Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = Pu-erh tea

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1400 KiB  
Article
Dynamic Changes in Sensory Quality and Chemical Components of Bingdao Ancient Tree Tea During Multiple Brewing
by Chunju Peng, Yuxin Zhao, Sifeng Zhang, Yan Tang, Li Jiang, Shujing Liu, Benying Liu, Yuhua Wang, Xinghui Li and Guanghui Zeng
Foods 2025, 14(14), 2510; https://doi.org/10.3390/foods14142510 - 17 Jul 2025
Viewed by 311
Abstract
Bingdao ancient tree tea (BATT), a type of raw Pu-erh tea, is renowned for its brewing durability, characterized by a unique aroma and flavor. To explore the dynamic changes in infusion quality and the impact of multiple steeping process, BATT was brewed 14 [...] Read more.
Bingdao ancient tree tea (BATT), a type of raw Pu-erh tea, is renowned for its brewing durability, characterized by a unique aroma and flavor. To explore the dynamic changes in infusion quality and the impact of multiple steeping process, BATT was brewed 14 times, and its sensory attributes, infusion color, and chemical composition were assessed across different brewing intervals. The color of the tea infusion remained relatively stable throughout the brewing process. Sensory evaluation indicated that BATT exhibited optimal sensory quality between the third and seventh infusions. While the leaching of polyphenols showed minimal variation across brews, the concentrations of ester-catechins, non-ester catechins, free amino acids, and caffeine after the seventh brewing decreased by 28.82%, 21.83%, 28.86%, and 40.37%, respectively. Our results indicated that higher concentrations of flavor compounds in the BATT infusion appeared between the fourth and seventh brews. This study provides a theoretical basis for understanding the brewing characteristics of BATT. Full article
(This article belongs to the Special Issue Tea Technology and Resource Utilization)
Show Figures

Figure 1

19 pages, 2955 KiB  
Article
Determination of L-Theanine and Caffeine Contents in Tea Infusions with Different Fermentation Degrees and Brewing Conditions Using the Chromatographic Method
by Gamze Ayakdaş and Duygu Ağagündüz
Foods 2025, 14(13), 2313; https://doi.org/10.3390/foods14132313 - 30 Jun 2025
Viewed by 1004
Abstract
This study aimed to determine the caffeine and L-theanine contents in tea infusions prepared under varying fermentation degrees, brewing conditions (temperature and time), and serving methods (tea bag/loose-leaf). Infusions of six tea types (green, white, yellow, oolong, black, and Pu-erh) and various serving [...] Read more.
This study aimed to determine the caffeine and L-theanine contents in tea infusions prepared under varying fermentation degrees, brewing conditions (temperature and time), and serving methods (tea bag/loose-leaf). Infusions of six tea types (green, white, yellow, oolong, black, and Pu-erh) and various serving forms of green, white, and black tea were brewed at 80 °C and 100 °C for 2, 5, and 10 min. Contents were analyzed using reversed-phase high-performance liquid chromatography. Caffeine levels were highest in black and yellow tea (14 ± 1.0 mg/200 mL and 13.8 ± 0.2 mg/200 mL, respectively), both of which were significantly higher than the levels in green, white, and oolong tea (11 ± 2.1 mg/200 mL; 5.8 ± 0.7 mg/200 mL; and 4 ± 1.6 mg/200 mL, respectively; p < 0.001), whereas Pu-erh tea (13 ± 2.9 mg/200 mL) had caffeine levels comparable to that of black tea (p > 0.05). L-Theanine levels were highest in black and green tea (12.3 ± 2.8 mg/200 mL and 12.5 ± 2.5 mg/200 mL, respectively), and these levels were significantly higher than those in the other tea types (p < 0.001). Brewing temperature only affected caffeine levels n, whereas L-oolong tea (4.4 → 13.5 mg/200 mL, p < 0.05); theanine remained stable (p > 0.05). Longer brewing times significantly raised both components (e.g., yellow tea caffeine levels rose to 53 ± 16.9 mg/200 mL at 10 min; p < 0.05). In black tea, cup-sized bags yielded higher caffeine levels (39 ± 9.9 mg/200 mL) than loose-leaf (24 ± 7.2 mg/200 mL) and teapot bags (p < 0.001). Serving method had no effect on green and white teas (p > 0.05). In conclusion, fermentation rate, brewing conditions, and serving method were found to influence the caffeine and L-theanine levels of tea infusions. Full article
Show Figures

