Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (210)

Search Parameters:
Keywords = Precambrian

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4783 KB  
Article
Provenance and Tectonic Setting of the Mesoproterozoic Pudeng Formation in the Western Yangtze Block
by Jian Yao, Youliang Chen, Luyu Huang, Jing Zhao, Mengjuan Gu and Baoling Zhang
Minerals 2025, 15(11), 1195; https://doi.org/10.3390/min15111195 - 13 Nov 2025
Abstract
The Yangtze Block provides a natural window into the tectonic evolution of Precambrian continental crusts. The Julin Group is a dominant Precambrian stratigraphic unit in the southwestern block, the depositional age of which is still poorly constrained. The lowest sequence of this group, [...] Read more.
The Yangtze Block provides a natural window into the tectonic evolution of Precambrian continental crusts. The Julin Group is a dominant Precambrian stratigraphic unit in the southwestern block, the depositional age of which is still poorly constrained. The lowest sequence of this group, the Pudeng Formation, is primarily composed of mica-quartz schists and quartzites intruded by a biotite monzogranite. LA–ICP–MS zircon U-Pb ages of biotite monzogranite and detrital zircons constrain the deposition of the Julin Group to between 1099 and 1052 Ma. Geochemical compositions of the mica-quartz schists and quartzites display high δCe, ΣREE, Th/Sc, and Th/U, along with low δEu, La/Sc, Ce/Th, and Al2O3/(Al2O3 + Fe2O3) ratios, indicating their derivation from felsic volcanic protoliths in a passive continental margin setting. The detrital zircons show distinct age peaks at 2.5, 1.85, and 1.6 Ga, with their source regions primarily located along the western and northern Yangtze Block. Integrating the magmatic records within the Yangtze Block with the ages and εHf(t) values of detrital zircons indicates that the tectonic setting of the western Yangtze Block evolved from a subduction-related arc at ~2.5 Ga to an orogenic belt at ~1.86 Ga and subsequently to intracontinental extensional (rift) environments at ~1.6 Ga and ~1.2 Ga. This evolution reflects the geodynamic transition from the Arrowsmith orogeny to the assembly and development of the Columbia and Rodinia supercontinents. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

24 pages, 10026 KB  
Article
Mineralogy and Geochemistry Characteristics of Nephrite from Jingbaoer Grassland Jade Mine Site in Mazongshan Town, Gansu Province, China: Implications for the Provenance of Excavated Jade Artifacts
by Jifu Liu, Yi Cao, Yuan Chang, Yue Su, Xuan Yu and Mingxing Yang
Minerals 2025, 15(11), 1186; https://doi.org/10.3390/min15111186 - 11 Nov 2025
Viewed by 76
Abstract
The Jingbaoer Grassland Jade Mine situated approximately 20 km northwest of Mazongshan Town in Gansu Province, China, represents an important source of nephrite dating back to the pre-Qin period. In this study, 58 representative nephrite samples were analyzed to investigate their mineralogical and [...] Read more.
The Jingbaoer Grassland Jade Mine situated approximately 20 km northwest of Mazongshan Town in Gansu Province, China, represents an important source of nephrite dating back to the pre-Qin period. In this study, 58 representative nephrite samples were analyzed to investigate their mineralogical and geochemical characteristics using polarized light microscopy, scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The mine is situated near the contact zone between the Silurian Gongpoquan Group and Devonian granite, with surrounding rocks primarily consisting of Precambrian dolomitic marble. The nephrite displays diverse colors—white, bluish-white, sugar-white, and cyan—with darker tones and abundant manganese-stained dendritic and flocculent inclusions. It shows a relative density of 2.82–2.99, a refractive index of 1.60–1.62, and a vitreous to greasy luster. Texturally, the jade is predominantly composed of micro-fibrous interwoven tremolite, occasionally exhibiting oriented recrystallization textures. Minor minerals include diopside, apatite, titanite, chlorite, epidote, allanite, rutile, and graphite. Chemically, the samples are rich in SiO2, MgO, and CaO, with trace amounts of FeO, MnO, Al2O3, and Na2O. Notably, Sr and Sm are enriched, Nb is slightly depleted, and Eu shows a distinct negative anomaly. The average total rare earth content is 4.25 µg/g. The study suggests that the deposits in the research area are typical of the contact-metasomatic type, formed through multi-stage hydrothermal metasomatism between acidic granitic intrusions and dolomitic marble, creating favorable conditions for the formation of high-quality tremolite jade. Comparative analysis with jade artifacts excavated from the Tomb of Marquis Yi of Zeng suggests a possible provenance link to the Jingbaoer deposit, providing valuable evidence for the historical mining and distribution of nephrite during the Warring States period. Full article
(This article belongs to the Special Issue Formation Study of Gem Deposits)
Show Figures

