory. Interaction energy was computed for the complexes which follow the trend, i.e., cisplatin@C5N2 (−27.60 kcal mol−1) > carmustine@C5N2 (−19.69 kcal mol−1) > mechlorethamine@C5N2 (−17.79 kcal mol−1). The non-covalent interaction (NCI) and quantum theory of atoms in molecules (QTAIM) analyses confirmed the presence of van der Waals forces between the carmustine@C5N2 and mechlorethamine@C5N2 complexes, while weak hydrogen bonding has also been observed between the cisplatin@C5N2 complex. Electron localization function (ELF) analysis was performed to analyze the degree of delocalization of electrons within the complexes. The electronic properties of the analytes and the C5N2 substrate confirmed the enhanced reactivity of the complexes and illustrated electron density shift between the drugs and the C5N2 sheet. Recovery time was determined to assess the biocompatibility and the desorption behavior of the drugs. Moreover, negative solvation energies and increased dipole moments in a solvent phase manifested enhanced solubility and easy circulation of the drugs in biological media. Subsequently, this study illustrates that cisplatin@C5N2, carmustine@C5N2, and mechlorethamine@C5N2 complexes can be utilized as efficient drug delivery systems. Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
Show Figures

Figure 1

17 pages, 5659 KiB  
Article
Supramolecular Organization of Diaryliodonium Dicyanoargentates(I) Provided by Iodine(III)–Cyanide Halogen Bonding
by Irina S. Aliyarova, Anastasiia V. Koziakova, Daniil M. Ivanov, Natalia S. Soldatova and Pavel S. Postnikov
Inorganics 2025, 13(5), 157; https://doi.org/10.3390/inorganics13050157 - 9 May 2025
Viewed by 853
Abstract
Three diaryliodonium dicyanoargentates(I), [MesIAr][Ag(CN)2] (Ar = Ph 1, Mes 2, 4-MeC6H4 3; Mes = 2,4,6-Me3C6H2), were prepared by anion metathesis. The X-ray structural analyses for these crystals revealed [...] Read more.
Three diaryliodonium dicyanoargentates(I), [MesIAr][Ag(CN)2] (Ar = Ph 1, Mes 2, 4-MeC6H4 3; Mes = 2,4,6-Me3C6H2), were prepared by anion metathesis. The X-ray structural analyses for these crystals revealed C–IIII∙∙∙N≡C halogen bonds (abbreviated as XB) between I atoms of diaryliodonium cations and N atoms of cyano groups, which provide different supramolecular organization. The noncovalent nature of these interactions was studied by density functional theory (DFT) calculations and topological analysis of the electron density distribution in the framework of the quantum theory of atoms in molecules (QTAIM) at the PBE-D3/jorge-DZP-DKH level of theory both in gas phase and crystal models. The philicities of partners in these contacts were confirmed by electron localization function (ELF) projections, electron density/electrostatic potential (ED/ESP) profiles, and Hirshfeld surfaces analysis. An analysis of the available crystallographic data from the literature allows us to find other examples of σ-hole interactions including the dicyanoargentate(I) anion, and the C–X∙∙∙N≡C (X = Br, I, Te) bonding were also confirmed theoretically. Full article
Show Figures

