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Abstract: In this work, we design a control strategy to be applied in a port-Hamilton representation
of a liquid-mirror telescope for an alt-azimuth configuration. Starting from a dynamical model
for an alt-azimuth liquid-mirror telescope based on Lagrange mechanics, a transformation to the
port-Hamilton form is made. Such a dynamical model is obtained by computing the kinetic and
potential energy of the telescope and substituting them in the Euler–Lagrange equation of motion.
Then, for the transformation to the port-Hamiltonian form, we obtain the relation between the
Hamiltonian and the Lagrangian. The resulting open-loop model based on the Hamiltonian function
is controlled using an extension of the interconnection and damping-assignment passivity-based
control aiming for a robust and accurate steady behavior in the closed loop while tracking a star’s
position. For comparison purposes, two different control strategies are applied to the Lagrangian
model, inverse-dynamics control and sliding mode super-twisting control. Since the light is collected
by the principal mirror of the telescope while tracking a star, we make a description of the liquid
mirror’s behavior. The tracking star’s position is described as a function of the observer’s position
and the star’s coordinates as well as the date of observation. The simulations’ results show that the
port-Hamilton control has a good transitory and steady response as well as great accuracy competing
with that of inverse-dynamics control but with greater robustness and no chattering drawback.

Keywords: port-Hamiltonian control; liquid mirror; alt-azimuth telescope; star tracking
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1. Introduction

Liquid-mirror telescopes use a rotating fluid as their principal mirror; with this, there
is no need either for the precise process of polishing or shaping the principal mirror because
a rotating fluid adopts naturally the required shape (parabola) for a Newtonian principal
mirror. Furthermore, the bigger a principal mirror is the more complex and robust its
bearing needs to be to reduce its deformation, thus elevating its cost. In this regard, a liquid-
mirror telescope can be built at a fraction of the cost of a conventional telescope of similar
sizes, such as the case of the 6 m Large Zenith Telescope [1]. However, due to the nature
of the rotating fluid, its container has to stand vertical and cannot be tilted; therefore,
liquid-mirror telescopes are fixed to observe only the zenith and cannot track any object in
the sky [2,3]. So, liquid-mirror telescopes are only used for specific types of tasks, where it
is sufficient to analyze just the sky above the observer or for tasks where it does not matter
what portion of the sky is being observed; for instance, the 4 m International Liquid-Mirror
Telescope [4] was built to carry out astrometric observations of the solar system, galactic
and extra-galactic objects within a 24’ strip of sky, aiming to detect quasars and supernovas.

For a telescope to be able to track any star in the sky, it needs to be set on a mount that
can rotate around two different axes. This configuration resembles that of a manipulator
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robot and a basic control for a manipulator is the inverse-dynamics control (IDC) which
cancels nonlinearities via feedback linearization. For general nonlinear systems, such
feedback linearization may be quite difficult or impossible to achieve, but for the particular
case of a manipulator robot model, the design of this control is actually easy. Nevertheless,
such a control algorithm requires that the parameters of the system are known exactly to
achieve the exact cancellation of nonlinearities [5,6].

In contrast to the IDC, the sliding-mode control is a strategy that is robust against
model uncertainties and external disturbances [7], meaning that it does not require an exact
model of a plant to perform good tracking and it can even reject external forces acting on the
plant, so it can keep the tracking, but it has the known chattering drawback. Hence, some
strategies have been developed to reduce the chattering, one of them is the super-twisting
algorithm [7–11]. Nevertheless, according to authors in [12], the super-twisting algorithm
implies a non-Lipschitzian function with infinite derivative at the origin in addition to a
discontinuous input function, resulting in two sources of chattering instead of one as is the
case for conventional sliding-mode control. Its chattering amplitude becomes higher than
that of the conventional one as the value of the unmodeled dynamic increases.

In nonlinear systems, the port-Hamilton paradigm has attracted attention since the
closed-loop preserves the port-Hamilton structure. Thus, it exploits the intrinsic properties
of the system rather than trying to impose some predetermined dynamic behavior through
the cancellation of nonlinearities and high gain (used in robust control techniques) [13].
One of the control algorithms developed for a port-controlled Hamiltonian (PCH) system
is the interconnection and damping-assignment passivity-based control (IDA-PBC), a well-
documented method where a storage function, representing the total energy of the system,
can be shaped so the minimum state of energy is the desired equilibrium. Then, that
equilibrium is reached by injecting damping into the system. This control strategy allows for
an energy interpretation of the control action enhancing the physical intuition, because this
energy approach of the port-Hamiltonian framework serves as a lingua franca for the
different domains of a multi-domain physical system, facilitating the communication of
control theorists and practitioners that are familiar with energy concepts [14].

Since the introduction of the PCH strategy [15,16], many applications have been re-
ported in the literature, including mechanical systems [17–20]. Nevertheless, the original
IDA-PBC strategy was designed aiming for regulation and not for tracking, so for this work,
we apply an extension proposed by [21] that can track a desired feasible trajectory, pre-
serving the port-Hamiltonian structure in a closed loop. This control strategy for the PCH
system is to be compared with the IDC and the sliding-mode control. Summarizing, each
one of these controllers has a different approach to deal with nonlinearities; the IDC cancels
the nonlinearity by means of feedback linearization, compensating for the nonlinearity [5];
the sliding-mode control is used to dominate the effect of model uncertainties, designing a
sliding manifold that is independent of model uncertainties, such that the trajectories on the
manifold converge to the equilibrium point [22]; the control developed for the PCH does
not cancel or dominate nonlinearities, but exploits the intrinsic properties of the system,
leading to a nonlinear closed-loop structure where the passivity plays a central role, achiev-
ing stabilization by rendering the system passive with respect to a desired storage function
and injecting damping [13]. In addition to the mentioned strategies, if the complexity of a
system is high, due to nonlinearities, external disturbances or uncertainties in the model,
a reasonable alternative is a fuzzy logic approach, such as that proposed in [23], which is
robust against time-varying disturbances and independent of system dynamics, although it
is not a simple controller.

This work presents the design and synthesis of a port-Hamiltonian control algorithm
of a liquid-mirror telescope for an alt-azimuth configuration which is considered as a
two-degrees-of-freedom robot arm. This is done by obtaining the open-loop representation
of the Port-Hamiltonian model using the Lagrangian function associated with the telescope.
By means of the interconnection of a damping-assignment passivity-based control, the
closed-loop of the port-Hamiltonian representation is designed, where it is possible to
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track variant signals, which represent the trajectory of the specific stars. The performance
results of the port-Hamiltonian control algorithm are compared with the super-twisting
and inverse dynamics ones with the aim of obtaining in the sense of tracking the Regulus
star at a specific latitude and date.

The main contribution of this work is to obtain a port-Hamiltonian representation of
an alt-azimuth liquid-mirror telescope considered a two-degrees-of-freedom robot arm.
A closed-loop Hamiltonian control algorithm is designed and synthesized to track the
trajectory of any specific star and the observer can see the star at any latitude.