Figure 1

39 pages, 23544 KB  
Article
Zircon Isotopic Constraints on Age, Magma Genesis, and Evolution of the Betic Ophiolites, Nevado-Filábride Complex, Spain
by Encarnación Puga, Antonio Díaz de Federico, Miguel A. Díaz Puga and José Miguel Nieto
Geosciences 2025, 15(10), 406; https://doi.org/10.3390/geosciences15100406 - 20 Oct 2025
Viewed by 407
Abstract
Metabasic rocks (eclogites and amphibolites) from four Betic ophiolite outcrops (Lugros, Almirez, Cóbdar, and Algarrobo), comprising Ol-Px gabbros, dolerites, and MORB-affinity basalts, were studied. U-Pb SHRIMP zircon dating yielded Early to Middle Jurassic ages (187–174 Ma). At Cóbdar and Algarrobo, several magmatic levels [...] Read more.
Metabasic rocks (eclogites and amphibolites) from four Betic ophiolite outcrops (Lugros, Almirez, Cóbdar, and Algarrobo), comprising Ol-Px gabbros, dolerites, and MORB-affinity basalts, were studied. U-Pb SHRIMP zircon dating yielded Early to Middle Jurassic ages (187–174 Ma). At Cóbdar and Algarrobo, several magmatic levels were identified (187 ± 1.7 to 174 ± 1.8 Ma, and 184 ± 1.8 to 180 ± 1.6 Ma, respectively). In Lugros, two gabbros were dated to 187 ± 2.5 and 184 ± 1.4 Ma, while a dolerite dyke intruding serpentinites in Almirez gave 184 ± 1.6 Ma. Algarrobo xenocrystic zircons, predominantly Precambrian, resemble those from the MAR (13° N–15° N) in age and chemistry, suggesting a similar tectonic setting. δ18O values (4.2–6.2‰) of Betic ophiolite zircons (gabbros, basalts, dolerites) match those of MAR and SWIR samples, reflecting also oceanic alteration. Some zircons preserve δ18O variations linked to Jurassic (~150 Ma) oceanic metamorphism and later orogenic overprints. REE patterns show depletions in HREE and Y, with localized enrichments in LREE and Hf, which are more marked in metamorphically recrystallized zones. Xenocrystic zircons may derive from Precambrian protoliths assimilated during Jurassic magma ascent near transform faults. This integrated geochronological and geochemical evidence provides the key constraints for a revised geodynamic framework, confirming the existence of a Betic Jurassic ocean basin, which is a crucial precursor to the Alpine orogenic events that shaped the region. Full article
Show Figures

Graphical abstract

18 pages, 19543 KB  
Article
Detrital Zircon U-Pb Age Data and Geochemistry of Clastic Rocks in the Xiahe–Hezuo Area: Implications for the Late Paleozoic–Mesozoic Tectonic Evolution of the West Qinling Orogen
by Hang Li, Kang Yan, Kangning Li, Ke Yang, Baocheng Fan, Zhongkai Xue, Li Chen and Haomin Guo
Geosciences 2025, 15(10), 384; https://doi.org/10.3390/geosciences15100384 - 3 Oct 2025
Viewed by 479
Abstract
The West Qinling Orogenic Belt (WQOB) contains a sedimentary succession that is approximately 15 km thick, spanning from the Carboniferous to the Jurassic period. This succession offers critical insights into the tectonic evolution of the Paleo-Tethys Ocean. While previous models have suggested various [...] Read more.
The West Qinling Orogenic Belt (WQOB) contains a sedimentary succession that is approximately 15 km thick, spanning from the Carboniferous to the Jurassic period. This succession offers critical insights into the tectonic evolution of the Paleo-Tethys Ocean. While previous models have suggested various depositional environments, the late Paleozoic to Mesozoic tectonic evolution of the WQOB is still not fully understood. In this study, we incorporate new detrital zircon U-Pb age data and whole-rock geochemical analyses from six stratigraphic units, dating back to the Carboniferous to Triassic periods in the Xiahe–Hezuo region, alongside existing datasets. The detrital zircon age spectra from the WQOB reveal three distinct groups: Devonian–Carboniferous strata exhibit dominant Neoproterozoic (~800–900 Ma) zircon populations, whereas Permian–Triassic rock samples show prominent Paleoproterozoic (1840–1880 Ma) and Archean (2450–2500 Ma) peaks. A minor Neoproterozoic component in Permian spectra disappears by the Triassic, while Jurassic–Cretaceous assemblages lack Precambrian grains. These trends reflect evolving source terranes linked to Paleo-Tethyan subduction dynamics. Furthermore, the geochemical signatures of the Devonian–Triassic clastic rocks align with the composition of upper continental crust, indicating a tectonic relationship with continental island arcs and active continental margins. By synthesizing these findings with established detrital zircon ages, magmatic records, and geophysical data, we propose that the WQOB underwent pre-Triassic tectonic evolution that was marked by pre-Triassic subduction and localized extension during the process of continental underthrusting. Full article
(This article belongs to the Special Issue Detrital Minerals Geochronology and Sedimentary Provenance)
Show Figures