Graphical abstract

48 pages, 1375 KiB  
Review
Tea Consumption and Diabetes: A Comprehensive Pharmacological Review of Black, White, Green, Oolong, and Pu-erh Teas
by Ochuko L. Erukainure, Chika I. Chukwuma, Jennifer Nambooze, Satyajit Tripathy, Veronica F. Salau, Kolawole Olofinsan, Akingbolabo D. Ogunlakin, Osaretin A. T. Ebuehi and Jeremiah O. Unuofin
Plants 2025, 14(13), 1898; https://doi.org/10.3390/plants14131898 - 20 Jun 2025
Viewed by 1432
Abstract
Diabetes is one of the major non-communicable diseases whose physiological complications are linked with a higher risk of mortality amongst the adult age group of people living globally. This review article documents updated pharmacological evidence and insights into the antidiabetic mechanisms of green, [...] Read more.
Diabetes is one of the major non-communicable diseases whose physiological complications are linked with a higher risk of mortality amongst the adult age group of people living globally. This review article documents updated pharmacological evidence and insights into the antidiabetic mechanisms of green, black, white, oolong, and pu-erh teas via reported experimental and clinical models toward encouraging their use as a complementary nutraceutical in managing the biochemical alterations found in the onset and progression of diabetes. Peer-reviewed articles published in “PubMed”, “Google Scholar”, and “ScienceDirect” from 2010 and beyond that reported the antidiabetic, antilipidemic, and digestive enzyme inhibitory effects of the selected tea types were identified. The keywords used for the literature search comprise the common or scientific names of the tea and their corresponding bioactivity. Although teas portrayed different antidiabetic pharmacological properties linked to their bioactive components, including polyphenols, polysaccharides, and amino acids, the type of phytochemical found in each tea type depends on their processing. Green tea’s strong carbohydrate digestive enzyme inhibitory effect was linked with Ellagitannins and catechins, whereas theaflavin, a main ingredient in black tea, increases insulin sensitivity via enhancing GLUT4 translocation. Theabrownin in pu-erh tea improves FBG and lipid metabolism, while chemical components in white tea attenuate prediabetes-mediated reproductive dysfunctions by improving testicular tissue antioxidant capabilities. Based on the body of findings presented in this article, it is evident that integrating tea intake into daily food consumption routines could offer a promising practical solution to support human health and well-being against diabetes disease. Full article
Show Figures

Graphical abstract

22 pages, 3926 KiB  
Article
Flavor Quality and Lipid-Lowering Function of Mixed Fermented Pu-erh Tea with Various Monascus Species
by Xiaomin Chen, Yao Hu, Zhen Zeng, Xu Zhang and Yahui Huang
Foods 2025, 14(11), 1894; https://doi.org/10.3390/foods14111894 - 26 May 2025
Viewed by 668
Abstract
As a potential raw material with a variety of bioactive compounds, Pu-erh raw tea can produce rich flavor and health benefits through natural fermentation or microbial fermentation in traditional processing. However, the traditional fermentation process has some problems such as a long fermentation [...] Read more.
As a potential raw material with a variety of bioactive compounds, Pu-erh raw tea can produce rich flavor and health benefits through natural fermentation or microbial fermentation in traditional processing. However, the traditional fermentation process has some problems such as a long fermentation period and unstable quality. Monascus, a kind of fungus used in both medicine and food, has been proved to have many beneficial effects such as lowering cholesterol and regulating blood lipids. Therefore, in this study we investigated whether the fermentation of mixed monascus could significantly improve the flavor quality and lipid-lowering activity of Pu-erh raw tea. We added four kinds of monascus to unfermented Pu-erh raw tea (UT) to obtain a fermented Pu-erh raw tea (FT). The quality of the two tea samples was determined and an in vitro lipid-lowering experiment was conducted. The results show that the contents of water extractives, flavone, trans-catechins (GCG and CG), theabrownins, and caffeine in FT are significantly higher than those in UT, increasing by 19.41%, 14.47%, 18.76%, 29.82%, and 10.67%, respectively. In terms of aroma, linalool was the characteristic compound of UT, presenting a floral note. D-Limonene was the key characteristic substance of FT, manifested as lemon, toast, and wood. In terms of taste, FT has a high content of bitter amino acids and caffeine, a low content of catechins, and is rich in carbohydrate substances, forming a characteristic mild and mellow slightly bitter taste with reduced astringency. In addition, the relative contents of active substances with lipid-lowering effects such as quercetin, quercitrin, ascorbic acid, and sorbitol in FT were higher than those in UT, increasing by 83.09%, 81.73%, 89.86%, and 92.76%, respectively. The effect of FT on regulating cellular lipid metabolism was superior to UT based on cell experiments. The research results provide a scientific basis for the deep processing and functional development of Pu-erh raw tea. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Graphical abstract