Graphical abstract

29 pages, 11063 KiB  
Article
Supramolecular Assemblies and Anticancer Activities of Aminopyidine-Based Polynuclear and Mononuclear Co(II) Benzoates: Experimental and Theoretical Studies
by Kamal K. Dutta, Trishnajyoti Baishya, Rosa M. Gomila, Antonio Frontera, Miquel Barcelo-Oliver, Akalesh Kumar Verma, Jumi Das and Manjit K. Bhattacharyya
Inorganics 2025, 13(2), 51; https://doi.org/10.3390/inorganics13020051 - 10 Feb 2025
Viewed by 809
Abstract
Two new Co(II) coordination compounds viz. [Co(H2O)(bz)2(μ-3-Ampy)2]n (1) and [Co(4-Mebz)2(2-Ampy)2] (2) (wherebz = benzoate, 4-Mebz = 4-Methylbenzoate and Ampy = Aminopyridine) were synthesized and characterized via elemental (CHN), [...] Read more.
Two new Co(II) coordination compounds viz. [Co(H2O)(bz)2(μ-3-Ampy)2]n (1) and [Co(4-Mebz)2(2-Ampy)2] (2) (wherebz = benzoate, 4-Mebz = 4-Methylbenzoate and Ampy = Aminopyridine) were synthesized and characterized via elemental (CHN), electronic spectroscopy, FT-IR spectroscopy, and thermogravimetric analysis (TGA). The molecular structures were determined by single-crystal X-ray diffraction analysis, inferring that compound 1 crystallizes as a 3-Ampy bridged Co(II) coordination polymer, whereas compound 2 crystallizes as a mononuclear Co(II) compound. Compound 1 unfolds the presence of N–H⋯O, C–H⋯O, O–H⋯O, C–H⋯N and aromatic π⋯π interactions, while for compound 2, N–H⋯O, C–H⋯O, C–H⋯C and C–H⋯π interactions are observed. Both the compounds showcase scarcely reported chelate ring interactions involving the benzoate moiety (chelate ring⋯π in 1 and N–H⋯chelate ring in 2). We also conducted theoretical evaluations comprising of combined QTAIM/NCI plot analysis, DFT energy calculation and MEP surface analysis to analyze the supramolecular interactions present in the crystal structures. As per QTAIM parameters, the predominance of π-stacking interactions over hydrogen bonds in stabilizing the assembly in compound 1 is affirmed. Likewise, in compound 2, both hydrogen bonding (HBs) and C–H⋯π interactions are deemed pivotal in stabilizing the dimeric assemblies. The in vitro antiproliferative activities of compounds 1 and 2 were performed against Dalton’s lymphoma (DL) cancer cell lines through cytotoxicity and apoptosis assays, showcasing higher cytotoxicity of compound 1 (IC50 = 28 μM) over compound 2 (IC50 = 34 μM). Additionally, a molecular docking study investigated the structure–activity relationship of these compounds and allowed an understanding of the molecular behaviour after treatment. Full article
Show Figures

Figure 1

15 pages, 2686 KiB  
Article
Quantum-Chemical Investigations on the Structure and Stability of Mixed Trimers Containing HC3N in Combination with H2C2 and/or HCN Analyzed by QTAIM, NBO and SAPT Methods
by Andrea Pietropolli Charmet, Paolo Stoppa, Alessandra De Lorenzi and Patrizia Canton
Symmetry 2025, 17(1), 140; https://doi.org/10.3390/sym17010140 - 18 Jan 2025
Viewed by 911
Abstract
The present work deals with the computational study of HC3N··HCN··H2C2-, (HC3N)2··H2C2-, and HC3N··(H2C2 [...] Read more.
The present work deals with the computational study of HC3N··HCN··H2C2-, (HC3N)2··H2C2-, and HC3N··(H2C2)2-mixed trimers. The different equilibrium structures of the different low-lying minima on the corresponding potential energy surface (PES) were accurately determined, and the relative stabilities were computed by extrapolation procedures to the complete basis set limit. For each mixed trimer, the non-covalent interactions ruling the structure of the most stable isomer were analyzed using the QTAIM (Quantum Theory of Atoms in Molecules) approach. Additional insights into these interactions were provided by the Natural Bond Orbital (NBO) and Symmetry-Adapted Perturbation Theory (SAPT) methods. These results can be used to assist further theoretical investigations and experimental studies on the formation of larger molecules potentially relevant in astrochemistry. Full article
(This article belongs to the Special Issue Chemistry: Symmetry/Asymmetry—Feature Papers and Reviews)
Show Figures