This work is organized as follows: Section 2 shows the most important information
to describe the technical issues used in this work; in Section 3, the proposed methodology
is presented to show the steps for designing and synthesizing the three controllers; in
Section 3.7, the simulation results are depicted and the performance of the controllers
designed in this work is shown; finally, the conclusions are presented in Section 4.

2. Background

This section describes the IDA-PBC technique, starting from the general form that
a system must adopt before we can apply this technique, until the differences with the
extension allow us to track a trajectory. As we are comparing the PCH system with other
controllers, this section also presents the general theory of the super-twisting sliding-mode
control algorithm.

2.1. General Form of a Port-Hamilton System

It is known that the general form of a port-controlled Hamiltonian (PCH) model in
input–output form is as follows [14]:

Σ :=


ẋ = [J(x)− R(x)] ∂H

∂x + [g(x)]u ,

y = [g(x)]> ∂H
∂x ,

x ∈ X , u ∈ Rm

y ∈ Rm (1)

where x is the state vector, X is an n-dimensional state space manifold, the Hamiltonian
H(x) : Rn → R represents the total stored energy, u is the input and (u, y) are the power
variables—the product u>y represents the power flows exchanged with the environment
of the system. The interconnection structure is captured by the n × n interconnection
matrix J(x) = −J−1(x) that is skew symmetric and by the n× m matrix g(x); the n× n
damping matrix R(x) = R> ≥ 0 is positive semi-definite; the superscript (>) represents
the transposed matrix or vector.

A control scheme that exploits the port-Hamilton structure is the interconnection and
damping-assignment passivity-based control (IDA-PBC) introduced in [16]. For physical
systems, the designer can adjust the energy exchange and dissipation of the system through
the interconnection and damping matrices, respectively. We can state the main proposition
of IDA-PBC as follows [13]:

Theorem 1 (IDA-PBC). Consider system (1); assume that there are matrices g⊥(x),
Jd(x) = −J>d (x), Rd(x) = R>d ≥ 0 and a function Hd : Rn → R that verify the Partial
Differential Equation:

g⊥(x)[J(x)− R(x)]
∂H
∂x

= g⊥(x)[Jd(x)− Rd(x)]
∂Hd
∂x

, (2)

where g⊥(x) is a full-rank left annihilator of g(x), i.e., g⊥g(x) = 0, andHd(x) is such that:

x∗ = arg minHd(x) , (3)
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where x∗ in Rn is the equilibrium to be stabilized. Then, closed-loop system (1), with u = β(x),
where

β(x) = [g>(x)g(x)]−1g>(x)
{
[Jd(x)− Rd(x)]

∂Hd
∂x
− [J(x)− R(x)]

∂H
∂x

}
, (4)

takes the following PCH form:

ẋ = [Jd(x)− Rd(x)]
∂Hd
∂x

, (5)

where x∗ is a (locally) stable equilibrium. It will be asymptotically stable if, in addition, x∗ is
an isolated minimum of Hd(x) and the largest invariant set under the closed-loop dynamics (5)
contained in {

x ∈ Rn|∂Hd
∂x

>
Rd(x)

∂Hd
∂x

= 0

}
, (6)

equals {x∗}.

Since the priority of the aforementioned control is regulation and not tracking, we use
an extension of this control for tracking proposed in [21] with the following theorem:

Theorem 2 (tIDA-PBC). Consider x∗(t) as a feasible trajectory of system (1) with Jd = −J>d ,
Rd = R>d ≥ 0. Suppose that Ad = Jd − Rd is a Hurwitz matrix, D0 is an open subset of Rn

and there exist positive constants 0 ≤ α1 ≤ α2 such thatH : Rn ×R→ R satisfies the following
condition:

α1 I ≤ ∇2Hd(x, t) ≤ α2 I, ∀x ∈ D0 , (7)

and the following matching equation:

g⊥(x)[J(x)− R(x)]
∂H
∂x

(x) = g⊥(x)[Jd − Rd]
∂Hd
∂x

(x, t) , (8)

where g⊥ is the full-rank left annihilator of g. If Jd, Rd andHd satisfy the following equation (the
closed-loop system evaluated at x∗(t)):

ẋ∗(t) = (Jd − Rd)
∂Hd
∂x

(x∗(t), t) , (9)

then, there exists a controller in the form of:

u =(g>(x)g(x))−1g>(x)
(
(Jd − Rd)

∂Hd
∂x

(x, t)

− (J(x)− R(x))
∂H
∂x

(x)
)

,
(10)

When Equation (10) is substituted in system (1), it makes it locally an exponential tracker for
x∗(t) and causes the closed-loop system to have the following form:

ẋ = [J(x)− R(x)] ∂H
∂x + [g(x)](g>(x)g(x))−1

g>(x)
(
(Jd − Rd)

∂Hd
∂x (x, t)− (J(x)− R(x)) ∂H

∂x (x)
)

= (Jd − Rd)
∂Hd
∂x (x, t) .

(11)

It is to be noted that the general solution for the matching Equation (8) is in the form
Hd(x) = H(x) +Ha, whereHa = h1(x) + 1

2 K(h2(x)− L)2, and h1(x) and h2(x) are known
functions, K > 0 is a proportional gain matrix and L is assigned such that condition (9)
is satisfied.
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2.2. Super-Twisting Sliding-Mode Control

The very well-known super-twisting sliding-mode control algorithm constitutes a
decent robust strategy for controlling non-linear systems such that the control signal
becomes a continuous time function due to it being inserted as an integrator into the control
loop [7]. This control algorithm is a very good strategy for reducing the chattering effect
and results in a quasi-continuous control signal.

For this, we consider that the non-linear mathematical model to be controlled has the
following generic form:

ẋ = f (x, t) + E(x, t)u(t) +ϕ(x, t) ,

y = x1 ,
(12)

where x = [x1, x2, . . . , xn]
> ∈ X ⊂ Rn is the state space vector consisting of r blocks; for

the function vector f (x, t) = [ f1(x1, t), f2(x2, t), . . . , fn(xn, t)]>, f : [0, ∞)× D → Rn is
piecewise continuous in t and Locally Lipschitz in x on [0, ∞)×D ⊂ Rn, which is a domain
that contains the origin x = 0 [24], with i = 1, 2, . . . , n; the columns of matrix E are smooth
and rank(E(x, t)) = m. The unknown mapping ϕ(x, t) represents the external disturbances
d(t) and parameter variations; u(t) is the control input vector bounded by:

0 ≤ u(t) ≤ umax, for all t > 0 . (13)

The value umax corresponds to the maximum input value delivered by the source and
y = x1 is the output of the system. We use the procedure for designing the sliding manifold
by transforming non-linear system (12) to the non-linear block controllable form based
on the error dynamics. Then, the transformed system of the mathematical model to be
controlled has the following general form:

żi = −kizi + E1zi+1 + ϕ̂i(zi) ,

żr = f̄r(z, xid, ẋid, t) + Ēr(z)u + ϕ̄r(z) ,
(14)

where i = 1, . . . , r − 1; zi = xi − xid = [zi, . . . , zr−1]
> which represents the i-th error

vector, with the subscript d as the desired state value; the gains ki are the components of
the diagonal matrix K which is Hurwitz and guarantees the convergence of the closed-
loop system.