Figure 1

15 pages, 2467 KB  
Article
Definition of Groundwater Management Zones for a Fissured Karst Aquifer in Semi-Arid Northeastern Brazil
by Hailton Mello da Silva, Luiz Rogério Bastos Leal, Cezar Augusto Teixeira Falcão Filho, Thiago dos Santos Gonçalves and Harald Klammler
Hydrology 2025, 12(8), 195; https://doi.org/10.3390/hydrology12080195 - 23 Jul 2025
Viewed by 1088
Abstract
The objective of this study is to define groundwater management zones for a complex deformed and fissured Precambrian karst aquifer, which underlies one of the most important agricultural areas in the semi-arid region of Irecê, Bahia, Brazil. It is an unconfined aquifer, hundreds [...] Read more.
The objective of this study is to define groundwater management zones for a complex deformed and fissured Precambrian karst aquifer, which underlies one of the most important agricultural areas in the semi-arid region of Irecê, Bahia, Brazil. It is an unconfined aquifer, hundreds of meters thick, resulting from a large sequence of carbonates piled up by thrust faults during tectonic plate collisions. Groundwater recharge and flow in this aquifer are greatly influenced by karst features, through the high density of sinkholes and vertical wells. Over the past four decades, population and agricultural activities have increased in the region, resulting in unsustainable groundwater withdrawal and, at the same time, water quality degradation. Therefore, it is important to develop legal and environmental management strategies. This work proposes the division of the karst area into three well-defined management zones by mapping karst structures, land use, and urban occupation, as well as the concentrations of chloride and nitrate in the region’s groundwater. Zone 1 in the north possesses the lowest levels of karstification, anthropization, and contamination, while zone 2 in the central region has the highest levels and zone 3 in the south ranging in-between (except for stronger karstification). The delimitation of management zones will contribute to the development and implementation of optimized zone-specific groundwater preservation and restoration strategies. Full article
Show Figures

Figure 1

19 pages, 3874 KB  
Article
The Formation Age and Geological Setting of the Huoqiu Group in the Southern Margin of North China Craton: Implication for BIF-Type Iron Prospecting Potentiality
by Lizhi Xue, Rongzhen Tang, Xinkai Chen, Jiashuo Cao and Yanjing Chen
Minerals 2025, 15(7), 695; https://doi.org/10.3390/min15070695 - 29 Jun 2025
Viewed by 518
Abstract
The Huoqiu Group is located in the southern margin of the North China Craton and is considered an Archean geologic body. Its supracrustal rocks are divided into the Huayuan, Wuji, and Zhouji formations in ascending order. The Wuji and Zhouji formations contain large [...] Read more.
The Huoqiu Group is located in the southern margin of the North China Craton and is considered an Archean geologic body. Its supracrustal rocks are divided into the Huayuan, Wuji, and Zhouji formations in ascending order. The Wuji and Zhouji formations contain large BIF-type iron deposits. The BIFs show geological and geochemical features of Paleoproterozoic Lake Superior-type rather than Archean Algoma-type. The study of the formation ages and evolutionary history of the Huoqiu Terrane will provide significant guidance for the mineralization and exploration of the Huoqiu iron deposits. In this paper, we collected all available isotopic ages and Hf isotopic compositions obtained from the Huoqiu Terrane and reassessed their accuracy and geological meanings. We conclude that the Wuji and Zhouji formations were not older than 2343 Ma. Therefore, the BIFs hosted in the Wuji and Zhouji formations must be of Paleoproterozoic age. The magmatic zircons from the TTG gneisses and granite yield U-Pb ages of Neoarchean Era, indicating that the Wuji and Zhouji formations of the Huoqiu Group were deposited on an Archean granitic basement that mainly comprises the trondhjemite-tonalite-granodiorite (TTG) gneisses and granites of the “Huayuan Formation”. The Early Precambrian crystalline basement in the Huoqiu area can be divided into the Huayuan Gneiss Complex and the Huoqiu Group, comprising the Wuji and Zhouji formations. The tectonic scenario of granitic complexes overlain by supracrustal rocks in the Huoqiu Terrane has been recognized in the Songshan, Zhongtiao, Xiaoshan, and Lushan Early Precambrian terranes in the southern margin of the North China Craton. As indicated by the zircon U-Pb ages and εHf(t) data, the crustal growth of the Huoqiu Terrane occurred mainly at ~2.9 Ga and ~2.7 Ga. Based on the sedimentary age, environment, and rhythm, the BIFs in the Huoqiu region are considered to be of Lake Superior type and of great potential for Fe ore exploration. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

