Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = Port–Hamiltonian

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1076 KiB  
Article
Passivity-Based Sliding Mode Control for the Robust Trajectory Tracking of Unmanned Surface Vessels Under External Disturbances and Model Uncertainty
by Luke Ma, Siyi Pang, Yao He, Yongxin Wu, Yanjun Li and Weijun Zhou
J. Mar. Sci. Eng. 2025, 13(2), 364; https://doi.org/10.3390/jmse13020364 - 16 Feb 2025
Viewed by 654
Abstract
This study uses a port-Hamiltonian framework to address trajectory tracking control for unmanned surface vessels (USVs) under unknown disturbances. A passivity-based sliding mode controller is designed, integrating adaptive disturbance estimation and an RBFNN-based uncertainty estimator. Stability is rigorously proven, and simulations confirm superior [...] Read more.
This study uses a port-Hamiltonian framework to address trajectory tracking control for unmanned surface vessels (USVs) under unknown disturbances. A passivity-based sliding mode controller is designed, integrating adaptive disturbance estimation and an RBFNN-based uncertainty estimator. Stability is rigorously proven, and simulations confirm superior tracking performance, strong disturbance rejection, and accurate uncertainty estimation. Full article
(This article belongs to the Special Issue Advanced Control Strategies for Autonomous Maritime Systems)
Show Figures

Figure 1

15 pages, 2676 KiB  
Article
Structural Decomposition of the Passivity-Based Control System of Wind–Solar Power Generating and Hybrid Battery-Supercapacitor Energy Storage Complex
by Ihor Shchur, Marek Lis and Rostyslav-Ivan Kuzyk
Dynamics 2024, 4(4), 830-844; https://doi.org/10.3390/dynamics4040042 - 6 Nov 2024
Viewed by 958
Abstract
Wind–solar power generating and hybrid battery-supercapacitor energy storage complex is used for autonomous power supply of consumers in remote areas. This work uses passivity-based control (PBC) for this complex in accordance with the accepted energy management strategy (EMS). Structural and parametric synthesis of [...] Read more.
Wind–solar power generating and hybrid battery-supercapacitor energy storage complex is used for autonomous power supply of consumers in remote areas. This work uses passivity-based control (PBC) for this complex in accordance with the accepted energy management strategy (EMS). Structural and parametric synthesis of the overall PBC system was carried out, which was accompanied by a significant amount of research. In order to simplify this synthesis, a structural decomposition of the overall dynamic system of the object presented in the form of a port-Hamiltonian system, which was described by a system of differential equations of the seventh order, into three subsystems was applied. These subsystems are a wind turbine, a PV plant, and a hybrid battery-supercapacitor system. For each of the subsystems, it is quite simple to synthesize the control influence formers according to the interconnections and damping assignment (IDA) method of PBC, which locally performs the tasks set by the EMS. The results obtained by computer simulation of the overall and decomposed systems demonstrate the effectiveness of this approach in simplifying synthesis and debugging procedures of complex multi-physical systems. Full article
Show Figures

Figure 1

17 pages, 631 KiB  
Article
Trajectory Tracking via Interconnection and Damping Assignment Passivity-Based Control for a Permanent Magnet Synchronous Motor
by Daniel Sting Martinez-Padron, San Jose de la Rosa-Mendoza, Ricardo Alvarez-Salas, Gerardo Espinosa-Perez and Mario Arturo Gonzalez-Garcia
Appl. Sci. 2024, 14(17), 7977; https://doi.org/10.3390/app14177977 - 6 Sep 2024
Cited by 1 | Viewed by 912
Abstract
This paper presents a controller design to track speed, position, and torque trajectories for a permanent magnet synchronous motor (PMSM). This scheme is based on the interconnection and damping assignment passivity-based control (IDA-PBC) technique recently proposed to solve the tracking control problem for [...] Read more.
This paper presents a controller design to track speed, position, and torque trajectories for a permanent magnet synchronous motor (PMSM). This scheme is based on the interconnection and damping assignment passivity-based control (IDA-PBC) technique recently proposed to solve the tracking control problem for mechanical underactuated systems. The proposed approach regulates the dynamics of the tracking system error at the origin, assuming the realizable trajectories preserve the motor’s port-controlled Hamiltonian structure. The importance of the contribution is two-fold: First, from the theoretical perspective, the trajectory tracking control problem is solved with proved stability properties, a topic that has not been deeply studied with the IDA-PBC methodology design. Second, from the practical point of view, the proposed control scheme exhibits a simple structure for practical implementation and strong robustness properties with respect to parametric uncertainties. The contribution is evaluated under both numerical and experimental environments considering a speed profile that demands the achievement of high dynamic performances. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

