Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (559)

Search Parameters:
Keywords = Poly(lactic-co-glycolic acid) (PLGA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2161 KiB  
Article
Preparation of PLLA and PLGA Copolymers with Poly(ethylene adipate) Through Reactive Melt Mixing: Structural Characterization, Thermal Properties, and Molecular Mobility Insights
by Evi Christodoulou, Christina Samiotaki, Alexandra Zamboulis, Rizos Evangelos Bikiaris, Panagiotis A. Klonos, Apostolos Kyritsis and Dimitrios N. Bikiaris
Macromol 2025, 5(3), 35; https://doi.org/10.3390/macromol5030035 - 7 Aug 2025
Abstract
In this study, a series of copolymers was synthesized using the promising biodegradable polymers Poly(L-lactic acid) (PLLA), Poly(lactic-co-glycolic acid) (PLGA), and Poly(ethylene adipate) (PEAd), known for their high potential. PEAd was synthesized through a two-step melt polycondensation process and then used to prepare [...] Read more.
In this study, a series of copolymers was synthesized using the promising biodegradable polymers Poly(L-lactic acid) (PLLA), Poly(lactic-co-glycolic acid) (PLGA), and Poly(ethylene adipate) (PEAd), known for their high potential. PEAd was synthesized through a two-step melt polycondensation process and then used to prepare copolymers with PLLA (PLLA-co-PEAd) and PLGA (PLGA-co-PEAd) at weight ratios of 90/10 and 75/25, respectively. The synthesized materials, along with the starting polymers, were extensively characterized for their structure, molecular weight, crystallinity, and thermal behavior. These novel systems exhibit single thermal transitions, e.g., glass transition. The incorporation of PEAd into the copolymers induced a plasticizing effect, evidenced by a consistent decrease in the glass transition temperature. Due to the latter effect in combination with the Mw drop, the facilitation of crystal nucleation was observed. Finally, the results by dielectric spectroscopy on the local and segmental molecular mobility provided additional proof for the homogeneity of the systems, as manifested, e.g., by the recording of single segmental relaxation processes. Overall, the findings indicate that the PLLA-co-PEAd and PLGA-co-PEAd copolymers hold significant potential, and the use of complementary experimental techniques offers valuable insights and indirect indications of their properties. Full article
(This article belongs to the Collection Advances in Biodegradable Polymers)
Show Figures

Figure 1

16 pages, 1674 KiB  
Article
Enhanced Anticancer Activity of Atractylodin-Loaded Poly(lactic-co-glycolic Acid) Nanoparticles Against Cholangiocarcinoma
by Tullayakorn Plengsuriyakarn, Luxsana Panrit and Kesara Na-Bangchang
Polymers 2025, 17(15), 2151; https://doi.org/10.3390/polym17152151 - 6 Aug 2025
Abstract
Cholangiocarcinoma (CCA) is highly prevalent in the Greater Mekong sub-region, especially northeastern Thailand, where infection with the liver fluke Opisthorchis viverrini is a major etiological factor. Limited therapeutic options and the absence of reliable early diagnosis tools impede effective disease control. Atractylodes lancea [...] Read more.
Cholangiocarcinoma (CCA) is highly prevalent in the Greater Mekong sub-region, especially northeastern Thailand, where infection with the liver fluke Opisthorchis viverrini is a major etiological factor. Limited therapeutic options and the absence of reliable early diagnosis tools impede effective disease control. Atractylodes lancea (Thunb.) DC.—long used in Thai and East Asian medicine, contains atractylodin (ATD), a potent bioactive compound with anticancer potential. Here, we developed ATD-loaded poly(lactic co-glycolic acid) nanoparticles (ATD PLGA NPs) and evaluated their antitumor efficacy against CCA. The formulated nanoparticles had a mean diameter of 229.8 nm, an encapsulation efficiency of 83%, and exhibited biphasic, sustained release, reaching a cumulative release of 92% within seven days. In vitro, ATD-PLGA NPs selectively reduced the viability of CL-6 and HuCCT-1 CCA cell lines, with selectivity indices (SI) of 3.53 and 2.61, respectively, outperforming free ATD and 5-fluorouracil (5-FU). They suppressed CL-6 cell migration and invasion by up to 90% within 12 h and induced apoptosis in 83% of cells through caspase-3/7 activation. Micronucleus assays showed lower mutagenic potential than the positive control. In vivo, ATD-PLGA NPs dose-dependently inhibited tumor growth and prolonged survival in CCA-xenografted nude mice; the high-dose regimen matched or exceeded the efficacy of 5-FU. Gene expression analysis revealed significant downregulation of pro-tumorigenic factors (VEGF, MMP-9, TGF-β, TNF-α, COX-2, PGE2, and IL-6) and upregulation of the anti-inflammatory cytokine IL-10. Collectively, these results indicate that ATD-PLGA NPs are a promising nanotherapeutic platform for targeted CCA treatment, offering improved anticancer potency, selectivity, and safety compared to conventional therapies. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