15 pages, 6480 KiB  
Article
CV-YOLOv10-AR-M: Foreign Object Detection in Pu-Erh Tea Based on Five-Fold Cross-Validation
by Wenxia Yuan, Chunhua Yang, Xinghua Wang, Qiaomei Wang, Lijiao Chen, Man Zou, Zongpei Fan, Miao Zhou and Baijuan Wang
Foods 2025, 14(10), 1680; https://doi.org/10.3390/foods14101680 - 9 May 2025
Viewed by 540
Abstract
To address the problem of detecting foreign bodies in Pu-erh tea, this study proposes an intelligent detection method based on an improved YOLOv10 network. By introducing the MPDIoU loss function, the YOLOv10 network is optimized to effectively enhance the positioning accuracy of the [...] Read more.
To address the problem of detecting foreign bodies in Pu-erh tea, this study proposes an intelligent detection method based on an improved YOLOv10 network. By introducing the MPDIoU loss function, the YOLOv10 network is optimized to effectively enhance the positioning accuracy of the model in complex background and improve detection of small target foreign objects. Using AssemFormer to optimize the structure, the network’s ability to perceive small target foreign objects and its ability to process global information are improved. By introducing the Rectangular Self-Calibrated Module, the prediction accuracy of the bounding box is effectively optimized, further improving the classification and target-positioning abilities of the model in complex scenes. The results showed that the Box, Cls, and Dfl loss functions of the CV-YOLOv10-AR-M network in the One-to-Many Head task were, respectively, 14.60%, 19.74%, and 20.15% lower than those of the YOLOv10 network. In the One-to-One Head task, they decreased by 10.42%, 29.11%, and 20.15%, respectively. Compared with the original YOLOv10 network, the accuracy, recall rate, and mAP of the CV-YOLOv10-AR-M network were increased by 5.35%, 11.72% and 8.32%, respectively. The CV-YOLOv10-AR-M network effectively improves the model’s attention to small sizes, complex backgrounds, and detailed information, providing effective technical support for intelligent quality control in the agricultural field. Full article
Show Figures

Graphical abstract

14 pages, 2035 KiB  
Article
Fertility Assessment and Risk Management in Tea Plantations: Role of P-Promoted Metals’ Availability
by Ziwen Luo, Yongwang Ju, Linbo Chen, Xiangde Yang, Yaqin Long and Xue Liu
Agriculture 2025, 15(9), 953; https://doi.org/10.3390/agriculture15090953 - 27 Apr 2025
Viewed by 366
Abstract
Nitrogen (N), phosphorus (P), and potassium (K) are important fertilizers frequently applied to soils to ensure agricultural production. However, how an excess of N, P and K affects metals’ geochemical availability, and thereby soil fertility, is poorly under-stood in the tea agro-system. Instead [...] Read more.
Nitrogen (N), phosphorus (P), and potassium (K) are important fertilizers frequently applied to soils to ensure agricultural production. However, how an excess of N, P and K affects metals’ geochemical availability, and thereby soil fertility, is poorly under-stood in the tea agro-system. Instead of using the total concentration, this study evaluated soil fertility based on the available concentration of fertilizers (N, P, and K), macro elements (Ca, Mg, Fe, and Mn), and trace elements (Cu and Zn) on tea plantations in the eight main tea-producing regions of Puerh, Yunnan Province, Southwest China. In addition, the correlations of fertilizer, soil pH, and metals’ availability, as well as their effect on soil fertility, were clarified. The results showed that tea-growing soils were acidified (pH = 3.83–5.5; n = 323). Soil pH (98.7%), available Fe (100%), Ca (98.5%), Cu (97.2%), and Zn (86.4%) were within suitable ranges for tea tree growth, while N (97%), Mg (84%), and P (86.1%) should be enhanced. The overall fertility (IFI = 0.47–0.89) was distributed in levels I–III, with Jiangcheng showing the highest IFI at level I. This was attributed to the highly available concentration of metals induced by low pH (3.83–4.99). In terms of the driven factor, available P and K posed greater effects than available N in mediating the availability of metals (R = 0.14–0.28 and 0.27–0.75; p < 0.01 or p < 0.05) by decreasing soil pH (R = −0.17 and −0.17; p < 0.01) in the studied tea plantations. This study indicates that more attention should be paid to P and K during fertilization management for tea plantations. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