Proposition 1. The non-linear system with general form (12) can be transformed to the desired
block control form based on dynamics error (14), where f̄r(z, xid, ẋid, t) is a bounded function
and rank(Ēr) = m.

The proof of Proposition 1 is presented in [25].
Once the plant to be controlled with the general form (12) is transformed in dynamics

error (14), the sliding manifold can be selected as sD = zr and the sliding mode si = 0,
the error vector zi = xre f ,i − xi and in its time derivative żr (second equation of system
(14)) are obtained; then, the super-twisting control algorithm can be applied as follows (as
explained in [26]):

vs = λ|s|
1
2 sign s + vs1 , (15)

where v̇s = αi sign s, λ =

[
λα 0
0 λβ

]
and α =

[
αα 0
0 αβ

]
. For simplicity, the procedure

for selecting the diagonal matrices λi and αi is not shown and the reader is kindly referred
to [26]. Therefore, the sliding surface sD converges to the origin in finite time and the
following new system is obtained:

ṡi = Fi(λr, z1, s)− E2

(
λ|s|

1
2 sign s + vs1

)
,

v̇s1 = α sign s .
(16)
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2.3. Dynamical Model of the Liquid-Mirror Telescope

The dynamics of the proposed alt-azimuth liquid-mirror telescope is developed as
that of a manipulator comprised of two perpendicular links. Each link has an independent
movement corresponding to one of the two coordinates of a star’s position.

The kinematics of the telescope depends on its geometric configuration, which de-
scribes the relative position of each link with respect to another and with respect to an
inertial frame (0-frame (x0, y0, z0)); these frames are depicted in Figure 1. The 1-frame
(x1, y1, z1) and 2-frame (x2, y2, z2) are fixed to the telescope’s 1-link and 2-link, respectively.
The orientation of the telescope is determined by the generalized coordinates q1 and q2,
with q1 rotating about the z0 axis and q2 about the z1 axis. Notice that the unseen axes
perpendicular to the paper are determined by the right-hand rule; then, for example, axis
x1 is pointing towards the reader.

Figure 1. Position and orientation of the inertial frame and the body fixed frames of the proposed
alt-azimuth liquid-mirror telescope.

The development of the telescope’s dynamical model is based on its potential and
kinetic energy. Since the rotation of q1 does not change the elevation of any link, its potential
energy depends only on the value of q2. For the kinetic energy, we need to know the linear
and angular velocities of each link in a common frame. This can be done with the aid of
homogeneous transformations T ∈ SE(3), which have the following form [5]:

T(ξ,λ,qi)
=

[
H(ξ,qi)

d
0 1

]
; H ∈ SO(3), d ∈ R3 , (17)

where the H(ξ,qi)
matrix represents the rotation in an angle qi about the axis defined by the

unit vector ξ and d is a vector with magnitude λ in the ξ direction; it represents the relative
position. We define the translation matrix Trans(ξ,λ) = T(ξ,λ,0) and the rotation matrix as
Rot(ξ,qi)

= T(ξ,0,qi)
.

Then, from Figures 1 and 2, we can compute the relative position and orientation of the
1-frame with respect to the 0-frame with consecutive transformations (Trans, Rot ∈ SE(3))

T0
1 =Trans(z,B1)

Rot(z,q1)
Trans(x,l1+B2)

Rot(y, π
2 )

Rot(z, π
2 )

,

T0
1 =


− sin(q1) 0 cos(q1) (l1 + B2) cos(q1)
cos(q1) 0 sin(q1) (l1 + B2) sin(q1)

0 1 0 B1
0 0 0 1

 .

(18)

Equation (18) can be interpreted as if the 1-frame and the 0-frame start overlapped;
then, the 1-frame is translated along its z axis a distance B1 (Trans(z,B1)

); then, it is rotated
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about the z axis a variable angle q1 (Rot(z,q1)
); then, it is translated along its x axis a distance

l1 + B2 (Trans(x,l1+B2)
), and so on.

The relation between the 2-frame and the 1-frame is obtained in a similar way as:

T1
2 =Rot(z,q2)

Trans(x,l2) ,

T1
2 =


cos(q2) − sin(q2) 0 l2 cos(q2)
sin(q2) cos(q2) 0 l2 sin(q2)

0 0 1 0
0 0 0 1

 .
(19)

Now, the relation of the 2-frame with respect to the 0-frame is computed with a simple
relation T0

2 = T0
1 T1

2 .
Thus, the orientation of the 1-frame with respect to the 0-frame, for example, is

obtained from the first three rows and columns of (18) as:

H0
1 =

− sin(q1) 0 cos(q1)
cos(q1) 0 sin(q1)

0 1 0

 , (20)

and the position of its origin is determined by the first three elements of the last column.
The relative orientation and position of the 2-frame with respect to the 0-frame (H0

2 ) are
extracted in a similar way from T0

2 . Now, with the matrices H0
1 and H0

2 , it is possible to
transform any vector in the 1-frame and 2-frame to the inertial frame (0-frame); even the
constant inertia tensors in each fixed frame can be described in the inertial frame. Hence,
we can sum the linear and angular velocities provided by each link in a common frame
to compute the kinetic energy. Also, we can adjust the transformations (18) and (19) to
represent the position vector of each link’s center of mass in the inertial frame, to compute
the potential energy.

2.3.1. Kinematics

The alt-azimuth liquid-mirror telescope prototype comprises two links that rotate in-
dependently. The side view of this telescope is presented in Figure 2 and the corresponding
parameters are shown in Table 1.

Figure 2. Side view of the alt-azimuth liquid-mirror telescope. The parameters are shown in Table 1.
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Table 1. Parameters of the telescope.

Parameter Value Unit

m1 6.360 kg
m2 3.860 kg
l1 0.400 m
l2 0.190 m

lcm1 0.080 m
lcm2 −0.012 m
B1 0.450 m
B2 0.201 m
I1 diag(0.340, 0.255, 0.105) kg·m2

I2 diag(0.043, 0.061, 0.032) kg·m2

This configuration of the telescope allows us to conduct the light from a star, by using
two plane mirrors, directly to a liquid mirror on the base, as it shows the direction of the
yellow-dashed arrows presented in the cross-section of Figure 3. The liquid mirror will
converge all the light towards its focus, where it can be collected by a CCD device.

Figure 3. Cross-section view of the alt-azimuth liquid-mirror telescope. The yellow-dashed arrows
represent light coming from a star conveyed to the liquid mirror at the base.