26 pages, 89199 KiB  
Article
Light-Responsive PLGA Microparticles for On-Demand Vancomycin Release and Enhanced Antibacterial Efficiency
by Mishal Pokharel, Abid Neron, Amit Kumar Dey, Aishwarya Raksha Siddharthan, Menaka Konara, Md Mainuddin Sagar, Tracie Ferreira and Kihan Park
Pharmaceutics 2025, 17(8), 1007; https://doi.org/10.3390/pharmaceutics17081007 - 1 Aug 2025
Viewed by 827
Abstract
Background: A precise drug delivery system enables the optimization of treatments with minimal side effects if it can deliver medication only when activated by a specific light source. This study presents a controlled drug delivery system based on poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) [...] Read more.
Background: A precise drug delivery system enables the optimization of treatments with minimal side effects if it can deliver medication only when activated by a specific light source. This study presents a controlled drug delivery system based on poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) designed for the sustained release of vancomycin hydrochloride. Methods: The MPs were co-loaded with indocyanine green (ICG), a near-infrared (NIR) responsive agent, and fabricated via the double emulsion method.They were characterized for stability, surface modification, biocompatibility, and antibacterial efficacy. Results: Dynamic light scattering and zeta potential analyses confirmed significant increases in particle size and surface charge reversal following chitosan coating. Scanning electron microscopy revealed uniform morphology in uncoated MPs (1–10 μm) and irregular surfaces post-coating. Stability tests demonstrated drug retention for up to 180 days. Among formulations, PVI1 exhibited the highest yield (76.67 ± 1.3%) and encapsulation efficiency (56.2 ± 1.95%). NIR irradiation (808 nm) enhanced drug release kinetics, with formulation PVI4 achieving over 48.9% release, resulting in improved antibacterial activity. Chitosan-coated MPs (e.g., PVI4-C) effectively suppressed drug release without NIR light for up to 8 h, with cumulative release reaching only 10.89%. Without NIR light, bacterial colonies exceeded 1000 CFU; NIR-triggered release reduced them below 120 CFU. Drug release data fitted best with the zero-order and Korsmeyer–Peppas models, suggesting a combination of diffusion-controlled and constant-rate release behavior. Conclusions: These results demonstrate the promise of chitosan-coated NIR-responsive PLGA MPs for precise, on-demand antibiotic delivery and improved antibacterial performance. Full article
(This article belongs to the Special Issue Nano-Based Delivery Systems for Topical Applications)
Show Figures

Figure 1

34 pages, 924 KiB  
Review
Three-Dimensional Disassemblable Scaffolds for Breast Reconstruction
by Viktoriia Kiseleva, Aida Bagdasarian, Polina Vishnyakova, Andrey Elchaninov, Victoria Karyagina, Valeriy Rodionov, Timur Fatkhudinov and Gennady Sukhikh
Polymers 2025, 17(15), 2036; https://doi.org/10.3390/polym17152036 - 25 Jul 2025
Viewed by 541
Abstract
In recent years, significant progress has been made in breast reconstructive surgery, particularly with the use of three-dimensional (3D) disassemblable scaffolds. Reconstructive plastic surgery aimed at restoring the shape and size of the mammary gland offers medical, psychological, and social benefits. Using autologous [...] Read more.
In recent years, significant progress has been made in breast reconstructive surgery, particularly with the use of three-dimensional (3D) disassemblable scaffolds. Reconstructive plastic surgery aimed at restoring the shape and size of the mammary gland offers medical, psychological, and social benefits. Using autologous tissues allows surgeons to recreate the appearance of the mammary gland and achieve tactile sensations similar to those of a healthy organ while minimizing the risks associated with implants; 3D disassemblable scaffolds are a promising solution that overcomes the limitations of traditional methods. These constructs offer the potential for patient-specific anatomical adaptation and can provide both temporary and long-term structural support for regenerating tissues. One of the most promising approaches in post-mastectomy breast reconstruction involves the use of autologous cellular and tissue components integrated into either synthetic scaffolds—such as polylactic acid (PLA), polyglycolic acid (PGA), poly(lactic-co-glycolic acid) (PLGA), and polycaprolactone (PCL)—or naturally derived biopolymer-based matrices, including alginate, chitosan, hyaluronic acid derivatives, collagen, fibrin, gelatin, and silk fibroin. In this context, two complementary research directions are gaining increasing significance: (1) the development of novel hybrid biomaterials that combine the favorable characteristics of both synthetic and natural polymers while maintaining biocompatibility and biodegradability; and (2) the advancement of three-dimensional bioprinting technologies for the fabrication of patient-specific scaffolds capable of incorporating cellular therapies. Such therapies typically involve mesenchymal stromal cells (MSCs) and bioactive signaling molecules, such as growth factors, aimed at promoting angiogenesis, cellular proliferation, and lineage-specific differentiation. In our review, we analyze existing developments in this area and discuss the advantages and disadvantages of 3D disassemblable scaffolds for mammary gland reconstruction, as well as prospects for their further research and clinical use. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