Figure 1

24 pages, 6883 KiB  
Article
Organic Moiety on Sn(IV) Does Matter for In Vitro Mode of Action: nBu3Sn(IV) Compounds with Carboxylato N-Functionalized 2-Quinolones Induce Anoikis-like Cell Death in A375 Cells
by Marijana P. Kasalović, Sanja Jelača, Dušan Dimić, Danijela Maksimović-Ivanić, Verica V. Jevtić, Sanja Mijatović, Tobias Rüffer, Goran N. Kaluđerović and Nebojša Đ. Pantelić
Pharmaceutics 2024, 16(12), 1529; https://doi.org/10.3390/pharmaceutics16121529 - 28 Nov 2024
Cited by 1 | Viewed by 1110
Abstract
Objectives: New tributyltin(IV) complexes containing the carboxylate ligands 3-(4-methyl-2-oxoquinolin-1(2H)-yl)propanoic acid (HL1) and 2-(4-methyl-2-oxoquinolin-1(2H)-yl)acetic acid (HL2) have been synthesized. Methods: Their structures have been determined by elemental microanalysis, FT-IR and multinuclear NMR (1H, 13C and 119Sn) [...] Read more.
Objectives: New tributyltin(IV) complexes containing the carboxylate ligands 3-(4-methyl-2-oxoquinolin-1(2H)-yl)propanoic acid (HL1) and 2-(4-methyl-2-oxoquinolin-1(2H)-yl)acetic acid (HL2) have been synthesized. Methods: Their structures have been determined by elemental microanalysis, FT-IR and multinuclear NMR (1H, 13C and 119Sn) spectroscopy and X-ray diffraction study. A solution state NMR analysis reveals a four-coordinated tributyltin(IV) complex in non-polar solvents, while an X-Ray crystallographic analysis confirms a five-coordinated trigonal-bipyramidal geometry around the tin atom due to the formation of 1D chains. A theoretical structural analysis was performed by optimization employing B3LYP-D3BJ functional and 6-311++G(d,p)/def2-TZVP(Sn) basis sets for H, C, N, O/Sn, respectively. The interactions between tin(IV) and surrounding atoms were examined by QTAIM approach. The in vitro antiproliferative activity of the synthesized compounds was evaluated by MTT and CV assays versus MCF-7 (human breast adenocarcinoma), HCT116 (human colorectal carcinoma), A375 (human melanoma), 4T1 (mouse breast carcinoma), CT26 (mouse colon carcinoma) and B16 (mouse melanoma) tumor cell lines. Results: Both synthesized compounds (nBu3SnL1 and nBu3SnL2) exerted powerful micromolar IC50 cytotoxicity values and demonstrated high selectivity toward malignant cells. Both experimental drugs affected cell adhesion and induced anchorage independent apoptosis, a favorable type of cell death with an essential role in cancer dissemination prevention. The BSA-binding affinity of the obtained organotin compounds was followed by spectrofluorometric titration and molecular docking simulations. Conclusions: The tributyltin(IV) compounds selectively induce anoikis-like cell death in A375 cells, also highlighting the importance of the organic moiety on the tin(IV) ion in the mechanism of action. Full article
(This article belongs to the Special Issue Pharmaceutical Applications of Metal Complexes and Derived Materials)
Show Figures

Figure 1

13 pages, 2587 KiB  
Article
Unconventional C—Hlg···H–C (Hlg = Cl, Br, and I) Interactions Involving Organic Halides: A Theoretical Study
by Sergi Burguera and Antonio Bauzá
Molecules 2024, 29(23), 5606; https://doi.org/10.3390/molecules29235606 - 27 Nov 2024
Viewed by 723
Abstract
In this study, unconventional C—Hlg···H–C (Hlg = Cl, Br, and I) interactions involving sp, sp2, and sp3 organic halides were investigated at the RI-MP2/aug-cc-pVQZ level of theory. Energy Decomposition Analyses (EDA) and Natural Bonding Orbital (NBO) studies showed that these [...] Read more.
In this study, unconventional C—Hlg···H–C (Hlg = Cl, Br, and I) interactions involving sp, sp2, and sp3 organic halides were investigated at the RI-MP2/aug-cc-pVQZ level of theory. Energy Decomposition Analyses (EDA) and Natural Bonding Orbital (NBO) studies showed that these intermolecular contacts are mainly supported by orbital and dispersion contributions, which counteracted the unfavorable/slightly favorable electrostatics due to the halogen–hydrogen σ-hole facing. In addition, the Bader’s Quantum Theory of Atoms in Molecules (QTAIM) and the Noncovalent Interaction plot (NCIplot) visual index methodologies were used to further characterize the interactions discussed herein. We expect that the results reported herein will be useful in the fields of supramolecular chemistry, crystal engineering, and rational drug design, where the fine tuning of noncovalent interactions is crucial to achieve molecular recognition or a specific solid-state architecture. Full article
Show Figures

