Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (171)

Search Parameters:
Keywords = Planctomycetes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8458 KiB  
Article
Exploring the Biosynthetic Potential of Microorganisms from the South China Sea Cold Seep Using Culture-Dependent and Culture-Independent Approaches
by Gang-Ao Hu, Huai-Ying Sun, Qun-Jian Yin, He Wang, Shi-Yi Liu, Bin-Gui Wang, Hong Wang, Xin Li and Bin Wei
Mar. Drugs 2025, 23(8), 313; https://doi.org/10.3390/md23080313 - 30 Jul 2025
Viewed by 268
Abstract
Cold seep ecosystems harbor unique microbial communities with potential for producing secondary metabolites. However, the metabolic potential of cold seep microorganisms in the South China Sea remains under-recognized. This study employed both culture-dependent and culture-independent approaches, including 16S rRNA amplicon sequencing and metagenomics, [...] Read more.
Cold seep ecosystems harbor unique microbial communities with potential for producing secondary metabolites. However, the metabolic potential of cold seep microorganisms in the South China Sea remains under-recognized. This study employed both culture-dependent and culture-independent approaches, including 16S rRNA amplicon sequencing and metagenomics, to investigate microbial communities and their potential for secondary metabolite production in the South China Sea cold seep. The results indicate microbial composition varied little between two non-reductive sediments but differed significantly from the reductive sediment, primarily due to Planctomycetes and Actinobacteria. Predicting the Secondary Metabolism Potential using Amplicon (PSMPA) predictions revealed 115 strains encoding more than 10 biosynthetic gene clusters (BGCs), with lower BGC abundance in reductive sediment. Culture-dependent studies showed Firmicutes as the dominant cultivable phylum, with strains from shallow samples encoding fewer BGCs. Metagenomic data confirmed distinct microbial compositions and BGC distributions across sediment types, with cold seep type having a stronger influence than geographic location. Certain BGCs showed strong correlations with sediment depth, reflecting microbial adaptation to nutrient-limited environments. This study provides a comprehensive analysis of the metabolic capabilities of South China Sea cold seep microorganisms and reveals key factors influencing their secondary metabolic potential, offering valuable insights for the efficient exploration of cold seep biological resources. Full article
(This article belongs to the Section Marine Biotechnology Related to Drug Discovery or Production)
Show Figures

Graphical abstract

27 pages, 3832 KiB  
Article
Regulation of the Microbiome in Soil Contaminated with Diesel Oil and Gasoline
by Agata Borowik, Jadwiga Wyszkowska, Magdalena Zaborowska and Jan Kucharski
Int. J. Mol. Sci. 2025, 26(13), 6491; https://doi.org/10.3390/ijms26136491 - 5 Jul 2025
Viewed by 309
Abstract
Petroleum-derived contaminants pose a significant threat to the soil microbiome. Therefore, it is essential to explore materials and techniques that can restore homeostasis in disturbed environments. The aim of the study was to assess the response of the soil microbiome to contamination with [...] Read more.
Petroleum-derived contaminants pose a significant threat to the soil microbiome. Therefore, it is essential to explore materials and techniques that can restore homeostasis in disturbed environments. The aim of the study was to assess the response of the soil microbiome to contamination with diesel oil (DO) and gasoline (G) and to determine the capacity of sorbents, vermiculite (V), dolomite (D), perlite (P) and agrobasalt (A), to enhance the activity of microorganisms under Zea mays cultivation conditions in pot experiments. The restoration and activity of the soil microbiome were evaluated based on the abundance and diversity of bacteria and fungi, using both classical microbiological methods and Next Generation Sequencing (NGS). Bioinformatic tools were employed to calculate the physicochemical properties of proteins. DO increased the abundance of cultured microorganisms, whereas G significantly reduced it. Both DO and G increased the number of ASVs of Proteobacteria and decreased the relative abundance of Gemmatimonadetes, Chloroflexi, Acidobacteria, Verrucomicrobia, Planctomycetes, and fungal OTUs. These contaminants stimulated the growth of bacteria from the genera Rhodanobacter, Sphingomonas, Burkholderia, Sphingobium, and Mycobacterium, as well as fungi belonging to the Penicillium genus. Conversely, they had a negative effect on Kaistobacter, Rhodoplanes, and Ralstonia, as well as the fungi Chaetomium, Pseudaleuria, and Mortierella. DO caused greater changes in microbial alpha diversity than G. The stability of microbial proteins was higher at 17 °C than at −1 °C. The most stable proteins were found in bacteria and fungi identified within the core soil microbiome. These organisms exhibited greater diversity and more compact RNA secondary structures. The application of sorbents to contaminated soil altered the composition of bacterial and fungal communities. All sorbents enhanced the growth of organotrophic bacteria (Org) and fungi (Fun) in DO-contaminated soils, and actinobacteria (Act) and fungi in G-contaminated soils. V and A had the most beneficial effects on cultured microorganisms. In DO-contaminated soils, all sorbents inhibited the growth of Rhodanobacter, Parvibaculum, Sphingomonas, and Burkholderia, while stimulating Salinibacterium and Penicillium. In G-contaminated but otherwise unamended soils, all sorbents negatively affected the growth of Burkholderia, Sphingomonas, Kaistobacter, Rhodoplanes, Pseudonocardia, and Ralstonia and increased the abundance of Gymnostellatospora. The results of this study provide a valuable foundation for developing effective strategies to remediate soils contaminated with petroleum-derived compounds. Full article
Show Figures