25 pages, 3886 KiB  
Article
Amikacin Coated 3D-Printed Metal Devices for Prevention of Postsurgical Infections (PSIs)
by Chu Zhang, Ishwor Poudel, Nur Mita, Xuejia Kang, Manjusha Annaji, Seungjong Lee, Peter Panizzi, Nima Shamsaei, Oladiran Fasina, R. Jayachandra Babu and Robert D. Arnold
Pharmaceutics 2025, 17(7), 911; https://doi.org/10.3390/pharmaceutics17070911 - 14 Jul 2025
Viewed by 380
Abstract
Background/Objectives: Personalized 3D-printed (3DP) metallic implants delivery systems are being explored to repair bone fractures, allowing the customization of medical implants that respond to individual patient needs, making it potentially more effective and of greater quality than mass-produced devices. However, challenges associated [...] Read more.
Background/Objectives: Personalized 3D-printed (3DP) metallic implants delivery systems are being explored to repair bone fractures, allowing the customization of medical implants that respond to individual patient needs, making it potentially more effective and of greater quality than mass-produced devices. However, challenges associated with postsurgical infections caused by bacterial adhesion remain a clinical issue. To address this, local antibiotic therapies are receiving extensive attention to minimize the risk of implant-related infections. This study investigated the use of amikacin (AMK), a broad-spectrum aminoglycoside antibiotic, incorporated onto 3D-printed 316L stainless steel implants using biodegradable polymer coatings of chitosan and poly lactic-co-glycolic acid (PLGA). Methods: This research examined different approaches to coat 3DP implants with amikacin. Various polymer-based coatings were studied to determine the optimal formulation based on the characteristics and release profile. The optimal formulation was performed on the antibacterial activity studies. Results: AMK-chitosan with PLGA coating implants controlled the rate of drug release for up to one month. The 3DP drug-loaded substrates demonstrated effective, concentration-dependent antibacterial activity against common infective pathogens. AMK-loaded substrates showed antimicrobial effectiveness for one week and inhibited bacteria significantly compared to the uncoated controls. Conclusions: This study demonstrated that 3DP metal surfaces coated with amikacin can provide customizable drug release profiles while effectively inhibiting bacterial growth. These findings highlight the potential of combining 3D printing with localized delivery strategies to prevent implant-associated infections and advance the development of personalized therapies. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