22 pages, 954 KiB  
Article
A Novel Mixed Finite/Infinite Dimensional Port–Hamiltonian Model of a Mechanical Ventilator
by Milka C. I. Madahana, John E. D. Ekoru and Otis T. C. Nyandoro
Computation 2024, 12(8), 155; https://doi.org/10.3390/computation12080155 - 31 Jul 2024
Cited by 1 | Viewed by 1038
Abstract
Mechanical ventilation is a life-saving treatment for critically ill patients who are struggling to breathe independently due to injury or disease. Globally, per year, there has always been a large number of individuals who have required mechanical ventilation. The COVID-19 pandemic brought to [...] Read more.
Mechanical ventilation is a life-saving treatment for critically ill patients who are struggling to breathe independently due to injury or disease. Globally, per year, there has always been a large number of individuals who have required mechanical ventilation. The COVID-19 pandemic brought to light the significance of mechanical ventilation, which played a significant role in sustaining COVID-19-infected critically ill patients who could not breathe on their own. The pandemic drew the attention of the world to the shortage of ventilators globally. Some of the challenges to providing an adequate number of ventilators include: increased demand for ventilators, supply chain disruptions, manufacturing constraints, distribution inequalities, financial constraints, maintenance and logistics difficulties, training and expertise shortages, and the lack of design and development of affordable mechanical ventilators that satisfy the stipulated requirements. This research work presents the formulation of a detailed Port–Hamiltonian model of a mechanical ventilator integrated with the human respiratory system. The interconnection and coupling conditions for the various subsystems within the mechanical ventilator and the coupling between the mechanical ventilator and the human respiratory system are also presented. Structure-preserving discretization is provided alongside numerical simulations and results. The obtained results are found to be comparable to results presented in the literature. Future work will include the design of suitable controllers for the system. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

15 pages, 978 KiB  
Article
Passivity-Based Control with Disturbance Observer of Electromagnetic Formation Flight Spacecraft in the Port-Hamiltonian Framework
by Jiaming Wang, Qingrui Zhou, Wei Zheng and Jiang Shao
Appl. Sci. 2024, 14(10), 4248; https://doi.org/10.3390/app14104248 - 17 May 2024
Cited by 1 | Viewed by 1421
Abstract
Satellite formation flying technology currently represents a focal point in space mission research. Traditional spacecraft payload performance and lifespan are often constrained by propellant limitations. Electromagnetic Formation Flying (EMFF), a propellant-free formation flying technique, has garnered widespread attention. Its inherent strong nonlinearity and [...] Read more.
Satellite formation flying technology currently represents a focal point in space mission research. Traditional spacecraft payload performance and lifespan are often constrained by propellant limitations. Electromagnetic Formation Flying (EMFF), a propellant-free formation flying technique, has garnered widespread attention. Its inherent strong nonlinearity and coupling present challenges for high-precision control within EMFF. This paper presents the relative motion dynamics of a two-satellite EMFF in the port-Hamiltonian framework and constructs an accurate nonlinear model of the dynamics. Utilizing the concept of Interconnection and Damping Assignment and nonlinear disturbance observer, a composite disturbance-rejection passivity-based controller is designed, offering a method for controlling the magnetic dipole strength of formation satellites. Finally, numerical simulations are conducted to demonstrate the viability of the proposed dynamics model and control strategy. Full article
Show Figures