17 pages, 9107 KB  
Article
The Central Western Caucasus at the Jurassic–Cretaceous Transition: A Synthesis with a Case Study
by Dmitry A. Ruban, Svetlana O. Zorina, Konstantin I. Nikashin and Rafael N. Muzafarov
J. Mar. Sci. Eng. 2025, 13(7), 1257; https://doi.org/10.3390/jmse13071257 - 28 Jun 2025
Viewed by 664
Abstract
The Caucasian Sea was among the vast tropical water masses that existed on Earth in the Mesozoic. The knowledge of Kimmeridgian–Hauterivian deposits from the central Western Caucasus can facilitate the understanding of the Caucasian paleogeography at the Jurassic–Cretaceous transition. Taking into account the [...] Read more.
The Caucasian Sea was among the vast tropical water masses that existed on Earth in the Mesozoic. The knowledge of Kimmeridgian–Hauterivian deposits from the central Western Caucasus can facilitate the understanding of the Caucasian paleogeography at the Jurassic–Cretaceous transition. Taking into account the scale of the study area and its geological complexity, a generalized synthesis of the published information seems to be an appropriate option to propose a tentative paleogeographical model. Some original field and laboratory studies, including the examination of the composition of Hauterivian alluvial sandstones, contribute to this model. Kimmeridgian–Hauterivian deposits crop out in the northern, western, and southern domains of the study area, but older rocks are exposed in its central and eastern parts. The Caucasian Sea covered the study area in the early Kimmeridgian, but a large land appeared in the late Kimmeridgian and existed until the end of the Hauterivian despite certain shoreline shifts. The land was eroded deeply, with exposure of pre-Upper Jurassic rocks, including Precambrian–Paleozoic crystalline complexes, and the sedimentary material was delivered to an alluvial plain on its periphery. The registered sea–land interplay was controlled tectonically. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

18 pages, 15631 KB  
Article
Resolving the Faint Young Sun Paradox and Climate Extremes: A Unified Thermodynamic Closure Theory
by Hsien-Wang Ou
Climate 2025, 13(6), 116; https://doi.org/10.3390/cli13060116 - 2 Jun 2025
Viewed by 1000
Abstract
Clouds play a central role in regulating incoming solar radiation and outgoing terrestrial emission; hence, they must be internally constrained to prognose Earth’s temperature. At the same time, planetary fluids are inherently turbulent, so the climate state would tend toward maximum entropy production—a [...] Read more.
Clouds play a central role in regulating incoming solar radiation and outgoing terrestrial emission; hence, they must be internally constrained to prognose Earth’s temperature. At the same time, planetary fluids are inherently turbulent, so the climate state would tend toward maximum entropy production—a generalized second law of thermodynamics. Incorporating these requirements, I have previously formulated an aquaplanet model to demonstrate that intrinsic water properties may strongly lower the climate sensitivity to solar irradiance, thereby resolving the faint young Sun paradox (FYSP). In this paper, I extend the model to include other external forcings and show that sensitivity to the reduced outgoing longwave radiation by the elevated pCO2 can be several times greater, but the global temperature remains capped at ~40 °C by the exponential increase in saturated vapor pressure. I further show that planetary albedo augmented by a tropical supercontinent may cool the climate sufficiently to cause tropical glaciation. And since the glacial edge is marked by above-freezing temperature, it abuts an open, co-zonal ocean, thereby obviating the “Snowball Earth” hypothesis. Our theory thus provides a unified framework for interpreting Earth’s diverse climates, including the FYSP, the warm extremes of the Cambrian and Cretaceous, and the tropical glaciations of the Precambrian. Full article
Show Figures