18 pages, 2664 KiB  
Article
Engineering a Polyacrylamide/Polydopamine Adhesive Hydrogel Patch for Sustained Transdermal Vitamin E Delivery
by Yejin Kim, Juhyeon Kim, Dongmin Yu, Taeho Kim, Jonghyun Park, Juyeon Lee, Sohyeon Yu, Dongseong Seo, Byoungsoo Kim, Simseok A. Yuk, Daekyung Sung and Hyungjun Kim
Cosmetics 2025, 12(4), 138; https://doi.org/10.3390/cosmetics12040138 - 1 Jul 2025
Viewed by 669
Abstract
A transdermal drug delivery system based on hydrogel patches was explored, leveraging their sustained release properties and biocompatibility. Despite these advantages, conventional hydrogels often lack proper adhesion to the skin, limiting their practical application. To address this issue, we designed a skin-adhesive hydrogel [...] Read more.
A transdermal drug delivery system based on hydrogel patches was explored, leveraging their sustained release properties and biocompatibility. Despite these advantages, conventional hydrogels often lack proper adhesion to the skin, limiting their practical application. To address this issue, we designed a skin-adhesive hydrogel using a polyacrylamide (PAM)/polydopamine (PDA) dual-network structure. The matrix combines the mechanical toughness of PAM with the strong adhesive properties of PDA, derived from mussel foot proteins, enabling firm tissue attachment and robust performance under physiological conditions. To demonstrate its applicability, the hydrogel was integrated with poly(lactic-co-glycolic acid) (PLGA) nanoparticles encapsulating the hydrophobic antioxidant vitamin E as a model compound. The resulting PAM/PDA@VitE hydrogel system exhibited improved swelling behavior, high water retention, and prolonged release of α-tocopherol. These results suggest that the PAM/PDA hydrogel platform is a versatile vehicle not only for vitamin E, but also for the transdermal delivery of various cosmetic and therapeutic agents. Full article
Show Figures

Figure 1

20 pages, 6655 KiB  
Article
Design of a Dual-Drug Delivery System for Local Release of Chlorhexidine and Dexketoprofen
by Vicente Esparza-Villalpando, Amaury Pozos-Guillén, Ángel Antonio Vértiz-Hernández, Jose Vega-Baudrit and Daniel Chavarría-Bolaños
Polymers 2025, 17(13), 1771; https://doi.org/10.3390/polym17131771 - 26 Jun 2025
Viewed by 471
Abstract
Background: This study developed and characterized a novel drug delivery system (DDS) for potential use in oral surgery, combining poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with chlorhexidine (MS-CHX) and a polyethylene glycol (PEG)-based hydrogel containing dexketoprofen (HG-DXT). Methods: MS-CHX was synthesized using a double [...] Read more.
Background: This study developed and characterized a novel drug delivery system (DDS) for potential use in oral surgery, combining poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with chlorhexidine (MS-CHX) and a polyethylene glycol (PEG)-based hydrogel containing dexketoprofen (HG-DXT). Methods: MS-CHX was synthesized using a double emulsion evaporation method, while HG-DXT was formulated from a PEG blend. The components were combined in a 2:1 ratio to create the MS-CHX/HG-DXT DDS. Characterization techniques included differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and energy-dispersive X-ray spectroscopy (EDS). Antibacterial activity was evaluated using disk diffusion assays against E. faecalis, E. coli, S. aureus, and C. albicans. Biocompatibility was assessed with MTS, and drug release was measured via high-performance liquid chromatography (HPLC) in vitro. Results: CHX-loaded microspheres showed spherical morphology, stability above 37 °C, and antimicrobial efficacy. HG-DXT demonstrated good biocompatibility (80% of cell viability) and stable physicochemical properties (stability at 50-day storage). The DDS exhibited a biphasic release: an initial burst of dexketoprofen for analgesia, followed by sustained release of chlorhexidine for antimicrobial protection. Conclusions: This novel dual-action DDS showed promising characteristics and a favorable release profile, supporting its potential as a therapeutic alternative for post-operative pain and infection control in oral surgical procedures. Full article
(This article belongs to the Special Issue Hydrogel Materials for Drug Delivery and Tissue Engineering)
Show Figures