Figure 1

25 pages, 2423 KiB  
Article
Design of a Port-Hamiltonian Control for an Alt-Azimuth Liquid–Mirror Telescope
by Juan Cristobal Alcaraz Tapia, Carlos E. Castañeda, Héctor Vargas Rodriguez and P. Esquivel
Mathematics 2023, 11(16), 3443; https://doi.org/10.3390/math11163443 - 8 Aug 2023
Cited by 1 | Viewed by 1481
Abstract
In this work, we design a control strategy to be applied in a port-Hamilton representation of a liquid-mirror telescope for an alt-azimuth configuration. Starting from a dynamical model for an alt-azimuth liquid-mirror telescope based on Lagrange mechanics, a transformation to the port-Hamilton form [...] Read more.
In this work, we design a control strategy to be applied in a port-Hamilton representation of a liquid-mirror telescope for an alt-azimuth configuration. Starting from a dynamical model for an alt-azimuth liquid-mirror telescope based on Lagrange mechanics, a transformation to the port-Hamilton form is made. Such a dynamical model is obtained by computing the kinetic and potential energy of the telescope and substituting them in the Euler–Lagrange equation of motion. Then, for the transformation to the port-Hamiltonian form, we obtain the relation between the Hamiltonian and the Lagrangian. The resulting open-loop model based on the Hamiltonian function is controlled using an extension of the interconnection and damping-assignment passivity-based control aiming for a robust and accurate steady behavior in the closed loop while tracking a star’s position. For comparison purposes, two different control strategies are applied to the Lagrangian model, inverse-dynamics control and sliding mode super-twisting control. Since the light is collected by the principal mirror of the telescope while tracking a star, we make a description of the liquid mirror’s behavior. The tracking star’s position is described as a function of the observer’s position and the star’s coordinates as well as the date of observation. The simulations’ results show that the port-Hamilton control has a good transitory and steady response as well as great accuracy competing with that of inverse-dynamics control but with greater robustness and no chattering drawback. Full article
(This article belongs to the Special Issue Dynamics and Control Theory with Applications)
Show Figures

Figure 1

22 pages, 376 KiB  
Article
Geometric Modeling for Control of Thermodynamic Systems
by Arjan van der Schaft
Entropy 2023, 25(4), 577; https://doi.org/10.3390/e25040577 - 27 Mar 2023
Cited by 4 | Viewed by 1861
Abstract
This paper discusses the way that energy and entropy can be regarded as storage functions with respect to supply rates corresponding to the power and thermal ports of the thermodynamic system. Then, this research demonstrates how the factorization of the irreversible entropy production [...] Read more.
This paper discusses the way that energy and entropy can be regarded as storage functions with respect to supply rates corresponding to the power and thermal ports of the thermodynamic system. Then, this research demonstrates how the factorization of the irreversible entropy production leads to quasi-Hamiltonian formulations, and how this can be used for stability analysis. The Liouville geometry approach to contact geometry is summarized, and how this leads to the definition of port-thermodynamic systems is discussed. This notion is utilized for control by interconnection of thermodynamic systems. Full article
(This article belongs to the Special Issue Geometric Structure of Thermodynamics: Theory and Applications)
Show Figures

Figure 1

20 pages, 4456 KiB  
Article
Optimized Cooperative Control of Error Port-Controlled Hamiltonian and Adaptive Backstepping Sliding Mode for a Multi-Joint Industrial Robot
by Xiaoyu Yang and Haisheng Yu
Mathematics 2023, 11(6), 1542; https://doi.org/10.3390/math11061542 - 22 Mar 2023
Cited by 2 | Viewed by 1742
Abstract
Robot joints driven by permanent magnet synchronous motors (PMSM) often cannot have both superior accuracy and rapidity when they track target signals. The robot joints have fine dynamic characteristics and poor steady-state characteristics when the signal controller is used, or they have fine [...] Read more.
Robot joints driven by permanent magnet synchronous motors (PMSM) often cannot have both superior accuracy and rapidity when they track target signals. The robot joints have fine dynamic characteristics and poor steady-state characteristics when the signal controller is used, or they have fine steady-state characteristics and poor dynamic characteristics when the energy controller is used. It is hard to make robot joints that have both superior dynamic and steady-state characteristics at once using a single control method. In order to solve this problem, the strategy of optimized cooperative control is proposed. First, an error port-controlled Hamiltonian (EPCH) energy controller and an adaptive backstepping sliding mode (ABSM) signal controller are designed. Second, an optimized cooperative control coefficient based on the position error of a robot joint is designed; this enables the system to switch smoothly between the EPCH energy controller and ABSM signal controller. Next, the strategy of optimized cooperative control is designed. In this way, robot systems can combine the advantages of the EPCH energy controller and the ABSM signal controller. Finally, simulation results demonstrate that using the strategy of optimized cooperative control gives robot joints outstanding control performance in terms of tracking accuracy and response rapidity. Full article
(This article belongs to the Special Issue Control Theory and Applications)
Show Figures