Now we can represent the position of the center of mass of each link for this configura-
tion of the telescope. Using transformation (18), but changing the element Transx,l1+B2 by
Transx,lcm1

, we calculate the position of the 1-link center of mass instead of the origin of the
1-frame. Thus, from the resulting transformation, we obtain the following position vector
relative to the x0, y0, z0 set:

r1 =

lcm1 cos q1
lcm1 sin q1

B1

 . (21)

In a similar way, we can obtain the position vector for the 2-link’s center of mass
relative to the x0, y0, z0 set as:

r2 =

(l1 + B2) cos q1 − lcm2 cos q2 sin q1
(l1 + B2) sin q1 + lcm2 cos q1 cos q2

B1 + lcm2 sin q2

 . (22)

2.3.2. Potential and Kinetic Energy

The potential energy depends on the geometry of the telescope. For each link, its
potential energy is written as follows:

U1 = m1gB1 , (23)
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U2 = m2g(B1 + lcm2 sin q2) , (24)

where the parameters mi as the mass of the i-th link with i = 1, 2, B1 are described in Table 1;
lcm2 is the 2-link’s center of mass; g is the acceleration of gravity.

The total potential energy is:

U (q) = U1 + U2 . (25)

Before computing the kinetic energy, let us define first the Jacobians Jvci and Jwi and the
inertia tensor Ii. From Figure 1, we can see the direction of the vectors z0 and z1; the first
is represented with respect to the inertial frame, but the latter needs to be transformed
by using the rotation matrix H0

1 (20), resulting in z0
1 = H0

1 z1; then we can define the 3× 2
matrices Jw1 and Jw2 as:

Jw1 =
[
z0

0 0
]
=

0 0
0 0
1 0

, Jw2 =
[
z0

1 z0
0
]
=

0 cos(q1)
0 sin(q1)
1 0

 . (26)

The 3× 2 matrices Jvc1 and Jvc2 are defined as the partial derivative of r1 (21) and
r2 (22) with respect to q as follows:

Jvc1 =

−lcm1 sin(q1) 0
lcm1 cos(q1) 0

0 0

 , (27)

Jvc2 =

− sin(q1)(B2 + l1)− lcm2 cos(q1) cos(q2) lcm2 sin(q1) sin(q2)
cos(q1)(B2 + l1)− lcm2 cos(q2) sin(q1) −lcm2 cos(q1) sin(q2)

0 lcm2 cos(q2)

 , (28)

where q is the generalized coordinate (Euler angles) vector that indicates the orientation of
the telescope with dimension two and which is defined as follows:

q =
[
q1 q2

]> . (29)

We consider the inertia tensor of the i-th link evaluated around a frame parallel to the
i-th frame but whose origin is at the center of mass and the principal axes are aligned to
those of i-th frame; it is represented as:

Ii =

Iixx 0 0
0 Iiyy 0
0 0 Iizz

 . (30)

The kinetic energy for the two links of the telescope depends on both a translation
term and a rotational term; this is computed as [5]:

K =
1
2

q̇>
n

∑
i=1

[mi Jvci (q)
> Jvci (q) + Jwi (q)

>H0
i (q)Ii H0

i (q)
> Jwi (q)]q̇

=
1
2

q̇>D(q)q̇ ,

(31)

where D(q) is called the inertia matrix of the system which is symmetric positive definite
and for the proposed telescope this is written as:

D(q) =
[

σ1 −lcm2 m2 sin(q2) (B2 + l1)
−lcm2 m2 sin(q2) (B2 + l1) m2 lcm2

2 + I2zz ,

]
, (32)
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where σ1 = m2(l1 + B2)
2 + m1 lcm1

2 +
(

m2 lcm2
2 − I2xx + I2yy

)
cos(q2)

2 + I1yy + I2xx .

2.3.3. State-Space Model of the Telescope from Euler–Lagrange Equations

Since the telescope has the dynamics of a manipulator robot with two degrees of
freedom, we can derive its dynamical model using the Euler–Lagrange equations of motion
as follows [5]:

d
dt

∂L
∂q̇
− ∂L

∂q
= τ , (33)

where τ = [τ1 τ2]
> is the vector of external torques and L is the Lagrangian function

defined as:
L(q, q̇) = K(q, q̇)−U (q) . (34)

Then, the Lagrangian computed from Equations (25) and (31) is substituted into (33)
to obtain the following matrix representation:[

τ1
τ2

]
= D(q)

[
q̈1
q̈2

]
+ C(q, q̇)

[
q̇1
q̇2

]
+ g(q) , (35)

where the matrix D(q) is defined in (32) and the matrices C(q, q̇) and g(q) are:

C(q, q̇) =

−q̇2 sin(2 q2)
(

m2 lcm2
2 − I2xx + I2yy

)
−q̇2 lcm2 m2 cos(q2) (B2 + l1)

q̇1 sin(2 q2)

(
m2 lcm2

2

2 − I2xx
2 +

I2yy
2

)
0

 , (36)

g(q) =
[

0
9.81 lcm2 m2 cos(q2)

]
. (37)

Solving (35) for q̈1 and q̈2, we can write a state–space model representation for the
telescope as:[

ẋ1
ẋ2

]
=

[
x3
x4

]
,[

ẋ3
ẋ4

]
=−

[
D−1(x1, x2)

][
C(x)

[
x3
x4

]
+ g(x2)

]
+
[

D−1(x1, x2)
][τ1

τ2

]
,

(38)

where the state vector is:

x> =
[
x1 x2 x3 x4

]
=
[
q1 q2 q̇1 q̇2

]
. (39)

It is important to mention that the dynamical model of the proposed alt-azimuth
liquid-mirror telescope (38) is used for synthesizing the NBC-STSM and IDC algorithms.
This is with the aim of comparing these algorithms with the PHC one.

3. Main Results

This section comprises the port-Hamilton representation of the proposed telescope’s
dynamical model, the design of the IDA and the super-twisting sliding-mode controllers for
the Euler–Lagrange representation model, the design of the control for the port-Hamilton
representation, the obtaining of the trajectories that the telescope must track (star’s position)
and the description of the liquid mirror’s shape. The reference signal to track is the star
position represented by two coordinates corresponding to the rotation of each of the two
links of the proposed telescope. With respect to the liquid mirror, this needs to adopt a
specific shape by rotating its container; this relationship is also described.
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3.1. Port-Hamiltonian Representation of the Telescope

The control strategy tIDA-PBC from Theorem 2 that is meant to control the telescope
is designed to work on a model in the port-Hamiltonian representation (1) and the repre-
sentation is dependent on the Hamiltonian function. Therefore, we start by computing the
Hamiltonian. As stated in [27], its representation as a function of q and q̇ is as follows:

H(q, q̇) =
∂L
∂q̇

q̇−L(q, q̇) , (40)

where ∂L
∂q̇ is the generalized momentum p, which is defined as follows:

p =
∂L
∂q̇

= D(q)q̇ . (41)

Then, the Hamiltonian can be written as a function of the independent variables q
and p (notice that, from (41), in this case q̇ is considered a function of q and p), leading to
the equation:

H(q, p) = p>q̇−L(q, q̇) . (42)