Figure 1

51 pages, 10069 KiB  
Review
Biomaterials in Postoperative Adhesion Barriers and Uterine Tissue Engineering
by Abbas Fazel Anvari-Yazdi, Ildiko Badea and Xiongbiao Chen
Gels 2025, 11(6), 441; https://doi.org/10.3390/gels11060441 - 9 Jun 2025
Cited by 1 | Viewed by 3455
Abstract
Postoperative adhesions (POAs) are a common and often serious complication following abdominal and gynecologic surgeries, leading to infertility, chronic pain, and bowel obstruction. To address these outcomes, the development of anti-adhesion barriers using biocompatible materials has emerged as a key area of biomedical [...] Read more.
Postoperative adhesions (POAs) are a common and often serious complication following abdominal and gynecologic surgeries, leading to infertility, chronic pain, and bowel obstruction. To address these outcomes, the development of anti-adhesion barriers using biocompatible materials has emerged as a key area of biomedical research. This article presents a comprehensive overview of clinically relevant natural and synthetic biomaterials explored for POA prevention, emphasizing their degradation behavior, barrier integrity, and translational progress. Natural biopolymers—such as collagen, gelatin, fibrin, silk fibroin, and decellularized extracellular matrices—are discussed alongside polysaccharides, including alginate, chitosan, and carboxymethyl cellulose, focusing on their structural features and biological functionality. Synthetic polymers, including polycaprolactone (PCL), polyethylene glycol (PEG), and poly(lactic-co-glycolic acid) (PLGA), are also examined for their tunable degradation profiles (spanning days to months), mechanical robustness, and capacity for drug incorporation. Recent innovations, such as bioprinted and electrospun dual-layer membranes, are highlighted for their enhanced anti-fibrotic performance in preclinical studies. By consolidating current material strategies and fabrication techniques, this work aims to support informed material selection while also identifying key knowledge gaps—particularly the limited comparative data on degradation kinetics, inconsistent definitions of ideal mechanical properties, and the need for more research into cell-responsive barrier systems. Full article
(This article belongs to the Special Issue Novel Polymer Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

25 pages, 10277 KiB  
Article
Comparative Study of Free and Encapsulated Hypocrellin B on Photophysical-Chemical Properties, Cellular Uptake, Subcellular Distribution, and Phototoxicity
by Weiyan Kang, Feng Zhao, Jixing Cheng, Kaijie Feng, Liang Yan, Yue You, Jinxia Li and Jing Meng
Nanomaterials 2025, 15(12), 889; https://doi.org/10.3390/nano15120889 - 9 Jun 2025
Viewed by 555
Abstract
The present study compared the free and encapsulated photosensitizer hypocrellin B (HB) in terms of photophysical-chemical properties, cellular uptake, subcellular distribution, and phototoxicity. The hydrophobic HB was encapsulated into liposomes (HB@Lipo) or poly (lactic-co-glycolic acid) nanoparticles (HB@PLGA). Encapsulation into nanocarriers exerted [...] Read more.
The present study compared the free and encapsulated photosensitizer hypocrellin B (HB) in terms of photophysical-chemical properties, cellular uptake, subcellular distribution, and phototoxicity. The hydrophobic HB was encapsulated into liposomes (HB@Lipo) or poly (lactic-co-glycolic acid) nanoparticles (HB@PLGA). Encapsulation into nanocarriers exerted no obvious influence on the photophysical-chemical properties of HB, including UV-visible absorbance, fluorescence spectra, singlet oxygen (1O2) production capacity, and photostability. Free and encapsulated HB revealed some disparities in cellular uptake and subcellular localization patterns. In 2D-cultured B16 cells and tumor spheroids, free HB exhibited the fastest cellular uptake, while HB@PLGA had the lowest, as evidenced. Subcellular localization analysis first revealed a significant colocalization of free HB, HB@Lipo, and HB@PLGA within lipid droplets, with minimal colocalization in mitochondria and the endoplasmic reticulum. Unlike free HB and HB@Lipo, HB@PLGA exhibited strong lysosomal colocalization, indicating a unique intracellular trafficking pathway for PLGA-encapsulated HB. Upon laser irradiation, both free and encapsulated HB induced pronounced phototoxicity with substantial ROS production, confirming the robust PDT effect of HB. The photodynamic killing effect correlated with the intracellular HB content. These findings highlighted the impact of nanoformulation on HB’s cellular behavior and therapeutic performance. Full article
Show Figures