Figure 1

42 pages, 700 KiB  
Article
Port-Hamiltonian Formulations of Some Elastodynamics Theories of Isotropic and Linearly Elastic Shells: Naghdi–Reissner’s Moderately Thick Shells
by Miguel Charlotte, Ignacio Fernandez Núnez, Yves Gourinat and Denis Matignon
Appl. Sci. 2023, 13(4), 2608; https://doi.org/10.3390/app13042608 - 17 Feb 2023
Viewed by 2332
Abstract
The port-Hamiltonian system approach is intended to be an innovative and unifying way of modeling multiphysics systems, by expressing all of them as systems of conservation laws. Indeed, the increasing developments in recent years allow finding better control and coupling strategies. This work [...] Read more.
The port-Hamiltonian system approach is intended to be an innovative and unifying way of modeling multiphysics systems, by expressing all of them as systems of conservation laws. Indeed, the increasing developments in recent years allow finding better control and coupling strategies. This work aimed to apply such an approach to Naghdi–Reissner’s five-kinematic-field shell model in linear elasticity, while including often-neglected higher-order intrinsic geometric coupling effects, therefore preparing the theoretical background required for the coupling (or interconnection) with an acoustic fluid model and the different types of interactions that can arise among them. The model derived thusly can be used for controller design in a wide variety of applications such as inflatable space structures, launcher tank vibration damping, payload vibration protection using smart materials, and many other related applications. Full article
(This article belongs to the Special Issue Vibration Problems in Engineering Science)
Show Figures

Figure 1

15 pages, 381 KiB  
Article
A Two-Dimensional port-Hamiltonian Model for Coupled Heat Transfer
by Jens Jäschke, Matthias Ehrhardt, Michael Günther and Birgit Jacob
Mathematics 2022, 10(24), 4635; https://doi.org/10.3390/math10244635 - 7 Dec 2022
Cited by 2 | Viewed by 1753
Abstract
In this paper, we construct a highly simplified mathematical model for studying the problem of conjugate heat transfer in gas turbine blades and their cooling ducts. Our simple model focuses on the relevant coupling structures and aims to reduce the unrelated complexity as [...] Read more.
In this paper, we construct a highly simplified mathematical model for studying the problem of conjugate heat transfer in gas turbine blades and their cooling ducts. Our simple model focuses on the relevant coupling structures and aims to reduce the unrelated complexity as much as possible. Then, we apply the port-Hamiltonian formalism to this model and its subsystems and investigate the interconnections. Finally, we apply a simple spatial discretization to the system to investigate the properties of the resulting finite-dimensional port-Hamiltonian system and to determine whether the order of coupling and discretization affect the resulting semi-discrete system. Full article
(This article belongs to the Special Issue Completely Integrable Equations: Algebraic Aspects and Applications)
Show Figures