Therefore, solving (41) for q̇ and substituting it into (42) along with the Lagrangian L,
the Hamiltonian of the alt-azimuth telescope is:

H(q, p) =
1
2

p>D−1(q)p + g(B1(m1 + m2) + m2lcm2 sin(q2)) . (43)

Now that the Lagrangian (34) and the Hamiltonian (43) for the telescope are defined
and we know the relation of H with L and p with q̇, as stated in [27], we can obtain the
values for q̇ and ṗ. These values are obtained from Euler–Lagrange Equation (33) in terms
of the Hamiltonian gradient ( ∂H

∂x ) and the external torques, that is:

q̇ =
∂H
∂p

, ṗ = −∂H
∂q̇

+ τ . (44)

Since the Hamiltonian gradient is ∂H
∂x = [ ∂H

∂q1
, ∂H

∂q2
, ∂H

∂p1
, ∂H

∂p2
]>, we can write (44) in the

following form: [
q̇
ṗ

]
=

[
0 I
−I 0

]
∂H
∂x +

[
0
I

]
τ,

y =
[
0 I

]
∂H
∂x ,

(45)

where I is a 2× 2 identity matrix and 0 is a 2× 2 zero matrix. From system (45), we can
identify the following matrices:

J =
[

0 I
−I 0

]
, R =

[
0 0
0 0

]
, g =

[
0
I

]
. (46)

For a better visualization, compact representation (45) is expanded (using the values
of Table 1) as follows:
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

q̇1

q̇2

ṗ1

ṗ2


=



0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0





∂H
∂q1

∂H
∂q2

∂H
∂p1

∂H
∂p2


+



0 0

0 0

1 0

0 1


τ1

τ2

,

y1

y2

 =


∂H
∂p1

∂H
∂p2

 ,

(47)

where 

∂H
∂q1

∂H
∂q2

∂H
∂p1

∂H
∂p2


=



0

cos(q2)(0.186 sin(q2)q̇2
1 − 0.0278q̇1q̇2 − 0.4544)

q̇1

q̇2


.

The resulting equation, Equation (47), is the PCH model of the proposed telescope and,
as it is in the form (1), we can apply the control strategy tIDA-PBC to track the trajectory of
an arbitrary star using control law (10).

3.2. Port-Hamilton Control

To exploit the port-Hamilton structure, we use an extension of IDA-PBC for tracking,
proposed in [21], since IDA-PBC originally is designed for regulation and not for tracking.
The extension is called the tIDA-PBC control strategy and is described in Theorem 2. The de-
sired control law (10) depends on the annihilator matrix (g⊥), the desired interconnection
matrix (Jd), the desired damping matrix (Rd) and the desired Hamiltonian (Hd). All these
elements are present in the matching Equation (8) and although they are described in
Theorem 2, for clarity we are going to explain them again in this subsection.

First, the matrix formed by Jd and Rd, that is, Ad = Jd − Rd, needs to be Hurwitz.
A physical system in a port-Hamiltonian form is represented by the interconnection and
damping matrices; since Jd is the desired interconnection matrix and Rd is the desired
damping matrix, the designer could use their insight to select suitable matrices for the
system. For the proposed telescope model, the matrix J− R is not Hurwitz. In order to
make it Hurwitz, we could choose Jd = J and Rd as:

Rd =


0 0 0 0
0 0 0 0
0 0 R3 0
0 0 0 R4

 . (48)

This selection is based on the general form of a physical system with damping de-
pending on the angular velocity, for example, a pendulum. For the proposed telescope,
the elements R3 and R4 of the matrix Rd of Theorem 2, when Rd is substituted in (11),
multiply the angular velocity of the links ( ∂H

∂p1
, ∂H

∂p2
).

The matrix Ad = Jd − Rd is written as:
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Ad =


0 0 1 0
0 0 0 1
−1 0 −R3 0
0 −1 0 −R4

 . (49)

By using the Lyapunov equation PAd + A>d P = −Q, we can demonstrate that the
matrix (49) is Hurwitz if for every positive definite symmetric matrix Q, there exists a
positive definite symmetric matrix P that satisfies the Lyapunov equation [22]. We start by
choosing Q as the identity matrix, then, solving the Lyapunov equation for P, we obtain
the solution:

P =


R3

2+2
2 R3

0 1
2 0

0 R4
2+2

2 R4
0 1

2
1
2 0 1

R3
0

0 1
2 0 1

R4

 . (50)

The solution P is positive definite for R3 and R4 > 0; therefore, matrix Ad is Hurwitz
for those values of R3 and R4.

Now that the condition of Ad being Hurwitz is fulfilled, we may obtain the annihilator
g⊥. This annihilator g⊥ of g (46) needs to satisfy the condition g⊥g = 0, then one possible
choice is the following matrix g⊥:

g⊥ =

[
1 0 0 0
0 1 0 0

]
, (51)

with the annihilator g⊥ (51) and Ad (49); we try to solve the matching Equation (8) for
Hd = H+Ha, which leads to:

∂H
∂p1

=
∂H
∂p1

+
∂Ha

∂p1
,

∂H
∂p2

=
∂H
∂p2

+
∂Ha

∂p2
,

(52)

which can be reduced to the following equation system:

∂Ha

∂p1
= 0,

Ha

∂p2
= 0 . (53)

Therefore, the solution of (53) is:

Ha = f (q1, q2) , (54)

where the term f (q) can be any smooth function and is usually chosen as a quadratic
function, for example, f (q) = 1

2 K(q− L)2. Therefore, we defineHa as:

Ha =
1
2

K(q− L)2 , (55)

leading to the following desired HamiltonianHd:

Hd = H+
1
2

K(q− L)2 . (56)

As stated in Section 2.1, L must be assigned such that condition (9) is satisfied, but be-
fore computing L, it is important to define the feasible trajectories (x∗) that the telescope
could track. From open-loop Equation (45), we can replace the states x by the desired
trajectories x∗ and solve for u, resulting in:
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[
u∗1
u∗2

]
=

d
dt

(
D(x∗1 , x∗2)

[
x∗3
x∗4

])
−
[

0
∂H
∂x2
|x∗

]
. (57)

The trajectories x∗1 = φ and x∗2 = θ are computed in Section 3.6 and are defined in
the intervals x∗1 ∈ [0◦, 360◦] and x∗2 ∈ [0◦, 90◦] (0◦ represents an observation towards
the horizon and 90◦ towards the zenith). There are two cases where the trajectories or
their derivatives are not defined and depend on certain combinations of the observer’s
latitude (α ∈ [−90◦, 90◦]) and a star’s declination (δ ∈ [−90◦, 90◦]). One case is where
the observer is at one of the Earth’s poles (α = 90◦ or α = −90◦) and δ = 90◦, leading to
an indeterminacy, a position where the observer is aligned with the Earth’s axis rotation
and the observed star is at the zenith (θ = 90◦). In those conditions, φ could have any value
and the observed star would still be kept in sight. The other case is for an observer in α = 0
observing a star with δ = 0; the angle q2 has an abrupt change in its velocity when the star
reaches its highest point in the sky. Aside from those cases, the positions (x∗1 , x∗2) and their
derivatives (x∗3 , x∗4) are defined; furthermore, in such local intervals, those functions are
smooth. On the other hand, the matrix D(q) (32), its time derivative and ∂H

∂x2
are defined

for q1 ∈ [0, 360◦] and q2 ∈ [0◦, 90◦]. Then, the right-hand side of Equation (57) is defined
for all the trajectories, with the exception of the mentioned cases.

