Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Pleioblastus pygmaeus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 11850 KiB  
Article
Enhanced Cd Tolerance in Bamboo: Synergistic Effects of Nano-Hydroxyapatite and Fe3O4 Nanoparticles on Reactive Oxygen Species Scavenging, Cd Detoxification, and Water Balance
by Abolghassem Emamverdian, Ahlam Khalofah, Necla Pehlivan and Yang Li
Agronomy 2025, 15(2), 386; https://doi.org/10.3390/agronomy15020386 - 31 Jan 2025
Cited by 2 | Viewed by 1100
Abstract
Nano-hydroxyapatite (n-HAP) and Fe3O4 NPs (Fe3O4 NPs) offer effective and economical approaches for reducing Cd toxicity, which presents considerable risks to both environmental and human health. We examined the mechanisms through which these NPs mitigate Cd toxicity [...] Read more.
Nano-hydroxyapatite (n-HAP) and Fe3O4 NPs (Fe3O4 NPs) offer effective and economical approaches for reducing Cd toxicity, which presents considerable risks to both environmental and human health. We examined the mechanisms through which these NPs mitigate Cd toxicity in bamboo, Pleioblastus pygmaeus. The plants were exposed to Cd (0, 50, 100, and 150 mg L−1) and received foliar sprays of 100 mg L−1 n-HAP, 100 mg L−1 Fe3O4 NPs, and a combination of both treatments. The findings indicated that Cd exposure led to oxidized molecules in bamboo, as evidenced by elevated levels of reactive oxygen species (ROS) and lipoperoxidation. Foliar treatments utilizing n-HAP and Fe3O4 NPs markedly diminished these effects. H2O2, O2•−, malondialdehyde (MDA), and electrolyte leakage (EL) levels decreased by 56%, 71%, 65%, and 72%, respectively, compared to the controls. The application of n-HAP and Fe3O4 NPs significantly enhanced the enzymes, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione reductase (GR), and phenylalanine ammonia-lyase (PAL), with increases observed between 28% and 56%. Furthermore, there was an enhancement in proline accumulation, total phenolic content (TPC), flavonoids (TFC), nitric oxide levels, relative water content (RWC), chlorophyll concentration, and photosynthetic parameters. The combination of n-HAP and Fe3O4 NPs was most effective in improving bamboo tolerance to Cd, especially at moderate Cd concentrations of 50 and 80 mg L−1. The results indicate that n-HAP and Fe3O4 NPs, particularly in combination, may mitigate Cd toxicity by decreasing Cd uptake, improving antioxidant capacity, and preserving plant water balance. Full article
Show Figures

Figure 1

14 pages, 3255 KiB  
Article
Integrated Analysis of microRNAs and Transcription Factor Targets in Floral Transition of Pleioblastus pygmaeus
by Wenjing Yao, Peng Shen, Meng Yang, Qianyu Meng, Rui Zhou, Long Li and Shuyan Lin
Plants 2024, 13(21), 3033; https://doi.org/10.3390/plants13213033 - 30 Oct 2024
Cited by 2 | Viewed by 952
Abstract
Bamboo plants have erratic flowering habits with a long vegetative growth and an uncertain flowering cycle. The process of floral transition has always been one of the hot and intriguing topics in bamboo developmental biology. As master modulators of gene expression at the [...] Read more.
Bamboo plants have erratic flowering habits with a long vegetative growth and an uncertain flowering cycle. The process of floral transition has always been one of the hot and intriguing topics in bamboo developmental biology. As master modulators of gene expression at the post-transcriptional level, miRNAs play a crucial role in regulating reproductive growth, especially in floral transition of flowering plants. Pleioblastus pygmaeus is a kind of excellent ground cover ornamental bamboo species. In this study, we performed miRNA expression profiling of the shoot buds and flower buds from the bamboo species, to investigate flowering-related miRNAs in bamboo plants. A total of 179 mature miRNAs were identified from P. pygmaeus, including 120 known miRNAs and 59 novel miRNAs, of which 96 (61 known miRNAs and 35 novel miRNAs) were differentially expressed in the shoots at different growth stages. Based on target gene (TG) prediction, a total of 2099 transcription factors (TFs) were annotated to be TGs of the 96 differentially expressed miRNAs (DEMs), corresponding to 839 recordings of DEM-TF pairs. In addition, we identified 23 known DEMs involved in flowering and six known miRNAs related to floral organ development based on previous reports. Among these, there were 11 significantly differentially expressed miRNAs, with 124 TF targets corresponding to 132 DEM-TF pairs in P. pygmaeus. In particular, we focused on the identification of miR156a-SPL (SQUAMOSA Promoter-Binding protein-Like) modules in the age pathway, which are well-known to regulate the vegetative-to-reproductive phase transition in flowering plants. A total of 36 TF targets of miR156a were identified, among which there were 11 SPLs. The Dual-Luciferase transient expression assay indicated miR156a mediated the repression of the PpSPL targets in P. pygmaeus. The integrated analysis of miRNAs and TGs at genome scale in this study provides insight into the essential roles of individual miRNAs in modulating flowering transition through regulating TF targets in bamboo plants. Full article
(This article belongs to the Special Issue The Genetic Architecture of Bamboo Growth and Development)
Show Figures