Graphical abstract

15 pages, 1657 KiB  
Article
Evaluation of Two Alloplastic Biomaterials in a Critical-Size Rat Calvarial Defect Model
by Amanda Finger Stadler, Marta Liliana Musskopf, Vishal Gohel, Jonathan Reside, Eric Everett, Patricia Miguez and Cristiano Susin
J. Funct. Biomater. 2025, 16(6), 214; https://doi.org/10.3390/jfb16060214 - 6 Jun 2025
Viewed by 976
Abstract
Aim: to evaluate the bone regeneration capacity of two alloplastic biomaterials in a critical-size rat calvarial defect model. Methods: A total of 80 rats were randomized into 8 groups of 10 animals each. An Ø8 mm, critical-size calvarial defect was created, and the [...] Read more.
Aim: to evaluate the bone regeneration capacity of two alloplastic biomaterials in a critical-size rat calvarial defect model. Methods: A total of 80 rats were randomized into 8 groups of 10 animals each. An Ø8 mm, critical-size calvarial defect was created, and the following treatments were randomly allocated: sham surgery, deproteinized bovine bone mineral (DBBM) + collagen membrane (CM), poly-(lactic-co-glycolic-acid) (PLGA)-coated pure phase β-tricalcium phosphate (β-TCP), or PLGA-coated 60% hydroxyapatite (HA):40%β-TCP. Animals were allowed to heal for 2 and 6 weeks. Microcomputed tomography (μCT) was used to evaluate mineralized tissue and biomaterial displacement. Histological samples were used to evaluate new bone formation. Results: μCT analysis showed no significant differences among groups for total volume of mineralized tissue or residual biomaterials. DBBM + CM showed significantly increased horizontal biomaterial displacement at 2 weeks but not at 6 weeks. Histological analysis showed that sham surgery had a significantly higher percentage of bone area fraction than the DBBM + CM and PLGA + β-TCP at 2 weeks, but not at 6 weeks. Residual biomaterial area fraction showed no significant differences among experimental groups at any healing time. Conclusions: The alloplastic biomaterials showed suitable construct integrity and retention in the defect. All biomaterials were associated with limited new bone formation comparable to the sham surgery control. Full article
(This article belongs to the Special Issue Dental Biomaterials in Implantology and Orthodontics)
Show Figures

Figure 1

25 pages, 1205 KiB  
Review
Antioxidant Naturally Occurring Pleiotropically Acting Bioactive Compounds, as Polymeric Nanotherapeutics Against Autoimmune Diseases Progression
by Panagiotis Theodosis-Nobelos, Fani-Niki Varra, Michail Varras, Georgios Papagiouvannis and Eleni A. Rekka
Curr. Issues Mol. Biol. 2025, 47(6), 411; https://doi.org/10.3390/cimb47060411 - 1 Jun 2025
Viewed by 695
Abstract
Autoimmune diseases are driven by chronic inflammation and oxidative stress, thus requiring innovative therapeutic approaches. Polymeric nanotherapeutics incorporating antioxidant bioactive compounds offer a promising strategy for immune modulation and enhanced drug delivery. This review explores the application of polymer-based nanocarriers for improving the [...] Read more.
Autoimmune diseases are driven by chronic inflammation and oxidative stress, thus requiring innovative therapeutic approaches. Polymeric nanotherapeutics incorporating antioxidant bioactive compounds offer a promising strategy for immune modulation and enhanced drug delivery. This review explores the application of polymer-based nanocarriers for improving the solubility, bioavailability, and targeted delivery of antioxidant compounds in autoimmune disease treatment. A comprehensive analysis of recent advancements in polymeric nanoformulations, including poly(lactic-co-glycolic acid) (PLGA), polyethylene glycol (PEG), chitosan, and hyaluronic acid, was conducted. The therapeutic efficacy of various antioxidant-loaded nanoparticles has been assessed in both preclinical and clinical studies. Phenolic antioxidants, such as resveratrol, curcumin, quercetin, and epigallocatechin-3-gallate, exhibit potent anti-inflammatory effects; however, their poor solubility limits their clinical application. Nanocarriers such as dendrosomes, tannic acid-based reactive oxygen species (ROS)-scavenging nanoparticles, and folic acid-functionalized systems enhance drug stability, controlled drug release, and macrophage targeting. Carotenoid and bilirubin nanoparticles further demonstrate immunomodulatory effects in multiple sclerosis, psoriasis, rheumatoid arthritis, and inflammatory bowel disease. Polymeric antioxidant nanotherapeutics provide targeted and sustained drug delivery, offering improved efficacy and reduced toxicity. Future research should focus on optimizing these nanocarriers for clinical translation and patient-centered therapeutic strategies. Full article
Show Figures