Now we can compute L for the mentioned feasible trajectories. For the case of a
feasible trajectory x∗, substituting (56) into (9), results in the following equation:

d
dt

D(x∗1 , x∗2)

ẋ∗3

ẋ∗4

 =

−R3 ẋ∗3 −
∂(H+ 1

2 K(q−L)2)
∂q1

|x∗

−R4 ẋ∗4 −
∂(H+ 1

2 K(q−L)2)
∂q2

|x∗

 . (58)

Equation (58) is solved for L, so we can substitute the L solution into Equation (56)
to obtain the desired Hamiltonian Hd; since the result is rather cumbersome, it is not
displayed but directly substituted into Equation (10) (u) to obtain the following control law:

u =

−R3 q̇1 −
K (2 q1−

σ1
K )

2

−R4 q̇2 −
K (2 q2−

σ2
50 K )

2

 , (59)

where

σ1 = 2 (I12 ẋ∗3 + I21 ẋ∗3 + R3 x∗3 + K x∗1 − I21 ẋ∗3 cos(x∗2)
2 + I22 ẋ∗3 cos(x∗2)

2

+B2
2 ẋ∗3 m2 + ẋ∗3 l12 m2 + ẋ∗3 lcm1

2 m1 + ẋ∗3 lcm2
2 m2 cos(x∗2)

2

+I21 x∗3 x∗4 sin(2 x∗2)− I22 x∗3 x∗4 sin(2 x∗2) + 2 B2 ẋ∗3 l1 m2 − B2 x∗4
2 lcm2 m2 cos(x∗2)

−x∗4
2 l1 lcm2 m2 cos(x∗2)− x∗3 x∗4 lcm2

2 m2 sin(2 x∗2)− B2 ẋ∗4 lcm2 m2 sin(x∗2)
−ẋ∗4 l1 lcm2 m2 sin(x∗2)) ,

σ2 = 100 I23 ẋ∗4 + 100 R4 x∗4 + 100 K x∗2 + 981 lcm2 m2 cos(x∗2)− 50 I21 x∗3
2 sin(2 x∗2)

+50 I22 x∗3
2 sin(2 x∗2) + 100 ẋ∗4 lcm2

2 m2 + 50 x∗3
2 lcm2

2 m2 sin(2 x∗2)
−100 B2 ẋ∗3 lcm2 m2 sin(x∗2)− 100 ẋ∗3 l1 lcm2 m2 sin(x∗2) .

Notice that σ1 and σ2 depend on the constant parameters of the telescope (mass, inertia,
length of the links) and are functions of the trajectories (x∗1 , x∗2) and velocities (x∗3 , x∗4). Also,
since the state variables in the PCH model are q and p, in this case, the variables q̇1 and q̇2
are considered functions of the independent variables q and p, with relation (41).

The control law (59) is going to be applied to the PCH model (47) and compared
to the inverse-dynamics control and super-twisting control computed in the following
subsections. The PCH model (47) and its controller in general form (10) are shown in
Figure 4 as a block diagram. Note that for the proposed telescope case J, R and g are
constant and do not appear as a function of x. The term Hd in (10) (and in the diagram)
is defined in (56) and comprises two terms,H (43) andHa (55). Also, although L (a term
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in Ha) is not shown explicitly, it is a function of the trajectories [φ, θ]> and their time
derivatives.

Figure 4. Block diagram of the telescope’s PCH model and its controller (tIDA-PBC) for the
trajectories [φ, θ]>.

Remark 1. Notice that we avoided the explicit cumbersome representation of large expressions such
asHa,Hd, L or D−1(x) to try to enhance the readability in this work. The control law (59) is an
exception since we were aiming to obtain it and it is in the final part of its subsection; furthermore,
the lengthy part (σ1 and σ2) depends on the constant inertias, masses and the position references
with their derivatives; in contrast, the state variables and gains are represented in a compact form.

3.3. Inverse-Dynamics Control (IDC)

For the inverse-dynamics control, we need to find a nonlinear feedback control law
u = f (q, q̇), such that when substituted in (35), it results in a linear closed-loop system.
For the case of manipulator dynamics Equation (35), this is achieved by choosing u = τ as:

u = D(q)aq + C(q, q̇) + g(q) . (60)

Since the matrix D(q) is invertible for this kind of system, the substitution of (60) in
(35) leads to:

q̈ = aq . (61)

Now the system under control (60) is linear and decoupled with respect to the new
input aq. Hence, aq can be designed to control a linear second-order system and a natural
choice is the following equation

aq = −K0(q− qd)− K1(q̇− q̇d) + q̈d . (62)

That is because it leads to the homogeneous second-order differential equation:

(q̈− q̈d) + K1(q̇− q̇d) + K0(q− qd) = 0 , (63)
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where K0 and K1 are 2× 2 diagonal gain matrices and qd is the desired position (angles
φ and θ (83) which will be described in Section 3.6). The characteristic equation of the
closed-loop system (63) for the i-link is written as follows:

s2 + K1
i s + K0

i = 0 , (64)

where K1
i (K0

i ) is the i-th element of the diagonal matrix K1 (K0) and its stability is analyzed
via the following proposition:

Proposition 2. Polynomial (64) is the characteristic function of closed-loop system (63). If K0
i ,

K1
i > 0 in polynomial (64), then all its roots are in the left half of the s-plane; therefore, the closed-loop

system (63) is stable.

Proof of Proposition 2. We use the Routh–Hurwitz criterion to identify the stable poles
in the closed-loop system (63) from its characteristic Equation (64). First, we generate the
Routh array of coefficients, which leads to:

s2 1 K0
i

s1 K1
i 0

s0 K0
i

. (65)

The Routh–Hurwitz criterion declares that the number of roots of the polynomial that
are in the right half of the s-plane is equal to the number of sign changes in the first column
of the Routh array of coefficients (65) [28]. Hence, for K0

i , K1
i > 0, there are no sign changes

and all the poles of the closed-loop system (63) are in the left half of the s-plane, making it
stable.

We can also choose K0 = diag(ω2
1, ω2

2) and K1 = diag(2ω1, 2ω2) with ωi > 0, so
each link, in addition to being stable, also has the response of a critically damped linear
second-order system with natural frequency ωi.

For a more detailed lecture on inverse-dynamics control, the interested reader is
referred to [5,6], as this control is not the main focus of this work.