Graphical abstract

28 pages, 12692 KB  
Article
Genesis of the Aït Abdellah Copper Deposit, Bou Azzer-El Graara Inlier, Anti-Atlas, Morocco
by Marieme Jabbour, Said Ilmen, Moha Ikenne, Basem Zoheir, Mustapha Souhassou, Ismail Bouskri, Ali El-Masoudy, Ilya Prokopyev, Mohamed Oulhaj, Mohamed Ait Addi and Lhou Maacha
Minerals 2025, 15(5), 545; https://doi.org/10.3390/min15050545 - 20 May 2025
Viewed by 1710
Abstract
The Aït Abdellah copper deposit in the Bou Azzer-El Graara inlier of the Moroccan Anti-Atlas provides key insights into structurally and lithologically controlled mineralization in Precambrian terranes. The deposit is hosted in feldspathic sandstones of the Tiddiline Group, which unconformably overlie the Bou [...] Read more.
The Aït Abdellah copper deposit in the Bou Azzer-El Graara inlier of the Moroccan Anti-Atlas provides key insights into structurally and lithologically controlled mineralization in Precambrian terranes. The deposit is hosted in feldspathic sandstones of the Tiddiline Group, which unconformably overlie the Bou Azzer ophiolite, and is spatially associated with a NE–SW-trending shear zone. This zone is characterized by mylonitic fabrics, calcite veining, and an extensive network of fractures, reflecting a two-stage deformation history involving early ductile shearing followed by brittle faulting and brecciation. These structural features enhanced rock permeability, enabling fluid flow and metal precipitation. Copper mineralization includes primary sulfides such as chalcopyrite, bornite, pyrite, chalcocite, digenite, and covellite, as well as supergene minerals like malachite, azurite, and chrysocolla. Sulfur isotope values (δ³⁴S = +5.9% to +22.8%) indicate a mixed sulfur source, likely derived from both ophiolitic rocks and volcano-sedimentary sequences. Carbon and oxygen isotope data suggest fluid interaction with marine carbonates and meteoric waters, potentially linked to post-Snowball Earth deglaciation processes. Fluid inclusion studies reveal homogenization temperatures ranging from 195 °C to 310 °C and salinities between 5.7 and 23.2 wt.% NaCl equivalent, supporting a model of fluid mixing between magmatic-hydrothermal and volcano-sedimentary sources. The paragenetic evolution of the deposit comprises three stages: (1) early hydrothermal precipitation of quartz, dolomite, sericite, pyrite, and early chalcopyrite and bornite; (2) a main mineralizing stage characterized by fracturing and deposition of bornite, chalcopyrite, and Ag-bearing sulfosalts; and (3) a late supergene phase with oxidation and secondary enrichment. The Aït Abdellah deposit is best classified as a shear zone-hosted copper system with a complex, multistage mineralization history. The integrated analysis of structural features, mineral assemblages, isotopic signatures, and fluid inclusion data reveals a dynamic interplay between deformation processes, hydrothermal alteration, and evolving fluid sources. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Graphical abstract