Graphical abstract

21 pages, 7847 KiB  
Article
Unusual Metal–organic Multicomponent Ni(II) and Mononuclear Zn(II) Compounds Involving Pyridine dicarboxylates: Supramolecular Assemblies and Theoretical Studies
by Kamal K. Dutta, Pranay Sharma, Subham Banik, Rosa M. Gomila, Antonio Frontera, Miquel Barcelo-Oliver and Manjit K. Bhattacharyya
Inorganics 2024, 12(10), 267; https://doi.org/10.3390/inorganics12100267 - 14 Oct 2024
Viewed by 1527
Abstract
In the present work, we reported the synthesis and characterization [single crystal X-ray diffraction technique, spectroscopic, etc.] of two new Ni(II) and Zn(II) coordination compounds, viz. [Ni(2,6-PDC)2]2[Ni(en)2(H2O)2]2[Ni(en)(H2O)4 [...] Read more.
In the present work, we reported the synthesis and characterization [single crystal X-ray diffraction technique, spectroscopic, etc.] of two new Ni(II) and Zn(II) coordination compounds, viz. [Ni(2,6-PDC)2]2[Ni(en)2(H2O)2]2[Ni(en)(H2O)4]·4H2O (1) and [Zn(2,6-PDC)(Hdmpz)2] (2) (where 2,6-PDC = 2,6-pyridinedicarboxylate, en = ethylene-1,2-diamine, and Hdmpz = 3,5-dimethyl pyrazole). Compound 1 is found to crystallize as a multicomponent Ni(II) compound with five discrete complex moieties, whereas compound 2 is isolated as a mononuclear Zn(II) compound. A deep analysis of the crystal structure of 1 unfolds unusual dual enclathration of guest complex cationic moieties within the supramolecular host cavity stabilized by anion–π, π-stacking, N–H⋯O, C–H⋯O, and O–H⋯O hydrogen bonding interactions. Again, the crystal structure of compound 2 is stabilized by the presence of unconventional C–H⋯π(chelate ring) interactions along with C–H⋯O, C–H⋯N hydrogen bonding, π-stacking, and C–H⋯π(pyridyl) interactions. These non-covalent interactions were further studied theoretically using density functional theory (DFT) calculations, molecular electrostatic potential (MEP) surfaces, non-covalent interaction (NCI) plot index, and quantum theory of atoms in molecules (QTAIM) computational tools. The computational study displays that π-stacking or H bonds greatly tune the directionality of compound 1, although non-directional electrostatic forces dominate energetically. For compound 2, a combined QTAIM/NCI plot analysis confirms the presence of unconventional C–H⋯π(chelate ring) interactions along with other weak interactions obtained from the crystal structure analysis. Further, the individual energy contributions of these weak yet significant non-covalent interactions have also been determined computationally. Full article
(This article belongs to the Special Issue Metal Complexes with N-donor Ligands, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 6021 KiB  
Article
Electron Density and Molecular Orbital Analyses of the Nature of Bonding in the η3-CCH Agostic Rhodium Complexes Preceding the C–C and C–H Bond Cleavages
by Irena Efremenko
Molecules 2024, 29(20), 4788; https://doi.org/10.3390/molecules29204788 - 10 Oct 2024
Cited by 1 | Viewed by 1694
Abstract
In our recent work, we revisited C–H and C–C bond activation in rhodium (I) complexes of pincer ligands PCP, PCN, PCO, POCOP, and SCS. Our findings indicated that an η3-Csp2Csp3H agostic intermediate acts as a common precursor [...] Read more.
In our recent work, we revisited C–H and C–C bond activation in rhodium (I) complexes of pincer ligands PCP, PCN, PCO, POCOP, and SCS. Our findings indicated that an η3-Csp2Csp3H agostic intermediate acts as a common precursor to both C–C and C–H bond activation in these systems. We explore the electronic structure and bonding nature of these precleavage complexes using electron density and molecular orbital analyses. Using NBO, IBO, and ESI-3D methods, the bonding in the η3-CCH agostic moiety is depicted by two three-center agostic bonds: Rh–Csp2–Csp3 and Rh–Csp3–H, with all three atoms datively bound to Rh(I). IBO analysis specifically highlights the involvement of three orbitals (CC→Rh and CH→Rh σ donation, plus Rh→CCH π backdonation) in both C–C and C–H bond cleavages. NCIPLOT and QTAIM analyses highlight anagostic (Rh–H) or β-agostic (Rh–Csp2–H) interactions and the absence of Rh–Csp3 interactions. QTAIM molecular graphs suggest bond path instability under dynamic conditions due to the nearness of line and ring critical points. Several low-frequency and low-force vibrational modes interconvert various bonding patterns, reinforcing the dynamic η3-CCH agostic nature. The kinetic preference for C–H bond breaking is attributed to the smaller reduced mass of C–H vibrations compared to C–C vibrations. Full article
(This article belongs to the Special Issue Exclusive Feature Papers on Molecular Structure)
Show Figures