Figure 1

20 pages, 3299 KiB  
Article
Responsible Mechanisms for the Restriction of Heavy Metal Toxicity in Plants via the Co-Foliar Spraying of Nanoparticles
by Abolghassem Emamverdian, Abazar Ghorbani, Yang Li, Necla Pehlivan, James Barker, Yulong Ding, Guohua Liu and Meisam Zargar
Agronomy 2023, 13(7), 1748; https://doi.org/10.3390/agronomy13071748 - 28 Jun 2023
Cited by 37 | Viewed by 4424
Abstract
Bamboo is nutritionally significant across the world because the shoots are high in calories and nutritional fiber but low in cholesterol. However, recent research has shown that bamboo shoots also contain a substantial quantity of heavy metals, including arsenic (As). Therefore, we explored [...] Read more.
Bamboo is nutritionally significant across the world because the shoots are high in calories and nutritional fiber but low in cholesterol. However, recent research has shown that bamboo shoots also contain a substantial quantity of heavy metals, including arsenic (As). Therefore, we explored whether the co-application of iron oxide nanoparticles (IONPs) and selenium nanoparticles (Se-NPs) would attenuate As toxicity in bamboo plants (Pleioblastus pygmaeus). A greenhouse experiment was performed to investigate plant responses to arsenic toxicity. Bamboo plants exposed to four levels of As (0, 10, 20, and 40 mg L−1) were foliar-sprayed with 60 mg L−1 of Se-NPs and 60 mg L−1 of IONPs alone and in combination. The data indicated that different As concentrations (10, 20, and 40 mg L−1) caused membrane damage and reactive oxide species (ROS) production in bamboo cells, characterized by H2O2, O2•−, MDA, and EL increasing by up to 47%, 54%, 57%, and 65%, respectively, in comparison with a control. The co-application of 60 mg L−1 of Se-NPs + IONP markedly improved the antioxidant enzyme activities (by 75% in SOD, 27% in POD, 52% in CAT, 37% in GR, and 38% in PAL), total flavonoid content (42%), phenolic content (36%), proline (44%), nitric oxide (59%), putrescine (Put) (85%), spermidine (Spd) (53%), relative water content (RWC) (36%), photosynthetic characteristics (27%) in net photosynthesis (Pn) (24% in the intercellular CO2 concentration (Ci), 39% in stomatal conductance (Gs), and 31% in chlorophyll pigments), and ultimately biomass indices and growth. The co-application of Se-NPs + IONPs with 10 and 20 mg L−1 of As raised the TI by 14% and 9% in the shoot and by 18% and 14% in the root, respectively. IONPs and Se-NPs reduced ROS, cell membrane lipoperoxidation, and electrolyte leakage, all contributing to the decrease in oxidative stress by limiting As uptake and translocation. In sum, Se-NPs and IONPs improved bamboo endurance, yet the most effective approach for increasing bamboo’s ability to recover from As toxicity was the concurrent use of 60 mg L−1 of Se-NPs and 60 mg L−1 of IONPs. Our IONP and Se-NP data from single and combined applications offer novel knowledge in improving the tolerance mechanism against As exposure in Pleioblastus pygmaeus. Full article
Show Figures