Graphical abstract

17 pages, 8085 KiB  
Article
Synthesis and Characterization of Poly(Lactic-Co-Glycolic Acid)–Paclitaxel (PLGA-PTX) Nanoparticles Evaluated in Ovarian Cancer Models
by Sylwia A. Dragulska, Maxier Acosta Santiago, Sabina Swierczek, Linus Chuang, Olga Camacho-Vanegas, Sandra Catalina Camacho, Maria M. Padron-Rhenals, John A. Martignetti and Aneta J. Mieszawska
Pharmaceutics 2025, 17(6), 689; https://doi.org/10.3390/pharmaceutics17060689 - 23 May 2025
Viewed by 769
Abstract
We developed a novel biodegradable poly(lactic-co-glycolic acid) (PLGA) polymer chemically modified with paclitaxel (PTX) to form a PLGA-PTX hybrid. Pre-modification of PTX enhanced its loading in PLGA-PTX nanoparticles (NPs). Background/Objectives: PTX is one of the most effective chemotherapy agents used in cancer [...] Read more.
We developed a novel biodegradable poly(lactic-co-glycolic acid) (PLGA) polymer chemically modified with paclitaxel (PTX) to form a PLGA-PTX hybrid. Pre-modification of PTX enhanced its loading in PLGA-PTX nanoparticles (NPs). Background/Objectives: PTX is one of the most effective chemotherapy agents used in cancer therapy. The primary mode of PTX’s action is the hyperstabilization of microtubules leading to cell growth arrest. Although highly potent, the drug is water insoluble and requires the Cremophor EL excipient. The toxic effects of the free drug (e.g., neurotoxicity) as well as its solubilizing agent are well established. Thus, there is strong clinical rationale and need for exploring alternative PTX delivery approaches, retaining biological activity and minimizing systemic effects. Methods: The PTX modification method features reacting the C-2′ and C-7 residues with a linker (succinic anhydride) to produce easily accessible carboxyl groups on the PTX for enhanced coupling to the hydroxyl group of PLGA. The PLGA-PTX hybrid, formed via esterification reaction, was used to formulate lipid-coated PLGA-PTX NPs. As proof of concept, the PLGA-PTX NPs were tested in ovarian cancer (OvCA) models, including several patient-derived cell lines (PDCLs), one of which was generated from a platinum-resistant patient. Results: The PLGA-PTX NPs critically remained stable in water and serum while enabling slow drug release. Importantly, PLGA-PTX NPs demonstrated biological activity. Conclusions: We suggest that this approach offers both a new and effective PTX formulation and a possible path towards the development of a new generation of OvCA treatment. Full article
(This article belongs to the Special Issue PLGA Micro/Nanoparticles in Drug Delivery)
Show Figures

Graphical abstract

47 pages, 2636 KiB  
Review
Unveiling the Future: Opportunities in Long-Acting Injectable Drug Development for Veterinary Care
by HariPriya Koppisetti, Sadikalmahdi Abdella, Deepa D. Nakmode, Fatima Abid, Franklin Afinjuomo, Sangseo Kim, Yunmei Song and Sanjay Garg
Pharmaceutics 2025, 17(5), 626; https://doi.org/10.3390/pharmaceutics17050626 - 8 May 2025
Cited by 1 | Viewed by 1693
Abstract
Long-acting injectable (LAI) formulations have revolutionized veterinary pharmaceuticals by improving patient compliance, minimizing dosage frequency, and improving therapeutic efficacy. These formulations utilize advanced drug delivery technologies, including microspheres, liposomes, oil solutions/suspensions, in situ-forming gels, and implants to achieve extended drug release. Biodegradable polymers [...] Read more.
Long-acting injectable (LAI) formulations have revolutionized veterinary pharmaceuticals by improving patient compliance, minimizing dosage frequency, and improving therapeutic efficacy. These formulations utilize advanced drug delivery technologies, including microspheres, liposomes, oil solutions/suspensions, in situ-forming gels, and implants to achieve extended drug release. Biodegradable polymers such as poly(lactic-co-glycolic acid) (PLGA), and polycaprolactone (PCL) have been approved by the USFDA and are widely employed in the development of various LAIs, offering controlled drug release and minimizing the side effects. Various classes of veterinary medicines, including non-steroidal anti-inflammatory drugs (NSAIDs), antibiotics, and reproductive hormones, have been successfully formulated as LAIs. Some remarkable LAI products, such as ProHeart® (moxidectin), Excede® (ceftiofur), and POSILACTM (recombinant bovine somatotropin), show clinical relevance and commercial success. This review provides comprehensive information on the formulation strategies currently being used and the emerging technologies in LAIs for veterinary purposes. Additionally, challenges in characterization, in vitro testing, in vitro in vivo correlation (IVIVC), and safety concerns regarding biocompatibility are discussed, along with the prospects for next-generation LAIs. Continued advancement in the field of LAI in veterinary medicine is essential for improving animal health. Full article
(This article belongs to the Special Issue Long Acting Drug Delivery Formulations)
Show Figures