27 pages, 49527 KB  
Article
Analyzing Recent Tectonic Activity Along the Karak Wadi Al Fayha Fault System Using Seismic, Earthquake, and Remote Sensing Data
by Mu’ayyad Al Hseinat, Malek AlZidaneen and Ghassan Sweidan
Geosciences 2025, 15(5), 177; https://doi.org/10.3390/geosciences15050177 - 14 May 2025
Viewed by 2114
Abstract
The Karak Wadi Al Fayha Fault (KWF) is a major NW-trending intraplate wrench fault system extending over 325 km from Western Karak in Jordan to Wadi Al Fayha in Saudi Arabia. Structurally linked to the Precambrian Najd Fault System, the KWF has been [...] Read more.
The Karak Wadi Al Fayha Fault (KWF) is a major NW-trending intraplate wrench fault system extending over 325 km from Western Karak in Jordan to Wadi Al Fayha in Saudi Arabia. Structurally linked to the Precambrian Najd Fault System, the KWF has been previously mapped using field observations, gravity, magnetic, and reflection seismic methods. However, these approaches lacked the vertical resolution necessary to characterize its shallow structure, leaving its influence on recent deposits and surface topography poorly understood. This study employs reflection seismic sections integrated with a Digital Elevation Model to refine terrain analysis and enhance fault mechanism solutions for determining the regional stress field pattern. Our results provide compelling evidence of the KWF’s upward propagation into the surface, as demonstrated by deformation of the uppermost Cretaceous and Cenozoic successions, distinct geomorphic features in the Digital Elevation Model, alignment of earthquake epicenters along the fault, and active landslides associated with its movement. We suggest that the reactivation of the KWF has been influenced by changing stress fields from the Late Cretaceous (Turonian) to the present. The Northwestern Arabian plate has undergone multiple tectonic stress transitions, including WNW–ESE compression associated with the Syrian Arc Fold-Belt system (Turonian–Plio-Pleistocene) and subsequent NNE–SSW extension linked to Red Sea rifting (Neogene–present). The analysis of fault mechanism solutions suggests that the latest fault movements result from the continued activity of the Irbid Rift event (Eocene) and the Dead Sea Transform Fault since the Miocene. Full article
(This article belongs to the Special Issue Applied Geophysics for Geohazards Investigations)
Show Figures

Figure 1

15 pages, 7914 KB  
Article
Detrital Zircon U-Pb Geochronology of River Sands from the Yulongkash and Karakash Rivers in the Hotan River Drainage System, Southwestern Tarim Basin: Implications for Sedimentary Provenance and Tectonic Evolution
by Mingkuan Qin, Qiang Guo, Nian Liu, Qiang Xu, Jing Xiao, Shaohua Huang, Long Zhang, Miao Xu, Yayi Jiang and Shaohua Zhang
Minerals 2025, 15(5), 509; https://doi.org/10.3390/min15050509 - 12 May 2025
Viewed by 902
Abstract
The southwestern Tarim Basin, shaped by the far-field effects of the India-Eurasia collision, serves as a critical archive for reconstructing source-to-sink dynamics and tectonic evolution in a Cenozoic intracontinental foreland setting. This study presents detrital zircon U-Pb geochronology and trace element data from [...] Read more.
The southwestern Tarim Basin, shaped by the far-field effects of the India-Eurasia collision, serves as a critical archive for reconstructing source-to-sink dynamics and tectonic evolution in a Cenozoic intracontinental foreland setting. This study presents detrital zircon U-Pb geochronology and trace element data from sands of the Yulongkash and Karakash Rivers, major tributaries of the Hotan River draining the West Kunlun Orogenic Belt. Our results reveal distinct provenance signatures between the two tributaries: Yulongkash river sands (HT1) exhibit dominant Triassic (~208 Ma) and Early Paleozoic (~418 Ma) zircon populations, sourced primarily from the South Kunlun and Tianshuihai terranes, whereas Karakash river sands (MY1) are characterized by Early Paleozoic (~460 Ma) and Precambrian zircons, reflecting predominant contributions from the North Kunlun Terrane. Integration with published datasets highlights systematic spatial variations in detrital zircon age spectra, controlled by bedrock heterogeneity, fluvial geomorphology, and sediment mixing efficiency. Furthermore, crustal thickness reconstructions based on zircon trace elements constrain the terminal closure of the Proto-Tethys Ocean to ~420–440 Ma (peak crustal thickness: ~80 km) and the Paleo-Tethys Ocean to the Late Triassic (~210 Ma). These findings not only refine the provenance framework of the Hotan River drainage system but also provide critical insights into the timing of Tethyan ocean closures and the tectonic evolution of the West Kunlun Orogenic Belt, emphasizing the utility of detrital zircon records in deciphering orogenic histories within complex intracontinental settings. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