Figure 1

28 pages, 2788 KiB  
Article
Benzylaminopurine and Abscisic Acid Mitigates Cadmium and Copper Toxicity by Boosting Plant Growth, Antioxidant Capacity, Reducing Metal Accumulation and Translocation in Bamboo [Pleioblastus pygmaeus (Miq.)] Plants
by Abolghassem Emamverdian, Yulong Ding, Mohammed Nasser Alyemeni, James Barker, Guohua Liu, Yang Li, Farzad Mokhberdoran and Parvaiz Ahmad
Antioxidants 2022, 11(12), 2328; https://doi.org/10.3390/antiox11122328 - 24 Nov 2022
Cited by 10 | Viewed by 3171
Abstract
An in vitro experiment was conducted to determine the influence of phytohormones on the enhancement of bamboo resistance to heavy metal exposure (Cd and Cu). To this end, one-year-old bamboo plants (Pleioblastus pygmaeus (Miq.) Nakai.) contaminated by 100 µM Cd and 100 [...] Read more.
An in vitro experiment was conducted to determine the influence of phytohormones on the enhancement of bamboo resistance to heavy metal exposure (Cd and Cu). To this end, one-year-old bamboo plants (Pleioblastus pygmaeus (Miq.) Nakai.) contaminated by 100 µM Cd and 100 µM Cu both individually and in combination were treated with 10 µM, 6-benzylaminopurine and 10 µM abscisic acid. The results revealed that while 100 µM Cd and 100 µM Cu accelerated plant cell death and decreased plant growth and development, 10 µM 6-benzylaminopurine and 10 µM abscisic acid, both individually and in combination, increased plant growth by boosting antioxidant activities, non-antioxidants indices, tyrosine ammonia-lyase activity (TAL), as well as phenylalanine ammonia-lyase activity (PAL). Moreover, this combination enhanced protein thiol, total thiol, non-protein, glycine betaine (GB), the content of proline (Pro), glutathione (GSH), photosynthetic pigments (Chlorophyll and Carotenoids), fluorescence parameters, dry weight in shoot and root, as well as length of the shoot. It was then concluded that 6-benzyl amino purine and abscisic acid, both individually and in combination, enhanced plant tolerance under Cd and Cu through several key mechanisms, including increased antioxidant activity, improved photosynthesis properties, and decreased metals accumulation and metal translocation from root to shoot. Full article
(This article belongs to the Special Issue Redox Biology in Plant Growth, Defence and Metabolism)
Show Figures