Graphical abstract

25 pages, 5196 KiB  
Article
Molecular Aspects of the Interactions between Selected Benzodiazepines and Common Adulterants/Diluents: Forensic Application of Theoretical Chemistry Methods
by Jelica Džodić, Milica Marković, Dejan Milenković and Dušan Dimić
Int. J. Mol. Sci. 2024, 25(18), 10087; https://doi.org/10.3390/ijms251810087 - 19 Sep 2024
Viewed by 1563
Abstract
Benzodiazepines are frequently encountered in crime scenes, often mixed with adulterants and diluents, complicating their analysis. This study investigates the interactions between two benzodiazepines, lorazepam (LOR) and alprazolam (ALP), with common adulterants/diluents (paracetamol, caffeine, glucose, and lactose) using infrared (IR) spectroscopy and quantum [...] Read more.
Benzodiazepines are frequently encountered in crime scenes, often mixed with adulterants and diluents, complicating their analysis. This study investigates the interactions between two benzodiazepines, lorazepam (LOR) and alprazolam (ALP), with common adulterants/diluents (paracetamol, caffeine, glucose, and lactose) using infrared (IR) spectroscopy and quantum chemical methods. The crystallographic structures of LOR and ALP were optimized using several functionals (B3LYP, B3LYP-D3BJ, B3PW91, CAM-B3LYP, M05-2X, and M06-2X) combined with the 6-311++G(d,p) basis set. M05-2X was the most accurate when comparing experimental and theoretical bond lengths and angles. Vibrational and 13C NMR spectra were calculated to validate the functional’s applicability. The differences between LOR’s experimental and theoretical IR spectra were attributed to intramolecular interactions between LOR monomers, examined through density functional theory (DFT) optimization and quantum theory of atoms in molecules (QTAIM) analysis. Molecular dynamics simulations modeled benzodiazepine–adulterant/diluent systems, predicting the most stable structures, which were further analyzed using QTAIM. The strongest interactions and their effects on IR spectra were identified. Comparisons between experimental and theoretical spectra confirmed spectral changes due to interactions. This study demonstrates the potential of quantum chemical methods in analyzing complex mixtures, elucidating spectral changes, and assessing the structural stability of benzodiazepines in forensic samples. Full article
(This article belongs to the Special Issue Molecular Research on the Drug Toxicity)
Show Figures

Figure 1

18 pages, 3144 KiB  
Article
Theoretical Study of the Effects of Different Coordination Atoms (O/S/N) on Crystal Structure, Stability, and Protein/DNA Binding of Ni(II) Complexes with Pyridoxal-Semi, Thiosemi, and Isothiosemicarbazone Ligand Systems
by Violeta Jevtovic, Aleksandra Rakić, Odeh A. O. Alshammari, Munirah Sulaiman Alhar, Tahani Alenezi, Violeta Rakic and Dušan Dimić
Inorganics 2024, 12(9), 251; https://doi.org/10.3390/inorganics12090251 - 17 Sep 2024
Cited by 3 | Viewed by 1521
Abstract
Nickel transition metal complexes have shown various biological activities that depend on the ligands and geometry. In this contribution, six Ni(II) nitrate complexes with pyridoxal-semi, thiosemi, and isothiosemicarbazone ligands were examined using theoretical chemistry methods. The structures of three previously reported complexes ([Ni(PLSC)(H [...] Read more.
Nickel transition metal complexes have shown various biological activities that depend on the ligands and geometry. In this contribution, six Ni(II) nitrate complexes with pyridoxal-semi, thiosemi, and isothiosemicarbazone ligands were examined using theoretical chemistry methods. The structures of three previously reported complexes ([Ni(PLSC)(H2O)3]∙2NO3, [Ni(PLTSC)2] ∙2NO3∙H2O, and [Ni(PLITSC)(H2O)3]∙2NO3) were investigated based on Hirshfeld surface analysis, and the most important stabilization interactions in the crystal structures were outlined. These structures were optimized at the B3LYP/6-311++G(d,p)(H,C,N,O,(S))/LanL2DZ(Ni) level of theory, and the applicability was checked by comparing theoretical and experimental bond lengths and angles. The same level of theory was applied for the optimization of three additional structures, ([Ni(PLSC)2]2+, [Ni(PLTSC)(H2O)3]2+, and [Ni(PLITSC)2]2+). The interactions between selected ligands and Ni(II) were examined using the Natural Bond Orbital (NBO) and Quantum Theory of Atoms in Molecules (QTAIM) approaches. Particular emphasis was placed on interactions between oxygen, sulfur, and nitrogen donor atoms and Ni(II). Human Serum Albumin (HSA) and the DNA-binding properties of these complex cations were assessed using molecular docking simulations. The presence of water molecules and various substituents in the thermodynamics of the processes was demonstrated. The results showed significant effects of structural parameters on the stability and reactivity towards important biomolecules. Full article
(This article belongs to the Special Issue Metal Complexes Diversity: Synthesis, Conformations, and Bioactivity)
Show Figures