15 pages, 8076 KB  
Article
Applicability of Machine Learning and Mathematical Equations to the Prediction of Total Organic Carbon in Cambrian Shale, Sichuan Basin, China
by Majia Zheng, Meng Zhao, Ya Wu, Kangjun Chen, Jiwei Zheng, Xianglu Tang and Dadong Liu
Appl. Sci. 2025, 15(9), 4957; https://doi.org/10.3390/app15094957 - 30 Apr 2025
Viewed by 809
Abstract
Accurate Total Organic Carbon (TOC) prediction in the deeply buried Lower Cambrian Qiongzhusi Formation shale is constrained by extreme heterogeneity (TOC variability: 0.5–12 wt.%, mineral composition Coefficient of Variation > 40%) and ambiguous geophysical responses. This study introduces three key innovations to address [...] Read more.
Accurate Total Organic Carbon (TOC) prediction in the deeply buried Lower Cambrian Qiongzhusi Formation shale is constrained by extreme heterogeneity (TOC variability: 0.5–12 wt.%, mineral composition Coefficient of Variation > 40%) and ambiguous geophysical responses. This study introduces three key innovations to address these challenges: (1) A Dynamic Weighting–Calibrated Random Forest Regression (DW-RFR) model integrating high-resolution Gamma-Ray-guided dynamic time warping (±0.06 m depth alignment precision derived from 237 core-log calibration points using cross-validation), Principal Component Analysis-Deyang–Anyue Rift Trough Shapley Additive Explanations (PCA-SHAP) hybrid feature engineering (89.3% cumulative variance, VIF < 4), and Bayesian-optimized ensemble learning; (2) systematic benchmarking against conventional ΔlogR (R2 = 0.700, RMSE = 0.264) and multi-attribute joint inversion (R2 = 0.734, RMSE = 0.213) methods, demonstrating superior accuracy (R2 = 0.917, RMSE = 0.171); (3) identification of Gamma Ray (r = 0.82) and bulk density (r = −0.76) as principal TOC predictors, contrasted with resistivity’s thermal maturity-dependent signal attenuation (r = 0.32 at Ro > 3.0%). The methodology establishes a transferable framework for organic-rich shale evaluation, directly applicable to the Longmaxi Formation and global Precambrian–Cambrian transition sequences. Future directions emphasize real-time drilling data integration and quantum computing-enhanced modeling for ultra-deep shale systems, advancing predictive capabilities in tectonically complex basins. Full article
Show Figures

Figure 1

50 pages, 16665 KB  
Review
Geology, Mineralization and Development Potential of Rare and Uncommon Earth Ore Deposits in Southwest China
by Nan Ju, Gao Yang, Dongfang Zhao, Yue Wu, Bo Liu, Pengge Zhang, Xin Liu, Lu Shi, Yuhui Feng, Zhonghai Zhao, Yunsheng Ren, Hui Wang, Qun Yang, Zhenming Sun and Suiliang Dong
Minerals 2025, 15(5), 459; https://doi.org/10.3390/min15050459 - 28 Apr 2025
Viewed by 2130
Abstract
The southwestern region of China is tectonically situated within the Tethyan tectonic domain, with the eastern part comprising the Upper Yangtze Block, while the western orogenic belt forms the main part of the Tibetan Plateau. This belt was formed by the subduction of [...] Read more.
The southwestern region of China is tectonically situated within the Tethyan tectonic domain, with the eastern part comprising the Upper Yangtze Block, while the western orogenic belt forms the main part of the Tibetan Plateau. This belt was formed by the subduction of the Paleo-Tethys Ocean and subsequent arc-continent collision, and was later further modified by the India-Asia collision, resulting in complex geological structures such as the Hengduan Mountains. The lithostratigraphy in this region can be divided into six independent units. In terms of mineralization, the area encompasses two first-order metallogenic domains: the Tethyan-Himalayan and the Circum-Pacific. This study synthesizes extensive previous research to systematically investigate representative rare earth element (REE) deposits (e.g., Muchuan and Maoniuping in Sichuan; the Xinhua deposit in Guizhou; the Lincang deposit in Yunnan). Through comparative analysis of regional tectonic-metallogenic settings, we demonstrate that REE distribution in Southwest China is fundamentally controlled by Tethyan tectonic evolution: sedimentary-weathered types dominate in the east, while orogenic magmatism-related types prevail in the west. These findings reveal critical metallogenic patterns, establishing a foundation for cross-regional resource assessment and exploration targeting. The region hosts 32 identified REE occurrences, predominantly light REE (LREE)-enriched, genetically classified as endogenic, exogenic, and metamorphic deposit types. Metallogenic epochs include Precambrian, Paleozoic, and Mesozoic-Cenozoic periods, with the latter being most REE-relevant. Six prospective exploration areas are delineated: Mianning-Dechang, Weining-Zhijin, Long’an, Simao Adebo, Shuiqiao, and the eastern Yunnan-western Guizhou sedimentary-type district. Notably, the discovery of paleo-weathering crust-sedimentary-clay type REE deposits in eastern Yunnan-western Guizhou significantly expands regional exploration potential, opening new avenues for future resource development. Full article
Show Figures