Figure 1

15 pages, 1984 KiB  
Article
Genome-Wide Analysis of SQUAMOSA-Promoter-Binding Protein-like Family in Flowering Pleioblastus pygmaeus
by Wenjing Yao, Chuanzhe Li, Huajun Fu, Meng Yang, Hongyu Wu, Yulong Ding, Long Li and Shuyan Lin
Int. J. Mol. Sci. 2022, 23(22), 14035; https://doi.org/10.3390/ijms232214035 - 14 Nov 2022
Cited by 6 | Viewed by 2571
Abstract
SQUAMOSA Promoter-Binding Protein-Like (SPL) family is well-known for playing an important role in plant growth and development, specifically in the reproductive process. Bamboo plants have special reproductive characteristics with a prolonged vegetative phase and uncertain flowering time. However, the underlying functions of SPL [...] Read more.
SQUAMOSA Promoter-Binding Protein-Like (SPL) family is well-known for playing an important role in plant growth and development, specifically in the reproductive process. Bamboo plants have special reproductive characteristics with a prolonged vegetative phase and uncertain flowering time. However, the underlying functions of SPL genes in reproductive growth are undisclosed in bamboo plants. In the study, a total of 28 SPLs were screened from an ornamental dwarf bamboo species, Pleioblastus pygmaeus. Phylogenetic analysis indicates that 183 SPLs from eight plant species can be classified into nine subfamilies, and the 28 PpSPLs are distributed among eight subfamilies. Homologous analysis shows that as many as 32 pairs of homologous genes were found between P. pygmaeus and rice, and 83 pairs were found between P. pygmaeus and Moso bamboo, whose Ka/Ks values are all <1. MiRNA target prediction reveals that 13 out of the 28 PpSPLs have recognition sites complementary to miRNA156. To screen the SPLs involved in the reproductive growth of bamboo plants, the mRNA abundance of the 28 PpSPLs was profiled in the different tissues of flowering P. pygmaeus and non-flowering plants by RNA-Seq. Moreover, the relative expression level of eight PpSPLs is significantly higher in flowering P. pygmaeus than that in non-flowering plants, which was also validated by RT-qPCR. Combined with phylogenetic analysis and homologous analysis, the eight significant, differentially expressed PpSPLs were identified to be associated with the reproductive process and flower organ development. Among them, there are four potential miRNA156-targeting PpSPLs involved in the flowering process. Of significant interest in the study is the identification of 28 SPLs and the exploration of four key flowering-related SPLs from P. pygmaeus, which provides a theoretic basis for revealing the underlying functions of SPLs in the reproductive growth of bamboo plants. Full article
(This article belongs to the Special Issue Transcriptional Regulatory Networks in Flowers)
Show Figures

Figure 1

13 pages, 16756 KiB  
Article
Chloroplast Genome Variation and Phylogenetic Analyses of Seven Dwarf Ornamental Bamboo Species
by Binao Zhou, Wenjing Yao, Chunce Guo, Lili Bian, Yulong Ding and Shuyan Lin
Forests 2022, 13(10), 1671; https://doi.org/10.3390/f13101671 - 12 Oct 2022
Cited by 3 | Viewed by 2229
Abstract
Dwarf ornamental bamboos are a class of low shrub plants with minor interspecific morphological differences and are difficult to distinguish by traditional classification. In order to identify this type of bamboo species at the molecular level, we sequenced the genomes of the chloroplasts [...] Read more.
Dwarf ornamental bamboos are a class of low shrub plants with minor interspecific morphological differences and are difficult to distinguish by traditional classification. In order to identify this type of bamboo species at the molecular level, we sequenced the genomes of the chloroplasts in seven species of dwarf ornamental bamboo: Pleioblastus argenteostriatus (Regel) Nakai, Pleioblastus fortunei (Van Houtte) Nakai, Pleioblastus pygmaeus (Miq.) Nakai, Pleioblastus pygmaeus ‘Disticha’, Sasaella glabra (Nakai) Koidz., Sasaella glabra ‘Albostriata’ and Sasaella kongosanensis ‘Aureostriatus’ using high-throughput sequencing. The quadripartite structure of the chloroplast genomes is typical, with sizes ranging from 139,031 bp (P. argenteostriatus) to 139,759 bp (S. kongosanensis ‘Aureostriatus’). The genomes contain 116 genes, including four rRNA genes, 30 tRNA genes and 82 protein-coding genes. Four hotspots, including ndhI-ndhA, trnC-rpoB, petB and ccsA, and a total of 46 simple sequence repeats (SSRs) were identified as potential variable markers for species delimitation and population structure analysis. The phylogenetic analyses of chloroplast genomes of seven dwarf ornamental bamboos indicates that these bamboo species can be classified into three categories: Sasaella I, Pleioblastus II and Pleioblastus III. Except S. kongosanensis ‘Aureostriatus’, the other six species were distributed into two branches, indicating that both S.glabra and S. glabra ‘Albostriata’ belong to Pleioblastus Nakai genus. There are four mutations on the chloroplast genomes of S. glabra and S. glabra ‘Albostriata’, suggesting that the mutations may contribute to their obvious different leaf morphologies. Our study reveals the chloroplast structural variations and their phylogenetic relationship and mutation dynamics in seven dwarf ornamental bamboos and also facilitates studies on population genetics, taxonomy and interspecific identification in dwarf bamboo plants. Full article
(This article belongs to the Special Issue Population Genetic and Morphological Diversity of Woody Plants)
Show Figures