3.4. Super-Twisting Control Combined with Non-Linear Block Control (NBC-STSM)

In order to apply the super-twisting control algorithm explained in Section 2.2,
the state–space representation of the two-degrees-of-freedom telescope model (38) is trans-
formed to the NBC form (14). For this, in system (38) the two following blocks (r = 2)
x1 = [x1 x2]

> and x2 = [x3 x4]
> are defined as follows:

ẋ1 = x2

ẋ2 = f (x1, x2) + B(x1)u ,
(66)

where f (x1, x2) = −
[
D−1(x1)

]
[C(x1, x2)x2 + g(x2)], B(x1) =

[
D−1(x1)

]
, u = [τ1 τ2]

>.
Then, applying the procedure for transforming system (66) to the block control form,
the resulting system is:

ż1 = −k1z1 + E1z2

ż2 = f̄2(z, x1d, ẋ1d, t) + Ē2u ,
(67)

where the sliding manifold s2 = z2 is defined from system (67). For simplicity, the proce-
dure for transforming system (66) to the block control form (67) is not included here. This
is due to this transformation not being the main scope of this work. The reader is kindly
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referred to [25] for information on the procedure of transformation. Now, it is possible to
use the super-twisting algorithm as follows:

vsi = λi|si|
1
2 sign si + vs1i , (68)

where v̇si = αi sign si, λi =

[
λq1 0
0 λq2

]
and αi =

[
αq1 0
0 αq2

]
.

ṡi = Fi(λr,i, ε1,i, si)− B2i

(
λi|si|

1
2 signi s + vs1,i

)
,

v̇s,i = αi sign si .
(69)

Proposition 3. For some λi > 2∆i and αi >
1
2

λ2
i (∆i − λi)

λi − 2∆i
, there exists an instant time t such

that the solution of system (14) (and particularly of z1) presents an asymptotic movement to zero.

Proof of Proposition 3. This follows the procedure described in [29]. As each degree of
freedom of the state–space model of telescope (38) is comprised of its corresponding control
inputs (u1 = τ1 and u2 = τ2) and outputs (x1 = q1 and x2 = q2), respectively, it is possible
to represent system (69) in scalar form as:

ṡi = −k1i |si|
1
2 sign(si) + ui + ϕi,

u̇i = −k2i sign(si), i = q1, q2 ,
(70)

where it is defined that:[
k1q1 k1q2

]>
= B2λi,

[
k2q1 k2q2

]>
= B2iαi, [u1 u2]

> = B2ivs1 . (71)

Then, by using the procedure presented in [26], the following is proposed:

ζi =

[
|si|

1
2 sign(si)

ui

]
, with |ζ1i| = |si|

1
2 , (72)

and:

ζ̇i =
1
|ζ1i|

[ 1
2 (−k1iζ1i + ζ2i + ϕi)

−k2iζ1i

]
. (73)

Notice that Equation (73) can be expressed as the following linear system:

ζ̇ i = Aiζ i + ρi , (74)

where: [
ζ̇1i
ζ̇2i

]
=

1
|ζ1i|

[
− k1i

2
1
2

−k2i 0

][
ζ1i
ζ2i

]
+

[
1

2|ζ1i |
ϕi

0

]
, (75)

where the function ϕi is bounded with the following restrictions [26]:

|ϕi| ≤ ∆i|si|
1
2 , |ϕi| ≤ ∆i|ζ1i|, ∆i ≥ 0 , (76)

and for our specific application:

ϕi = ∆i|si|
1
2 sign(si) = ∆iζ1i . (77)

Then, to analyze the stability condition of system (75), the following Lyapunov function
candidate is proposed [29]:

Vi(ζ) = ζ>i Piζ i , (78)
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where

Pi =
1
2

[
4k2i + k2

1i −k1i
−k1i 2

]
.

The derivative of (78) is:

V̇i(ζ i) = ζ>i

(
A>i Pi + PiAi

)
ζ i + 2ζ>i Piρi . (79)

Involving the restriction of function fi (77) in the term ρi of (79) yields:

V̇i(ζ i) = −
1
|ζ1i|

ζ>i Qiζ i , (80)

where

Qi =
k1i
2

[
k2

1i + 2k2i − ∆i

(
k1i + 4 k2i

k1i

)
−k1i

−(k1i − δi) 1

]
.

The matrix Qi must be positive definite; then, k1i = λi and k2i = αi and the values
should fulfill the following conditions:

λi > 2∆i ,

αi >
1
2

λ2
i (∆i − λi)

λi − 2∆i
.

(81)

Then, the derivative of the Lyapunov function (80) is negative definite and asymptotic
stability is ensured with the restrictions (81) [30]. Thus, an asymptotic movement of the
tracking error variable z1 is presented.

3.5. Liquid-Mirror Control

A telescope can be described by its aperture and ε-number, where the aperture is the
clear diameter of the main lens or mirror. The ε number is the ratio between the focal
length (distance from the main lens or mirror to the point where parallel light rays will
meet) of the main lens or mirror and the aperture. These values are important because the
characteristics such as brightness, size and clarity of the image produced by a telescope
depend on both the aperture and the focal length [31]. For the liquid mirror, the aperture
depends on the size of its container, but the focal length can be adjusted. As stated in [3], a
rotating fluid’s surface takes the shape of a parabola and if the fluid reflects, it could be
used as the primary mirror of a telescope. For a liquid mirror in a container, the relation
between its focal length (L), the acceleration of gravity g and the angular velocity of the
container ω is described by [2]:

L =
g

2ω2 . (82)

The focal length of a liquid mirror remains constant for a constant velocity ω, so
it is necessary to apply a control strategy to the motor that keeps rotating the base of
the liquid-mirror container. This work focuses on the tracking of a star by the proposed
telescope assuming that the liquid mirror is kept at a constant velocity, but a candidate
control to regulate the liquid mirror’s angular velocity, for future implementation, is the
state feedback linearization technique applied to a DC motor model, as described in [32].

3.6. Star’s Position

The proposed liquid-mirror telescope has the capacity to track an arbitrary star’s
trajectory. As this telescope is in alt-azimuth configuration, the position of the star is
represented in horizon coordinates (azimuth φ and altitude θ) computed from the star’s
declination (δ), the hour angle (H) and the observer’s geographical latitude (α). The



Mathematics 2023, 11, 3443 19 of 25

relationship between the star’s coordinates, the observer’s geographical latitude and the
horizon coordinates is computed from a modified version presented in [33] as:

tan φ =
sin λ sin H

cos α cos λ− sin α sin λ cos H
,

sin θ = cos α sin λ cos H + sin α cos λ ,
(83)

where the celestial colatitude of the star λ = 90◦ − δ. Figure 5 shows one half of the celestial
sphere, with an observer positioned at O; the position of a star is indicated by Ps. It can be
seen that the azimuth φ increases in the positive direction about the local vertical (z axis),
that is, in the sense NWSE (the letters refer to north, west, south and east) with respect
to the star’s projection on the horizon at B. The altitude (θ) increases from the horizon
and it is the angle subtended at O by the points B and Ps; a negative θ indicates that the
observed object is below the horizon. It is important to remark that the angles φ and θ of
(83) constitute the reference signals to be tracked by the angular positions of the orientation
of the telescope q1 and q2 of (29), respectively.