10 pages, 1545 KiB  
Article
Viable and Heat-Resistant Microbiota with Probiotic Potential in Fermented and Non-Fermented Tea Leaves and Brews
by Elisabeth Uhlig, Afina Megaelectra, Göran Molin and Åsa Håkansson
Microorganisms 2025, 13(5), 964; https://doi.org/10.3390/microorganisms13050964 - 23 Apr 2025
Viewed by 546
Abstract
The live microbiota of tea has not been extensively investigated. This study aimed to identify the live, culturable microbiota from four types of tea with varying oxidation levels, before and after brewing. Tea leaves and brews from oolong and fermented teas were analyzed [...] Read more.
The live microbiota of tea has not been extensively investigated. This study aimed to identify the live, culturable microbiota from four types of tea with varying oxidation levels, before and after brewing. Tea leaves and brews from oolong and fermented teas were analyzed for total viable counts of aerobic bacteria, lactobacilli, fungi, and Enterobacteriaceae. Cultivation was performed and isolates were identified by Sanger sequencing. Heat resistance was assessed at 70 °C and 90 °C. Random Amplified Polymorphic DNA (RAPD) was used to determine strain-level diversity. Fully oxidized, post-fermented Pu-erh tea had the highest viable bacterial count. Most isolates belonged to Bacillaceae, Staphylococcaceae, and Paenibacillaceae, families associated with soil or human skin. Only two potentially pathogenic species were identified: Staphylococcus epidermidis and Bacillus cereus. In Pu-erh, live bacteria were detected after brewing at 90 °C, including Heyndrickxia coagulans, a spore forming probiotic species. H. coagulans strains remained in vegetative state after hot water exposure and survived at 70 °C, indicating thermotolerance. RAPD-analysis revealed nine distinct H. coagulans strains across six Pu-erh teas. Conclusion: This study provides new insight into the viable microbiota of different teas and their survival during brewing, highlighting safety concerns and probiotic species like H. coagulans. Full article
(This article belongs to the Special Issue The Microbiome in Fermented Tea)
Show Figures

Figure 1

19 pages, 5560 KiB  
Article
Characterization of Volatile Substances in Pu-erh Tea (Raw Tea) at Different Storage Times
by Yang Liu, Zhixia Wang, Xinyi Zhang, Hongyu Chen, Dianrong Ruan, Silei Bai, Jianan Huang and Zhonghua Liu
Foods 2025, 14(5), 840; https://doi.org/10.3390/foods14050840 - 28 Feb 2025
Cited by 1 | Viewed by 993
Abstract
There is a lack of theoretical evidence regarding the transformation of the aroma of Pu-erh tea (raw tea) during long-term storage. In this study, we comprehensively investigate the aroma characteristics of Pu-erh tea (raw tea) from the same manufacturer, stored for different storage [...] Read more.
There is a lack of theoretical evidence regarding the transformation of the aroma of Pu-erh tea (raw tea) during long-term storage. In this study, we comprehensively investigate the aroma characteristics of Pu-erh tea (raw tea) from the same manufacturer, stored for different storage times (7–21 years). Sensory evaluation and qualitative and quantitative analysis of volatile substances were performed on the experimental samples. The results showed that the aroma of Pu-erh tea (raw tea) changed from fruity/floral to smoky and fragrance during the storage process. A total of 290 volatiles were identified by HS-SPME/GC×GC-Q-TOF-MS. The key substances for the fruity/floral aroma are fenchene, (E)-1,2,3-trimethyl-4-propenyl-Naphthalene, (+/−-theaspirane, and decanal, and the key substances for the smoky aroma were 2-ethyl-Furan, camphene, 1-methyl-4-(1-methylethenyl)-Benzene, and cis-β-Ocimene. The key aroma substances for the fragrance aroma are 1-methyl-4-(1-methylethylidene)-Cyclohexene, α-Terpinene, trans-β-Ocimene, (E,E)-2,4-Heptadienal, octanal, 2,5-Dimethoxyethylbenzene, 2,4-Dimethylanisole, 1,2,3-Trimethoxybenzene, and 3,4-Dimethoxytoluene. This study helps us to understand further the aroma changes of Pu-erh tea (raw tea) during long-term storage. Full article
Show Figures