Figure 1

32 pages, 23939 KiB  
Article
Comparative Performance Analysis of the DC-AC Converter Control System Based on Linear Robust or Nonlinear PCH Controllers and Reinforcement Learning Agent
by Marcel Nicola and Claudiu-Ionel Nicola
Sensors 2022, 22(23), 9535; https://doi.org/10.3390/s22239535 - 6 Dec 2022
Cited by 3 | Viewed by 2167
Abstract
Starting from the general topology and the main elements that connect a microgrid represented by a DC power source to the main grid, this article presents the performance of the control system of a DC-AC converter. The main elements of this topology are [...] Read more.
Starting from the general topology and the main elements that connect a microgrid represented by a DC power source to the main grid, this article presents the performance of the control system of a DC-AC converter. The main elements of this topology are the voltage source inverter represented by a DC-AC converter and the network filters. The active Insulated Gate Bipolar Transistor (IGBT) or Metal–Oxide–Semiconductor Field-Effect Transistor (MOSFET) elements of the DC-AC converter are controlled by robust linear or nonlinear Port Controlled Hamiltonian (PCH) controllers. The outputs of these controllers are modulation indices which are inputs to a Pulse-Width Modulation (PWM) system that provides the switching signals for the active elements of the DC-AC converter. The purpose of the DC-AC converter control system is to maintain ud and uq voltages to the prescribed reference values where there is a variation of the three-phase load, which may be of balanced/unbalanced or nonlinear type. The controllers are classic PI, robust or nonlinear PCH, and their performance is improved by the use of a properly trained Reinforcement Learning-Twin Delayed Deep Deterministic Policy Gradient (RL-TD3) agent. The performance of the DC-AC converter control systems is compared using performance indices such as steady-state error, error ripple and Total Harmonic Distortion (THD) current value. Numerical simulations are performed in Matlab/Simulink and conclude the superior performance of the nonlinear PCH controller and the improvement of the performance of each controller presented by using an RL-TD3 agent, which provides correction signals to improve the performance of the DC-AC converter control systems when it is properly trained. Full article
(This article belongs to the Special Issue Intelligent Control and Testing Systems and Applications)
Show Figures

Figure 1

18 pages, 381 KiB  
Article
An Overview on Irreversible Port-Hamiltonian Systems
by Hector Ramirez and Yann Le Gorrec
Entropy 2022, 24(10), 1478; https://doi.org/10.3390/e24101478 - 17 Oct 2022
Cited by 13 | Viewed by 3217
Abstract
A comprehensive overview of the irreversible port-Hamiltonian system’s formulation for finite and infinite dimensional systems defined on 1D spatial domains is provided in a unified manner. The irreversible port-Hamiltonian system formulation shows the extension of classical port-Hamiltonian system formulations to cope with irreversible [...] Read more.
A comprehensive overview of the irreversible port-Hamiltonian system’s formulation for finite and infinite dimensional systems defined on 1D spatial domains is provided in a unified manner. The irreversible port-Hamiltonian system formulation shows the extension of classical port-Hamiltonian system formulations to cope with irreversible thermodynamic systems for finite and infinite dimensional systems. This is achieved by including, in an explicit manner, the coupling between irreversible mechanical and thermal phenomena with the thermal domain as an energy-preserving and entropy-increasing operator. Similarly to Hamiltonian systems, this operator is skew-symmetric, guaranteeing energy conservation. To distinguish from Hamiltonian systems, the operator depends on co-state variables and is, hence, a nonlinear-function in the gradient of the total energy. This is what allows encoding the second law as a structural property of irreversible port-Hamiltonian systems. The formalism encompasses coupled thermo-mechanical systems and purely reversible or conservative systems as a particular case. This appears clearly when splitting the state space such that the entropy coordinate is separated from other state variables. Several examples have been used to illustrate the formalism, both for finite and infinite dimensional systems, and a discussion on ongoing and future studies is provided. Full article
(This article belongs to the Special Issue Geometric Structure of Thermodynamics: Theory and Applications)
Show Figures

Figure 1

16 pages, 676 KiB  
Article
A Reversible Hydropump–Turbine System
by Luis Miguel Esquivel-Sancho, Mauricio Muñoz-Arias, Hayden Phillips-Brenes and Roberto Pereira-Arroyo
Appl. Sci. 2022, 12(18), 9086; https://doi.org/10.3390/app12189086 - 9 Sep 2022
Cited by 4 | Viewed by 3214
Abstract
Water-pumped storage systems have become an ideal alternative to regulate the intermittent power delivered by renewable energy sources. For small-scale operations, a type of centrifugal pump coupled to asynchronous machines represents an adequate solution due to their techno-economic feasibility in addition to their [...] Read more.
Water-pumped storage systems have become an ideal alternative to regulate the intermittent power delivered by renewable energy sources. For small-scale operations, a type of centrifugal pump coupled to asynchronous machines represents an adequate solution due to their techno-economic feasibility in addition to their ability to operate as reversible systems. This work provides a novel port-Hamiltonian modelling approach to an integrated reversible hydropump–turbine system, that can be switched from motor pump to turbine-generator by employing a conventional hydraulic switch. Our modelling strategy provides a clear physical interpretation of the energy flow from the mechanical to electrical domains. Then, the model was built with multi-domain storing and dissipating elements and the interconnection of well-defined input–output port pairs. The system’s internal energy, i.e., Hamiltonian function, can be exploited for energy-shaping control strategies. The performance of our modelling approach is validated via numerical simulations. Full article
(This article belongs to the Topic Energy Saving and Energy Efficiency Technologies)
Show Figures