Figure 5. Horizon coordinates of a celestial body.

3.7. Simulation Results

The following simulations were done using MATLAB® and SIMULINK®, with a fixed-
step, solver ode4 (Runge–Kutta) and step size of 1 ms. These simulations show the tracking
of the star Regulus, from the constellation Leo over four hours on 1 March 2023 at 22:00 h,
considering that the observer’s coordinates are those of the Centro Universitario de los Lagos,
Universidad de Guadalajara (latitude = 21.357098◦ and longitude = −101.951965◦) located
in Mexico. The two coordinates to track by the proposed telescope are the angles φ and θ
obtained from (83), which correspond to the trajectory of the star Regulus. This trajectory is
presented in Figure 6.

A comparison is made between the three presented controllers: Port-Hamilton Control
(PCH), Inverse-Dynamics Control (IDC) and Non-linear block controllable form combined
with the Super-Twisting Sliding-Mode control (NBC-STSM). Then, the comparison consists
of showing the tracking performance for each reference φ and θ, the tracking errors and the
torques exerted by using each one of the controllers, Also, the root-mean-square (RMS)
error of all the controllers in the steady-state is obtained, considering the response as
steady when it is within 1% of the reference magnitude. The simulations are made without
considering external perturbations since the telescope is considered to operate under a
restricted scenario free of big disturbances.

Figures 7 and 8 show the tracking performance of the angles q1 and q2 with the
references φ and θ, respectively, of the star Regulus, obtained from (83), using each one of
the controllers PCH, IDC and NBC-STSM. Also, a detail of ten seconds is added in both
figures to visualize the transitory responses. All the controllers have a good performance
reaching the reference at similar times and maintaining the tracking in the absence of
disturbances.
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Figure 6. Coordinates of Regulus for an observer at the Centro Universitario de los Lagos from 22:00 h to
02:00 h.

Figure 7. Tracking performance of the angle q1 with the reference φ of the star Regulus, using each
one of the controllers PCH, IDC and NBC-STSM.

Figure 8. Tracking performance of the angle q2 with the reference θ of the star Regulus using each one
of the controllers PCH, IDC and NBC-STSM.

Figures 9 and 10 show the tracking errors φ − q1i and θ − q2i, respectively, with
i = 1, 2, 3; 1 to PCH, 2 to IDC and 3 to NBC-STSM. The error is decreased at similar times
with all the controllers and it remains stable. Table 2 contains the RMS error for angles q1
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and q2 and it is added as a complement to the comparison, showing that, although there
are similar responses in the transitory, the RMS errors of the PCH and IDC are smaller than
the NBC-STSM in steady state. For a better comparison of the responses of systems, we
consider the steady state when defining the settling time ts = 1% criterion.

Figure 9. Tracking errors φ− q1i, with i = 1, 2, 3; 1 to PCH, 2 to IDC and 3 to NBC-STSM.

Figure 10. Tracking errors θ − q2i, with i = 1, 2, 3; 1 to PCH, 2 to IDC and 3 to NBC-STSM.

Table 2. Comparison between the settling time and RMS errors of each controller for the angles q1

and q2.

Controller

Angle Parameter PCH IDC NBC-STSM

q1 RMS error (deg) 0.0083 0.0055 0.0108
Settling time (s) 2.2150 2.1140 2.3030

q2 RMS error (deg) 0.0025 0.0004 0.0312
Settling time (s) 2.6890 2.1140 2.2430

Figures 11 and 12 show the torques u1 and u2 needed for the controllers PCH, IDC
and NMB-STSM in order to drive the angular positions q1 and q2 to the references φ and θ,
respectively. Resembling the behavior of the tracking performance of the angular positions
for each controller, the torque values are very close in both the transient and steady states.
The exception is the torque value for the NBC-STSM that adjusts q2; its difference compared
with the torques of PCH and IDC can be seen in Figure 12 and the corresponding RMS
error in the tracking shown in Table 2, being bigger than PCH and IDC RMS errors.
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Figure 11. Torque values u1 needed for the controllers PCH, IDC and NMB-STSM in order to drive
the angular position q1 to the reference φ.

Figure 12. Torque values u2 needed for the controllers PCH, IDC and NMB-STSM in order to drive
the angular position q2 to the reference θ.

In order to see the robustness of each controller, an external disturbance with a
magnitude 5 N·m is applied, starting at 10 s and vanishing at 20 s. Figures 13 and 14
show the first 30 s of the Regulus star tracking to each link of the telescope, respectively,
and where the external disturbance effect is depicted. As we can see from both figures
when the disturbance appears, all of the angular positions of each controller deviate from
the reference, but, due to its robustness, the NBC-STSM tracks the reference again for the
duration of the perturbation. Although the IDC has the smaller RMS error, we can see
that it is the most sensitive to disturbances, deviating from the reference more than the
NBC-STSM and tIDA-PBC, especially for q2. On the other hand, the tIDA-PBC deviates
the least under the presence of external disturbances and it has a smaller RMS error than
the NBC-STSM, showing a good performance under the presence of external vanishing
disturbances.
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Figure 13. Tracking performance of the angle q1 with the reference φ of the star Regulus under a
vanishing disturbance.

Figure 14. Tracking performance of the angle q2 with the reference θ of the star Regulus under a
vanishing disturbance.

4. Conclusions

The three controllers (IDC, NBC-STSM and tIDA-PBC) have a good performance
when tracking an object in the absence of perturbations. The IDC has great accuracy
but the parameters of the system have to be known exactly; therefore, it is not robust
to any disturbance or parametric variations. The NBC-STSM is very robust to external
and continuous disturbances; it rejects them and maintains good tracking of the reference.
The tIDA-PBC strategy does not rely on the cancellation of nonlinearities as the IDC; it
rather exploits the energy properties of the system, resulting in a more robust system.
Although it does not reject non-vanishing external disturbances, it has more robustness
to those than the IDC; that is, the offset with the reference due to the disturbances is
smaller; furthermore, it ensures robustness again frictions and it has some robustness
again parametric variations. Hence, for the considered conditions in which the telescope
may operate, a reasonably good dynamical model with some unmodeled frictions and
occasional vanishing disturbances due to wind, the tIDA-PBC may ensure a smooth, steady
tracking, allowing even for astrophotography while tracking a star.

With respect to the results, since the simulations of the tIDA-PBC showed good behav-
ior for star tracking and its characteristics are suited for the conditions in which a telescope
could operate, we consider that the next step in extending this work is the construction
of the proposed telescope. Therefore, we could have a real-time implementation of the
tIDA-PBC. Such an implementation, aside from testing the controller, will allow us to test
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the proposed liquid-mirror telescope and compare not only the tracking but the quality of
the image with a conventional telescope of similar size.
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