Figure 1

20 pages, 6083 KiB  
Article
Characteristic Changes and Potential Markers of Flavour in Raw Pu-Erh Tea with Different Ageing Cycles Analysed by HPLC, HS-SPME-GC-MS, and OAV
by Jiayi Xu, Xiujuan Deng, Yamin Wu, Miao Zhou, Cen Du, Qiaomei Wang, Yuxin Xia, Junjie He, Wenxia Yuan, Wendou Wu, Hongxu Li, Yankun Wang, Tong Li and Baijuan Wang
Foods 2025, 14(5), 829; https://doi.org/10.3390/foods14050829 - 27 Feb 2025
Cited by 2 | Viewed by 970
Abstract
To investigate the flavour evolution mechanism of raw Pu-erh tea (RPT) during storage, the volatile and non-volatile compounds of RPT with different storage years (1–10 years) from the same raw material origin, manufacturer, and storage location in Wenshan Prefecture, Yunnan Province, were systematically [...] Read more.
To investigate the flavour evolution mechanism of raw Pu-erh tea (RPT) during storage, the volatile and non-volatile compounds of RPT with different storage years (1–10 years) from the same raw material origin, manufacturer, and storage location in Wenshan Prefecture, Yunnan Province, were systematically analysed by HPLC, HS-SPME-GC-MS, and OAV. The results showed that both cluster analyses based on non-volatile and volatile compounds could classify RPT of different storage years into three ageing cycles, with key turning points in the third and eighth years of storage, which is also accompanied by the colour changing from green to orange or brown, the aroma changing from a faint scent to woody and ageing, the astringency diminishing, and the sweet and mellow increasing. Theophylline was identified as the potential marker of RPT stored 1–3 years, while (−)-catechin gallate, (−)-gallocatechin gallate, quercetin, and rutin as those for a storage of 9–10 years. The volatile compounds indicate a general trend of an initial increase followed by a decrease. Forty-four key aroma compounds (OAV ≥ 1) were identified. Eucalyptol, β-Caryophyllene, 2-Amylfuran, Copaene, Estragole, and α-Terpinene originated as potential markers for RPT stored 1–3 years, while (Z)-Linalool oxide (furanoid), α-Terpineol, Terpinen-4-ol, and cis-Anethol were for RPT stored 8–10 years. This study revealed the flavour characteristics and quality changes of RPT over the course of storage, and constructed a sensory flavour wheel, providing theoretical underpinnings for the quality control and assessment of RPT. Full article
Show Figures