Figure 1

15 pages, 1921 KiB  
Article
Growth and Development Responses of the Rhizome-Root System in Pleioblastus pygmaeus to Light Intensity
by Weiwei Huang, Yongyan Ding, Shucong Wang, Chao Song and Fusheng Wang
Plants 2022, 11(17), 2204; https://doi.org/10.3390/plants11172204 - 25 Aug 2022
Cited by 13 | Viewed by 2805
Abstract
Light, as a primary source of energy, directly or indirectly influences virtually all morphological modifications occurring in both shoots and roots. A pot experiment was conducted to assess the growth patterns of one-year-old Pleioblastus pygmaeus plants’ rhizome-root systems and their responses to different [...] Read more.
Light, as a primary source of energy, directly or indirectly influences virtually all morphological modifications occurring in both shoots and roots. A pot experiment was conducted to assess the growth patterns of one-year-old Pleioblastus pygmaeus plants’ rhizome-root systems and their responses to different light intensities from 11 March to 26 December 2016. The experiment design scheme was 3.87% (L1), 11.25% (L2), 20.25% (L3), 38.76% (L4), 60.70% (L5), and 100% full sunlight (control CK). The results indicated that along the growing period from March to December, eight of the eleven studied parameters of the rhizome-root system showed significant variability and diverse growth patterns. In addition, light intensity is a key factor for determining P. pygmaeus plants’ rhizome and root growth. Specifically, the light intensity had a significant, positive, and linear/or almost linear impact on the number of old and new rhizomes, old rhizome length, new rhizome diameter, as well as the culm root diameter. A nonlinear and positive relationship was found between light intensity and the listed three parameters, i.e., new rhizome length, new rhizome internode length, and rhizome root length. The value of the above-mentioned three parameters significantly increased when affected from 0% to 40–60% of full sunlight and then gradually increased until 100% of full sunlight. The ratio of aboveground dry weight to underground dry weight (A/U ratio) showed a single peak curve with increasing light intensity and presented the highest value under ca. 55% full sunlight. Furthermore, 40% full sunlight (equal to an average light of 2232 lux) might be the threshold for P. pygmaeus rhizome-root system growth. When the light intensity was below 40%, the generalized additive models (GAMs) predicted value of most studied parameters decreased to lower than zero. In conclusion, current study provides a solid basis for understanding the dynamic growth and development of P. pygmaeus rhizome-root system, and its responses to different light conditions, which could be used as inputs to P. pygmaeus plant cultivation. Full article
Show Figures