Figure 1

12 pages, 3528 KiB  
Technical Note
Considerations and Challenges of Resorbable Intramedullary Nailing in Pediatric Forearm Fractures
by Gergő Józsa, Tamás Kassai, Marcell Varga, Ádám L. Dávid, Zoltán Tóth, Tibor Molnár, Eszter Antal, Anna Gabriella Lamberti, Hermann Nudelman and Aba Lőrincz
Children 2025, 12(5), 606; https://doi.org/10.3390/children12050606 - 6 May 2025
Cited by 1 | Viewed by 594
Abstract
Background: Pediatric diaphyseal forearm fractures, often caused by sports or leisure activities, require treatment based on fracture stability. While stable fractures can be managed conservatively, unstable fractures typically require surgery, with elastic stable intramedullary (IM) nailing (ESIN) being the gold standard. Bioabsorbable [...] Read more.
Background: Pediatric diaphyseal forearm fractures, often caused by sports or leisure activities, require treatment based on fracture stability. While stable fractures can be managed conservatively, unstable fractures typically require surgery, with elastic stable intramedullary (IM) nailing (ESIN) being the gold standard. Bioabsorbable IM nails (BINs) offer an alternative by eliminating the need for implant removal surgery. Methods: Between May 2023 and January 2025, we consecutively managed 161 children with poly-L-lactic-co-glycolic acid (PLGA) BINs in two healthcare centers for diaphyseal forearm fracture and evaluated every reported difficulty and complication of resorbable IM nails. Results: Seven unique peri- or postoperative events occurred during the study period. Even with a high success rate, some complications occurred during the study period. Difficulties and complications were mainly dependent on the surgical technique. Iatrogenic complications such as bone cortex perforation and implant end split were evaluated, along with anatomical variations like focal and general medullary cavity stenosis narrowings that affected implant insertion. Secondary malalignment, one early (2 months) refracture, and one recurrent fracture (2 years) were also noted. Conclusions: Although BINs reduce the need for a second surgery, careful planning, technique, and follow-up are crucial for optimal outcomes. Further research is needed to assess long-term results and complications. Full article
(This article belongs to the Section Pediatric Orthopedics & Sports Medicine)
Show Figures

Figure 1

19 pages, 2409 KiB  
Brief Report
Anti-Influenza Activity of 6BIGOE: Improved Pharmacological Profile After Encapsulation in PLGA Nanoparticles
by Josefine Schroeder, Jan Westhoff, Ivan Vilotijević, Oliver Werz, Stephanie Hoeppener, Bettina Löffler, Dagmar Fischer and Christina Ehrhardt
Int. J. Mol. Sci. 2025, 26(9), 4235; https://doi.org/10.3390/ijms26094235 - 29 Apr 2025
Viewed by 682
Abstract
Influenza A virus (IAV) infections continue to threaten public health. Current strategies, such as vaccines and antiviral drugs, are limited due to their time-consuming development and drug-resistant strains. Therefore, new effective treatments are needed. Here, virus-supportive cellular factors are promising drug targets, and [...] Read more.
Influenza A virus (IAV) infections continue to threaten public health. Current strategies, such as vaccines and antiviral drugs, are limited due to their time-consuming development and drug-resistant strains. Therefore, new effective treatments are needed. Here, virus-supportive cellular factors are promising drug targets, and the encapsulation of candidate substances in poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) is intended to improve their bioavailability. This study investigates the potential of the indirubin derivative 6-bromoindirubin-3′-glycerol-oxime ether (6BIGOE), a glycogen synthase kinase 3 (GSK-3)β inhibitor, for its potential to regulate IAV replication in vitro. The effects of 6BIGOE-loaded PLGA NPs on cell metabolism were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays in A549 and Calu-3 cells. Viral replication and spread were monitored in various IAV-infected cell lines in the absence and presence of free and 6BIGOE-loaded PLGA NPs via plaque assays and Western blot analysis. The encapsulation of 6BIGOE in PLGA NPs resulted in reduced negative side effects on cell viability while maintaining antiviral efficacy. Both encapsulated and free 6BIGOE exhibited antiviral activity, potentially through GSK-3β inhibition and the disruption of key signaling pathways required for viral replication. The data indicate 6BIGOE, particularly after encapsulation in NPs, as a potential candidate for further investigation and development as an antiviral agent to treat IAV infections. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

Back to TopTop