Figure 1

35 pages, 4372 KiB  
Review
Selenium and Selenoproteins: Mechanisms, Health Functions, and Emerging Applications
by Shahidin, Yan Wang, Yilong Wu, Taixia Chen, Xiaoyun Wu, Wenjuan Yuan, Qiangqiang Zhu, Xuanjun Wang and Chengting Zi
Molecules 2025, 30(3), 437; https://doi.org/10.3390/molecules30030437 - 21 Jan 2025
Cited by 7 | Viewed by 5352
Abstract
Selenium (Se) is an essential trace element crucial for human health that primarily functions as an immunonutrient. It is incorporated into polypeptides such as selenocysteine (SeC) and selenomethionine (SeMet), two key amino acids involved in various biochemical processes. All living organisms can convert [...] Read more.
Selenium (Se) is an essential trace element crucial for human health that primarily functions as an immunonutrient. It is incorporated into polypeptides such as selenocysteine (SeC) and selenomethionine (SeMet), two key amino acids involved in various biochemical processes. All living organisms can convert inorganic Se into biologically active organic forms, with SeMet being the predominant form and a precursor for SeC production in humans and animals. The human genome encodes 25 selenoprotein genes, which incorporate low-molecular-weight Se compounds in the form of SeC. Organic Se, especially in the form of selenoproteins, is more efficiently absorbed than inorganic Se, driving the demand for selenoprotein-based health products, such as functional foods. Se-enriched functional foods offer a practical means of delivering bioavailable Se and are associated with enhanced antioxidant properties and various health benefits. Recent advancements in selenoprotein synthesis have improved our understanding of their roles in antioxidant defense, cancer prevention, immune regulation, anti-inflammation, hypoglycemia, cardiovascular health, Alzheimer’s disease, fertility, and COVID-19. This review highlights key selenoproteins and their biological functions, biosynthetic pathways, and emerging applications while highlighting the need for further research. Full article
Show Figures

Figure 1

16 pages, 3550 KiB  
Article
Investigation of Microbial Fermentation Degree of Pu-Erh Tea Using Deep Learning Coupled Colorimetric Sensor Array via Prediction of Total Polyphenols
by Min Liu, Cui Jiang, Md Mehedi Hassan, Xinru Zhang, Runxian Wang, Renyong Cao, Wei Sheng and Huanhuan Li
Chemosensors 2024, 12(12), 265; https://doi.org/10.3390/chemosensors12120265 - 16 Dec 2024
Viewed by 1147
Abstract
The degree of tea fermentation is crucial as it ultimately indicates the quality of the tea. Hence, this study developed a total polyphenol prediction system for Pu-erh tea liquid using eight porphyrin dyes and one pH dye in a printed colorimetric sensor array [...] Read more.
The degree of tea fermentation is crucial as it ultimately indicates the quality of the tea. Hence, this study developed a total polyphenol prediction system for Pu-erh tea liquid using eight porphyrin dyes and one pH dye in a printed colorimetric sensor array (CSA) coupled with a convolutional neural network (CNN) during microbial fermentation. Firstly, the Box–Behnken sampling method was applied to optimize the degree of microbial fermentation of Pu-erh tea liquid using the response surface methodology. Under optimized conditions, the polyphenol degradation rate reached up to 66.146%. CSA images were then collected from the volatile compounds of Pu-erh tea-reacted CSA sensors. Subsequently, six chemometric approaches were comparatively investigated, and CNN achieved the best results for predicting total polyphenol content. Therefore, the results suggest that the proposed approach can be used to predict the degree of fermentation by measuring total polyphenols in microbial-fermented Pu-erh tea liquid. Full article
(This article belongs to the Special Issue Functional Nanomaterial-Based Sensors for Food Analysis)
Show Figures

Figure 1

18 pages, 3581 KiB  
Article
Enhanced Fermentation of Pu-Erh Tea with Aspergillus niger: Quality and Microbial Community Analysis
by Jingchuan Zheng, Lijun Yu, Muhammad Aaqil, Qiaomei Wang, Wenshu Peng, Li Zhuang, Wanying Gong, Tingting Zheng, Miaomiao Zhao, Chao Wang, Xingjiao Jiang, Liang Yan and Ruijuan Yang
Molecules 2024, 29(23), 5647; https://doi.org/10.3390/molecules29235647 - 28 Nov 2024
Cited by 1 | Viewed by 2109
Abstract
Post-fermented Pu-erh tea (PFPT) is a microbial fermented tea characterized by unique sensory attributes and multiple health benefits. Aspergillus niger is the dominant fungus involved in the fermentation process and plays a significant role in imparting the distinct characteristics of PFPT. To investigate [...] Read more.
Post-fermented Pu-erh tea (PFPT) is a microbial fermented tea characterized by unique sensory attributes and multiple health benefits. Aspergillus niger is the dominant fungus involved in the fermentation process and plays a significant role in imparting the distinct characteristics of PFPT. To investigate the role of Aspergillus niger in the fermentation of Pu-erh tea, this study inoculated unsterilized sun-dried green tea with Aspergillus niger isolated from Pu-erh tea to enhance the fermentation process. Metabolites and microbial communities in sun-dried green tea (CK), fortified fermented tea (TF), and naturally fermented tea (NF) were analyzed using non-targeted metabolomics, 16S rDNA, and internal transcribed spacer sequencing. Non-targeted metabolomics revealed that Aspergillus niger significantly altered the metabolite profile of the tea samples, identifying a total of 200 different metabolites, with 95 showing significant increases and 105 significant decreases, predominantly enriched in metabolic pathways associated with amino acid biosynthesis and degradation. High-throughput sequencing revealed that although the relative abundance of the fungal community remained largely unchanged, the inoculation of Aspergillus niger significantly increased the abundance of Bacillales and Pseudomonas within the bacterial community, thereby influencing the dynamic balance of the microbial ecosystem. Collectively, the inoculation of Aspergillus niger altered the composition of the microbial community and metabolic activities, resulting in changes to the content of amino acid-dominated metabolites, thereby enhancing the flavor profile and overall quality of Pu-erh tea. These findings provide important insights for optimizing the production processes of Pu-erh tea and the application of microorganisms in other fermented foods. Full article
(This article belongs to the Special Issue Chemistry of Tea and Coffee—2nd Edition)
Show Figures