Figure 1

14 pages, 375 KiB  
Article
Robust Fault-Tolerant Control for Stochastic Port-Hamiltonian Systems against Actuator Faults
by Song Xu, Wei Wang and Sheng-Yuan Chen
Mathematics 2022, 10(9), 1477; https://doi.org/10.3390/math10091477 - 28 Apr 2022
Cited by 1 | Viewed by 1740
Abstract
Exploiting the stochastic Hamiltonian structure, this paper investigates the robust fault-tolerant control (FTC) for stochastic port-Hamiltonian systems (SPHSs) with actuator faults. First, an energy-based robust FT controller is developed for SPHSs against the loss of actuator effectiveness. Then, an alternative condition, as well [...] Read more.
Exploiting the stochastic Hamiltonian structure, this paper investigates the robust fault-tolerant control (FTC) for stochastic port-Hamiltonian systems (SPHSs) with actuator faults. First, an energy-based robust FT controller is developed for SPHSs against the loss of actuator effectiveness. Then, an alternative condition, as well as its corresponding controller are given to extend the application of the proposed controller. Unlike the existing FT controllers, they are continuous, and there is no need to solve the Lyapunov function and Hamilton–Jacobi–Isaacs (HJI) inequalities associated with the nominal systems. Finally, an energy-based robust adaptive FT controller is presented for the faulty SPHSs to deal with parameter perturbations, and an alternative condition with its corresponding controller is also given. Both the adaptive controllers preserve the main stochastic Hamiltonian structure of the faulty systems. Compared to the existing adaptive controller, simulations on synchronous generators show the effectiveness of the proposed methods. Full article
(This article belongs to the Special Issue Mathematical Modeling and Numerical Simulation in Engineering)
Show Figures

Figure 1

12 pages, 2087 KiB  
Article
Efficiency Optimization Strategy of Permanent Magnet Synchronous Motor for Electric Vehicles Based on Energy Balance
by Wenhui Pei, Qi Zhang and Yongjing Li
Symmetry 2022, 14(1), 164; https://doi.org/10.3390/sym14010164 - 14 Jan 2022
Cited by 13 | Viewed by 4466
Abstract
This paper presents an efficiency optimization controller for a permanent magnet synchronous motor (PMSM) of an electric vehicle. A new loss model is obtained based on the permanent magnet synchronous motor’s energy balance equation utilizing the theory of the port-controlled Hamiltonian system. Since [...] Read more.
This paper presents an efficiency optimization controller for a permanent magnet synchronous motor (PMSM) of an electric vehicle. A new loss model is obtained based on the permanent magnet synchronous motor’s energy balance equation utilizing the theory of the port-controlled Hamiltonian system. Since the energy balance equation is just the power loss of the PMSM, which provides great convenience for us to use the energy method for efficiency optimization. Then, a new loss minimization algorithm (LMA) is designed based on the new loss model by adjusting the ratio of the excitation current in the d–q axis. Moreover, the proposed algorithm is achieved by the principle of the energy shape method of the Hamiltonian system. Simulations are finally presented to verify effectiveness. The main results of these simulations indicate that the dynamic performance of the drive is maintained and the efficiency increase is up to about 7% compared with the id=0 control algorithm, and about 4.5% compared with the conventional LMA at a steady operation of a PMSM. Full article
(This article belongs to the Special Issue Symmetry in Power Battery Management Systems)
Show Figures

Figure 1

Back to TopTop