Figure 1

19 pages, 5046 KB  
Article
Self-Induced Crystalline Morphology at the Mineral–Fluid Interface: Silica–Carbonate Biomorphs of Alkaline Earth Metals as a Case Study
by Mayra Cuéllar-Cruz, Erick Alfredo Zúñiga-Estrada, Marcelino Antonio Zúñiga-Estrada, Selene R. Islas and Abel Moreno
Appl. Sci. 2025, 15(9), 4593; https://doi.org/10.3390/app15094593 - 22 Apr 2025
Viewed by 1000
Abstract
Minerals have played a fundamental part in prebiotic chemistry on Earth, catalyzing the synthesis of inorganic and even organic molecules, including macromolecules such as RNA or DNA. Minerals based on silica are some of the first inorganics to be found in very ancient [...] Read more.
Minerals have played a fundamental part in prebiotic chemistry on Earth, catalyzing the synthesis of inorganic and even organic molecules, including macromolecules such as RNA or DNA. Minerals based on silica are some of the first inorganics to be found in very ancient mineral fossils. These minerals or even volcanic glasses rich in silica, such as obsidians (a naturally volcanic glass, which is in fact an igneous rock), play an important role as supporting materials for obtaining the silico-carbonates of alkaline earth metals (usually called biomorphs). This is because, in most radiolarians, diatoms, and foraminifera, their external shells are made up of silica (SiO2). However, it has yet to be evaluated whether the silica contained in the minerals present in the prebiotic era of the Earth interacted with the chemical elements that were also present during that era. To evaluate whether obsidian participated in the formation of the first inorganic structures of pioneering organisms, this study aimed to synthesize calcium and barium biomorphs on igneous rock and to show that dissolved organic and inorganic molecules might have interacted with the molecules of obsidian, producing a plethora of shapes that mimicked the cherts of the Precambrian. Full article
Show Figures

Figure 1

39 pages, 37908 KB  
Article
Deformation of the “Anorogenic” Wolf River Batholith, Wisconsin, USA: Understanding the Baraboo Orogeny Hinterland
by John P. Craddock, David H. Malone, Erica P. Craddock, Steven J. Baumann, John E. Malone and Ryan Porter
Geosciences 2025, 15(4), 150; https://doi.org/10.3390/geosciences15040150 - 16 Apr 2025
Cited by 1 | Viewed by 1220
Abstract
The Mesoproterozoic (~1470 Ma) Wolf River batholith (WRB) is exposed over 6500 km2, encompassing 11 plutons that crosscut the Archean Marshfield and Proterozoic Penokean terranes. As the WRB is the classically defined anorogenic batholith, to test this hypothesis, seven igneous phases [...] Read more.
The Mesoproterozoic (~1470 Ma) Wolf River batholith (WRB) is exposed over 6500 km2, encompassing 11 plutons that crosscut the Archean Marshfield and Proterozoic Penokean terranes. As the WRB is the classically defined anorogenic batholith, to test this hypothesis, seven igneous phases were analyzed using anisotropy of magnetic susceptibility (AMS), as a proxy for magmatic flow during intrusion, and the samples recorded a sub-horizontal emplacement in six different orientations. Paleopoles from six of eight igneous samples preserve a wide variety of sub-vertical orientations with two reversed and four normal polarities. The synorogenic Baldwin Conglomerate is the youngest rock (<1460 Ga) associated with WRB. Magnetic fabrics are horizontal, but multidomain and paleopole signatures, where interpretable, are sub-vertical. The North American APWP places middle Laurentia at low-latitude during Geon 14, and all our paleopoles are sub-vertical, not sub-horizontal, again suggesting post-intrusion deformation. Moreover, the McCauley gneiss (1886 Ma; U-Pb zircon), Rib Mountain Quartzite (1750 Ma MDA; U-Pb zircon, n = 150), Dells of the Eau Claire rhyolite (1483 Ma; U-Pb zircon, 1469 Ma; monazites-in-garnet), and Baldwin conglomerate (1460 Ma MDA; U-Pb zircons, n = 150) are sub-vertical inliers (xenoliths) in the igneous suite; the Proterozoic Wausau turbidite (1850 Ma MDA; U-Pb zircon, n = 150) was intruded by the WRB and dips 25°W. Here, we present a reinterpretation of the WRB as a deformed synorogenic rather than an anorogenic intrusion. Full article
(This article belongs to the Special Issue Zircon U-Pb Geochronology Applied to Tectonics and Ore Deposits)
Show Figures

Figure 1

Back to TopTop