Figure 1

13 pages, 2186 KiB  
Article
Effect of Fermentation Duration on the Chemical Compounds of Coffea arabica from Ultra Performance Liquid Chromatography–Triple Quadrupole Mass Spectrometry and Gas Chromatography–Mass Spectrometry Analysis During the Washed Processing
by Xiaojing Shen, Qi Wang, Tingting Zheng, Biao Yuan, Zhiheng Yin, Kunyi Liu and Wenjuan Yuan
Fermentation 2024, 10(11), 560; https://doi.org/10.3390/fermentation10110560 - 31 Oct 2024
Cited by 4 | Viewed by 1667
Abstract
The washed process is one of the traditional post-harvest processes of coffee beans, which include selective harvesting, flotation, pulping, submerged fermentation underwater, washing, and drying operations. During the washed processing, fermentation underwater can remove coffee mucilage and change metabolites by microorganisms. Therefore, coffee [...] Read more.
The washed process is one of the traditional post-harvest processes of coffee beans, which include selective harvesting, flotation, pulping, submerged fermentation underwater, washing, and drying operations. During the washed processing, fermentation underwater can remove coffee mucilage and change metabolites by microorganisms. Therefore, coffee fermentation is a key factor influencing coffee’s flavor. To compare the influence of fermentation duration in an open environment of Coffea arabica in 48 h during the washed processing on the coffee’s flavor, the sensory characteristics of the coffee at different fermentation durations were evaluated using the Specialty Coffee Association of America (SCAA) cupping protocol. Moreover, ultra performance liquid chromatography–triple quadrupole mass spectrometry (UHPLC–MS/MS) and gas chromatography–mass spectrometry (GC–MS) were combined to analyze and compare the chemical compounds of coffee samples from fermentation durations of 24 h (W24) and 36 h (W36) during the washed processing method. The results showed that W36 had the highest total cupping score with 77.25 in all different fermentation duration coffee samples, and 2567 non-volatile compounds (nVCs) and 176 volatile compounds (VCs) were detected in W36 and W24 during the washed processing method. Furthermore, 43 differentially changed non-volatile compounds (DCnVCs) and 22 differentially changed volatile compounds (DCVCs) were detected in W36 vs. W24. Therefore, suitable fermentation duration in an open environment is beneficial to coffee flavor, judging by chemical compound changes. For the washed primary processing of C. arabica from Yunnan, China, 36 h fermentation was the suitable fermentation duration in an open environment, which presented potential value as the reference for washed coffee processing in the food industry. Full article
Show Figures