Figure 1

30 pages, 7196 KiB  
Article
The Counterion (SO42− and NO3) Effect on Crystallographic, Quantum-Chemical, Protein-, and DNA-Binding Properties of Two Novel Copper(II)–Pyridoxal-Aminoguanidine Complexes
by Violeta Jevtovic, Luka Golubović, Odeh A. O. Alshammari, Munirah Sulaiman Alhar, Tahani Y. A. Alanazi, Violeta Rakic, Rakesh Ganguly, Jasmina Dimitrić Marković, Aleksandra Rakić and Dušan Dimić
Crystals 2024, 14(9), 814; https://doi.org/10.3390/cryst14090814 - 14 Sep 2024
Cited by 2 | Viewed by 1486
Abstract
New Cu(II) complexes with pyridoxal-aminoguanidine (PLAG) ligands and different counterions (SO42− and NO3) were prepared and their crystal structures were solved by the X-ray crystallography. The geometries of the obtained complexes significantly depended on the counterions, leading to [...] Read more.
New Cu(II) complexes with pyridoxal-aminoguanidine (PLAG) ligands and different counterions (SO42− and NO3) were prepared and their crystal structures were solved by the X-ray crystallography. The geometries of the obtained complexes significantly depended on the counterions, leading to the square-pyramidal structure of [Cu(PLAG)NO3H2O]NO3 (complex 1) and square-planar structure of [Cu(PLAG)H2O]SO4 (complex 2). The intermolecular interactions were examined using the Hirshfeld surface analysis. The theoretical structures of these complexes were obtained by optimization at the B3LYP/6-311++G(d,p)(H,C,N,O,S)/LanL2DZ(Cu) level of theory. The Quantum Theory of Atoms in Molecules (QTAIM) was applied to assess the strength and type of the intramolecular interactions and the overall stability of the structures. The interactions between the complexes and transport proteins (human serum albumin (HSA)) and calf thymus DNA (CT-DNA) were examined by spectrofluorometric/spectrophotometric titration and molecular docking. The binding mechanism to DNA was assessed by potassium iodide quenching experiments. The importance of counterions for binding was shown by comparing the experimental and theoretical results and the examination of binding at the molecular level. Full article
Show Figures

