The Microbiome in Fermented Tea

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Food Microbiology".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 1801

Special Issue Editor


E-Mail Website
Guest Editor
Field of Dark Tea Fermentation & Quality Improvement, Shanghai Jiao Tong University, Shanghai, China
Interests: dark tea; tea-derived microbes; microbial conversion; quality improvement; mycotoxin risk

Special Issue Information

Dear Colleagues,

Dark tea has been consumed for hundreds of years and its first documents date back to the 15th century. It has historically held an important position in China’s tea trade, as an indispensable beverage for people living in border regions of northwestern China. Nowadays, it is a functional beverage preferred by consumers, especially in China and Southeast Asia. Its production in China reached 458,000 t in 2023, which accounted for 6.94% of global tea production and exceeded the production of oolong tea (China Tea Marketing Association, 2023).

The microbes involved in pile fermentation are crucial in forming the sensory quality and biological functions of dark tea. During pile fermentation, various indigenous microbes propagate vigorously under high-humidity and high-temperature environments and induce multiple metabolic transformations with microbial action. Consequently, the chemical profile of raw tea leaves changes dramatically, endowing dark tea with unique sensory qualities and multiple health-promoting benefits. To date, our understanding of the microbial community has advanced rapidly due to the breakthroughs and broad application of microbiomes. Notably, a growing number of core functional microbes have been isolated from dark tea and applied in dark tea fermentation. The metabolic functions and quality contribution of tea-derived microbes have been revealed, and their mycotoxin risk in dark tea manufacturing has been investigated, which provides a theoretical basis for the improvement in quality and the safe manufacture of dark tea.

Dr. Lizeng Cheng
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • dark tea
  • tea-derived microbes
  • microbial conversion
  • quality improvement
  • mycotoxin risk

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

10 pages, 1545 KiB  
Article
Viable and Heat-Resistant Microbiota with Probiotic Potential in Fermented and Non-Fermented Tea Leaves and Brews
by Elisabeth Uhlig, Afina Megaelectra, Göran Molin and Åsa Håkansson
Microorganisms 2025, 13(5), 964; https://doi.org/10.3390/microorganisms13050964 - 23 Apr 2025
Viewed by 262
Abstract
The live microbiota of tea has not been extensively investigated. This study aimed to identify the live, culturable microbiota from four types of tea with varying oxidation levels, before and after brewing. Tea leaves and brews from oolong and fermented teas were analyzed [...] Read more.
The live microbiota of tea has not been extensively investigated. This study aimed to identify the live, culturable microbiota from four types of tea with varying oxidation levels, before and after brewing. Tea leaves and brews from oolong and fermented teas were analyzed for total viable counts of aerobic bacteria, lactobacilli, fungi, and Enterobacteriaceae. Cultivation was performed and isolates were identified by Sanger sequencing. Heat resistance was assessed at 70 °C and 90 °C. Random Amplified Polymorphic DNA (RAPD) was used to determine strain-level diversity. Fully oxidized, post-fermented Pu-erh tea had the highest viable bacterial count. Most isolates belonged to Bacillaceae, Staphylococcaceae, and Paenibacillaceae, families associated with soil or human skin. Only two potentially pathogenic species were identified: Staphylococcus epidermidis and Bacillus cereus. In Pu-erh, live bacteria were detected after brewing at 90 °C, including Heyndrickxia coagulans, a spore forming probiotic species. H. coagulans strains remained in vegetative state after hot water exposure and survived at 70 °C, indicating thermotolerance. RAPD-analysis revealed nine distinct H. coagulans strains across six Pu-erh teas. Conclusion: This study provides new insight into the viable microbiota of different teas and their survival during brewing, highlighting safety concerns and probiotic species like H. coagulans. Full article
(This article belongs to the Special Issue The Microbiome in Fermented Tea)
Show Figures

Figure 1

16 pages, 4046 KiB  
Article
Effects of Different Types and Ratios of Dry Tea Residues on Nutrient Content, In Vitro Rumen Fermentation, and the Bacterial Community of Ensiled Sweet Sorghum
by Tong Zhou, Binbin Na, Xingcheng Lei, Yuangan Qian, Yixiao Xie, Yulong Zheng, Qiming Cheng, Ping Li, Chao Chen, Fuyu Yang and Hong Sun
Microorganisms 2024, 12(11), 2178; https://doi.org/10.3390/microorganisms12112178 - 29 Oct 2024
Viewed by 1167
Abstract
Dry tea residue is a byproduct generated during the production, processing, and storage of tea leaves. The active ingredients and microbial composition of dried tea residue vary depending on different tea processing techniques. This study investigated the effects of six processed dry tea [...] Read more.
Dry tea residue is a byproduct generated during the production, processing, and storage of tea leaves. The active ingredients and microbial composition of dried tea residue vary depending on different tea processing techniques. This study investigated the effects of six processed dry tea residues—green tea (G), black tea (B), raw Pu’er tea (Z), white tea (W), and ripe Pu’er tea (D)—at two addition ratios (5% and 10%) on the nutritional composition, fermentation quality, in vitro fermentation, and bacterial community of sweet sorghum (Sorghum bicolor) in the ensiling process. Compared to the control group (CK), the addition of tea residue significantly increased the crude protein (CP) content in silage by 17.9% to 180% (p < 0.05), and the content increased with increasing ratios of tea residue. The G10 treatment resulted in the highest CP content, reaching 16.4%. Including tea residue also influenced the ratio of ammonia nitrogen (NH3-N) to non-protein nitrogen (NPN). Furthermore, the G and Z treatments at both addition levels increased the total phenolic content, DPPH free-radical scavenging activity, and total antioxidant capacity of the sweet sorghum silage. Except for the Z5 and W10 treatments, the addition of tea residue did not significantly affect in vitro dry matter digestibility. Overall, this study showed that incorporating tea residue could enhance the nutritional quality and antioxidant capacity of sweet sorghum silage, and the G5 treatment performed the best. The research results suggested that dried tea residues have potential as silage additives. Full article
(This article belongs to the Special Issue The Microbiome in Fermented Tea)
Show Figures

Figure 1

Back to TopTop