Figure 1

15 pages, 5917 KiB  
Article
Analysis of Metabolite Differences in Different Tea Liquors Based on Broadly Targeted Metabolomics
by Xiongyu Li, Miao Niu, Hongyan Yang, Xianxiu Zhou, Jianliang Ding, Yawen Xu, Caiyou Lv and Jiahua Li
Foods 2024, 13(17), 2800; https://doi.org/10.3390/foods13172800 - 3 Sep 2024
Cited by 1 | Viewed by 1341
Abstract
To expand the development of characteristic extension products of Yunnan tea and improve the utilization rate of Yunnan tea resources, in this study, we compared the metabolite composition among raw Pu-erh tea, ripe Pu-erh tea prepared with glutinous rice (according to tea to [...] Read more.
To expand the development of characteristic extension products of Yunnan tea and improve the utilization rate of Yunnan tea resources, in this study, we compared the metabolite composition among raw Pu-erh tea, ripe Pu-erh tea prepared with glutinous rice (according to tea to glutinous rice ratio of 1:3), and ripe Pu-erh tea prepared with a mixture of sorghum, rice, glutinous rice, wheat, and corn as raw materials (according to a tea to glutinous rice ratio of 1:3). Rice flavor liquor prepared with 100% glutinous rice served as a control. The raw Pu-erh tea liquor (RAWJ), ripe Pu-erh tea liquor (RIPEJ), ripe Pu-erh tea mixed grain liquor (HHLSJ), and rice-flavor liquor (MJ) were all brewed by semi-solid fermentation. The non-volatile components of the liquor samples were analyzed by ultra-high-performance liquid chromatography-tandem mass spectrometry as a broadly targeted metabolomics technique. A total of 691 metabolites were identified from the four samples. Among them, 674, 671, 633, and 667 species were detected in RAWJ, RIPEJ, HHLSJ, and MJ samples, respectively. Venn diagram analysis demonstrated 19, 21, and 14 unique metabolites in RAWJ, RIPEJ, and HHLSJ, respectively, compared with the metabolite composition of MJ. Flavonoids are the most important differential metabolite between tea liquor and rice-flavor liquor. This study provides a theoretical basis for the development of tea liquor products and offers insight into the difference in non-volatile components between tea liquor and rice-flavor liquor. Full article
Show Figures

Figure 1

17 pages, 9639 KiB  
Article
Insights into the Metabolite Profiles of Two Camellia (Theaceae) Species in Yunnan Province through Metabolomic and Transcriptomic Analysis
by Miao Niu, Ranyang Li, Xiongyu Li, Hongyan Yang, Jianliang Ding, Xianxiu Zhou, Yuqi He, Yawen Xu, Qian Qu, Zhiwei Liu and Jiahua Li
Biomolecules 2024, 14(9), 1106; https://doi.org/10.3390/biom14091106 - 3 Sep 2024
Cited by 2 | Viewed by 1843
Abstract
Tea (Camellia sinensis) falls into the family Theaceae, is a valuable commercial crop, and tea products made from its buds and young leaves are favored by consumers all over the world. The more common Thea plant is Camellia sinensis (C. sinensis [...] Read more.
Tea (Camellia sinensis) falls into the family Theaceae, is a valuable commercial crop, and tea products made from its buds and young leaves are favored by consumers all over the world. The more common Thea plant is Camellia sinensis (C. sinensis), but its most important relative, Camellia taliensis (C. taliensis), is also utilized by locals in the area of cultivation to manufacture tea. In this investigation, C. taliensis (DL) and C. sinensis (QJZ) were characterized in terms of their agronomic traits, physicochemical indices, metabolomics, and transcriptomics. The leaf area of DL is larger than that of QJZ; the color of DL’s buds and leaves is yellowish-green, while that of QJZ’s is green. DL’s buds and leaves are more densely velvety than those of QJZ. The HPLC results indicated that the physicochemical contents varied considerably between the two samples, with DL having greater concentrations of EGCG and GABA than QJZ, while QJZ had remarkably higher concentrations of C, CA, and EGC than DL. A total of 2269 metabolites and 362,190,414 genes were positively identified, with the number of DAMs and DEGs being 1001 and 34,026, respectively. The flavonoids, phenolic acids, and alkaloid metabolites were dramatically different between the two tea group plants. Bioinformatics profiling revealed that the DAMs and DEGs of the two tea group plants interacted with each other and were involved in metabolic pathways, including “biosynthesis of secondary metabolites”, “biosynthesis of amino acids”, “biosynthesis of cofactors”, “phenylpropanoid biosynthesis”, and “flavonoid biosynthesis”. Overall, these results provide statistical support for germplasm conservation and production for both C. taliensis and C. sinensis. Full article
Show Figures

Figure 1

Back to TopTop