Figure 1

19 pages, 6540 KiB  
Article
Supramolecular Assemblies in Mn(II) and Zn(II) Metal–Organic Compounds Involving Phenanthroline and Benzoate: Experimental and Theoretical Studies
by Mridul Boro, Subham Banik, Rosa M. Gomila, Antonio Frontera, Miquel Barcelo-Oliver and Manjit K. Bhattacharyya
Inorganics 2024, 12(5), 139; https://doi.org/10.3390/inorganics12050139 - 13 May 2024
Cited by 2 | Viewed by 2273
Abstract
Two new Mn(II) and Zn(II) metal–organic compounds of 1,10-phenanthroline and methyl benzoates viz. [Mn(phen)2Cl2]2-ClBzH (1) and [Zn(4-MeBz)2(2-AmPy)2] (2) (where 4-MeBz = 4-methylbenzoate, 2-AmPy = 2-aminopyridine, phen = 1,10-phenanthroline, 2-ClBzH = [...] Read more.
Two new Mn(II) and Zn(II) metal–organic compounds of 1,10-phenanthroline and methyl benzoates viz. [Mn(phen)2Cl2]2-ClBzH (1) and [Zn(4-MeBz)2(2-AmPy)2] (2) (where 4-MeBz = 4-methylbenzoate, 2-AmPy = 2-aminopyridine, phen = 1,10-phenanthroline, 2-ClBzH = 2-chlorobenzoic acid) were synthesized and characterized using elemental analysis, TGA, spectroscopic (FTIR, electronic) and single crystal X-ray diffraction techniques. The crystal structure analysis of the compounds revealed the presence of various non-covalent interactions, which provides stability to the crystal structures. The crystal structure analysis of compound 1 revealed the formation of a supramolecular dimer of 2-ClBzH enclathrate within the hexameric host cavity formed by the neighboring monomeric units. Compound 2 is a mononuclear compound of Zn(II) where flexible binding topologies of 4-CH3Bz are observed with the metal center. Moreover, various non-covalent interactions, such as lp(O)-π, lp(Cl)-π, C–H∙∙∙Cl, π-stacking interactions as well as N–H∙∙∙O, C–H∙∙∙O and C–H∙∙∙π hydrogen bonding interactions, are found to be involved in plateauing the molecular self-association of the compounds. The remarkable enclathration of the H-bonded 2-ClBzH dimer into a supramolecular cavity formed by two [Mn(phen)2Cl2] complexes were further studied theoretically using density functional theory (DFT) calculations, the non-covalent interaction (NCI) plot index and quantum theory of atoms in molecules (QTAIM) computational tools. Synergistic effects were also analyzed using molecular electrostatic potential (MEP) surface analysis. Full article
(This article belongs to the Special Issue Feature Papers in Organometallic Chemistry 2024)
Show Figures

Graphical abstract

18 pages, 2439 KiB  
Article
Synthesis and Structural Studies of peri-Substituted Acenaphthenes with Tertiary Phosphine and Stibine Groups
by Laurence J. Taylor, Emma E. Lawson, David B. Cordes, Kasun S. Athukorala Arachchige, Alexandra M. Z. Slawin, Brian A. Chalmers and Petr Kilian
Molecules 2024, 29(8), 1841; https://doi.org/10.3390/molecules29081841 - 18 Apr 2024
Viewed by 1409
Abstract
Two mixed peri-substituted phosphine-chlorostibines, Acenap(PiPr2)(SbPhCl) and Acenap(PiPr2)(SbCl2) (Acenap = acenaphthene-5,6-diyl) reacted cleanly with Grignard reagents or nBuLi to give the corresponding tertiary phosphine-stibines Acenap(PiPr2)(SbRR’) (R, R’ = [...] Read more.
Two mixed peri-substituted phosphine-chlorostibines, Acenap(PiPr2)(SbPhCl) and Acenap(PiPr2)(SbCl2) (Acenap = acenaphthene-5,6-diyl) reacted cleanly with Grignard reagents or nBuLi to give the corresponding tertiary phosphine-stibines Acenap(PiPr2)(SbRR’) (R, R’ = Me, iPr, nBu, Ph). In addition, the Pt(II) complex of the tertiary phosphine-stibine Acenap(PiPr2)(SbPh2) as well as the Mo(0) complex of Acenap(PiPr2)(SbMePh) were synthesised and characterised. Two of the phosphine-stibines and the two metal complexes were characterised by single-crystal X-ray diffraction. The peri-substituted species act as bidentate ligands through both P and Sb atoms, forming rather short Sb-metal bonds. The tertiary phosphine-stibines display through-space J(CP) couplings between the phosphorus atom and carbon atoms bonded directly to the Sb atom of up to 40 Hz. The sequestration of the P and Sb lone pairs results in much smaller corresponding J(CP) being observed in the metal complexes. QTAIM (Quantum Theory of Atoms in Molecules) and EDA-NOCV (Energy Decomposition Analysis employing Naturalised Orbitals for Chemical Valence) computational techniques were used to provide additional insight into a weak n(P)→σ*(Sb-C) intramolecular bonding interaction (pnictogen bond) in the phosphine-stibines. Full article
Show Figures

Figure 1

Back to TopTop