Figure 1

26 pages, 2279 KiB  
Article
Co-Application of 24-Epibrassinolide and Titanium Oxide Nanoparticles Promotes Pleioblastus pygmaeus Plant Tolerance to Cu and Cd Toxicity by Increasing Antioxidant Activity and Photosynthetic Capacity and Reducing Heavy Metal Accumulation and Translocation
by Abolghassem Emamverdian, Yulong Ding, James Barker, Guohua Liu, Mirza Hasanuzzaman, Yang Li, Muthusamy Ramakrishnan and Farzad Mokhberdoran
Antioxidants 2022, 11(3), 451; https://doi.org/10.3390/antiox11030451 - 24 Feb 2022
Cited by 31 | Viewed by 3787
Abstract
The integrated application of nanoparticles and phytohormones was explored in this study as a potentially eco-friendly remediation strategy to mitigate heavy metal toxicity in a bamboo species (Pleioblastus pygmaeus) by utilizing titanium oxide nanoparticles (TiO2-NPs) and 24-epibrassinolide (EBL). Hence, [...] Read more.
The integrated application of nanoparticles and phytohormones was explored in this study as a potentially eco-friendly remediation strategy to mitigate heavy metal toxicity in a bamboo species (Pleioblastus pygmaeus) by utilizing titanium oxide nanoparticles (TiO2-NPs) and 24-epibrassinolide (EBL). Hence, an in vitro experiment was performed to evaluate the role of 100 µM TiO2 NPs and 10−8 M 24-epibrassinolide individually and in combination under 100 µM Cu and Cd in a completely randomized design using four replicates. Whereas 100 µM of Cu and Cd reduced antioxidant activity, photosynthetic capacity, plant tolerance, and ultimately plant growth, the co-application of 100 µM TiO2 NPs and 10−8 M EBL+ heavy metals (Cu and Cd) resulted in a significant increase in plant antioxidant activity (85%), nonenzymatic antioxidant activities (47%), photosynthetic pigments (43%), fluorescence parameters (68%), plant growth (39%), and plant tolerance (41%) and a significant reduction in the contents of malondialdehyde (45%), hydrogen peroxide (36%), superoxide radical (62%), and soluble protein (28%), as well as the percentage of electrolyte leakage (49%), relative to the control. Moreover, heavy metal accumulation and translocation were reduced by TiO2 NPs and EBL individually and in combination, which could improve bamboo plant tolerance. Full article
Show Figures

Figure 1

16 pages, 5614 KiB  
Article
Morphological Characteristics and Transcriptome Comparisons of the Shoot Buds from Flowering and Non-Flowering Pleioblastus pygmaeus
by Wenjing Yao, Chuanzhe Li, Shuyan Lin, Li Ren, Yawen Wan, Li Zhang and Yulong Ding
Forests 2020, 11(11), 1229; https://doi.org/10.3390/f11111229 - 23 Nov 2020
Cited by 14 | Viewed by 3507
Abstract
Bamboo plants have a distinctive life cycle with long flowering periodicity. Many species remain in vegetative growth for decades, followed by large-scale flowering and subsequent death. Floral transition is activated while shoot buds are still dormant in bamboo plants. In this study, we [...] Read more.
Bamboo plants have a distinctive life cycle with long flowering periodicity. Many species remain in vegetative growth for decades, followed by large-scale flowering and subsequent death. Floral transition is activated while shoot buds are still dormant in bamboo plants. In this study, we performed morphological characterization and transcriptome analysis of the shoot buds at different growth stages from flowering and non-flowering Pleioblastus pygmaeus. The morphological and anatomical structures of the dormant shoot buds were similar in flowering and non-flowering plants, while there was an obvious difference between the flower buds from flowering plants and the leaf buds from non-flowering plants. The transcriptomes of the dormant shoot buds, germinated shoots, and flower buds from flowering P. pygmaeus, and the dormant shoot buds, germinated shoots, and leaf buds from non-flowering P. pygmaeus were profiled and compared by RNA-Seq. The identified sequences were mostly related to metabolic synthesis, signal transmission, translation, and other functions. A total of 2434 unigenes involved in different flowering pathways were screened from transcriptome comparisons. The differentially expressed unigenes associated with the photoperiod pathway were related to circadian rhythm and plant hormone signal transduction. Moreover, the relative expression levels of a few key flowering-related genes such as CO, FT, FLC, and SOC1 were quantified by qRT-PCR, which was in accordance with RNA-Seq. The study revealed morphological differences in the shoot buds at different growth stages and screened flowering-related genes by transcriptome comparisons of the shoot buds from flowering and non-flowering P. pygmaeus, which will enrich the research on reproductive biology of bamboo plants and shed light on the molecular mechanism of the floral transition in bamboo plants. Full article
Show Figures

Figure 1

Back to TopTop