Figure 1

29 pages, 1089 KiB  
Article
Bacterial Community in Foam-Sand Filter Media in Domestic Sewage Treatment: A Case Study of Elevated Ammonium Nitrogen Content
by Ewa Dacewicz
Water 2025, 17(13), 1957; https://doi.org/10.3390/w17131957 - 30 Jun 2025
Viewed by 257
Abstract
The structure of microbial communities in sponge-sand filters, used for the treatment of real domestic sewage with elevated ammonium nitrogen concentrations (approximately 155 mg·dm−3), was characterized using 16S rRNA gene sequencing. Analyses using the Illumina technique allowed us to perform a [...] Read more.
The structure of microbial communities in sponge-sand filters, used for the treatment of real domestic sewage with elevated ammonium nitrogen concentrations (approximately 155 mg·dm−3), was characterized using 16S rRNA gene sequencing. Analyses using the Illumina technique allowed us to perform a comparison of filters by layer (two or three layers) and type of fill (waste PUR foams with 95% open porosity, sand). Proteobacteria, actinobacteria, and firmicutes were shown to be the most abundant phyla. The number and type of fill layers had a significant impact on the diversity of nitrifying bacteria. The presence of Nitrosomonas and Nitrospira was observed in every sponge fill sample, but the abundance of autotrophic nitrifiers was negligible in the two-layer filter. The conditions there proved more favorable for the growth of aerobic heterotrophic bacteria. Also in the Schmutzdecke layer, a dominance of heterotrophic nitrifiers was found. The abundance of bacteria with nitrifying activity (AOB, comammox, HNAD) in the biomass of spongy fill placed in casings was 1.7 times lower than in foams without casings. In addition, anammox bacteria (unidentified Planctomycetes), found mainly in the sponge fill and Schmutzdecke of the three-layer filters, may have been responsible for NH4+-N removal exceeding 70%. In the case of the two-layer filter, the removal of this pollutant reached 92%. Burkholderia and Sphingopyxis were identified as the predominant denitrifying bacteria. The foam-filled filter in the casings showed an increase in o_Caldilineaceae, involved in nitrate removal as non-denitrifiers. Actinomycetes Pseudonocardia and Amycolatopsis, as well as Proteobacteria Devosia, Acinetobacter, and Bdellovibrio, were found to be involved in phosphorus removal in the waste PUR foams. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

14 pages, 3015 KiB  
Article
Effect of Headstarting Eggstrands of the Endangered Houston Toad (Bufo = [Anaxyrus] houstonensis) from a Captive Assurance Colony on Native Breeding Pond Microbiomes
by Andrea Villamizar, Spandana Vemulapally, Trina Guerra, Maryanne E. Tocidlowski, Michael R. J. Forstner and Dittmar Hahn
Conservation 2025, 5(2), 25; https://doi.org/10.3390/conservation5020025 - 27 May 2025
Viewed by 1061
Abstract
The bacterial community in water from the Houston-toad captive assurance colony held at the Houston Zoo, TX, was used for comparison to the native pond bacterial composition by Ilumina-based 16S rRNA V3 amplicon sequencing. We analyzed composite sediment–water samples from native breeding ponds [...] Read more.
The bacterial community in water from the Houston-toad captive assurance colony held at the Houston Zoo, TX, was used for comparison to the native pond bacterial composition by Ilumina-based 16S rRNA V3 amplicon sequencing. We analyzed composite sediment–water samples from native breeding ponds before and after the release of eggstrands, focusing on opportunistic pathogens of the genus Mycobacterium within the phylum Actinobacteria. Proximal native breeding ponds without headstarting were analyzed for comparison. Tank-water samples from holding facilities (NACQ, Rm1, Rm3, Rm4) showed similar bacterial profiles, with sequences identifying Proteobacteria (57.8 ± 6.2% of all reads), Bacteriodetes (28.1 ± 8.9% of all reads), and Firmicutes (4.1 ± 2.0% of all reads) generally accounting for more than 90% of all reads. Actinobacteria were identified in low abundance, accounting for 1.4 ± 1.1% of all reads, with Nocardiaceae being the most prominent group (54 to 75% of reads), followed by Microbacteriaceae (6 to 12%) and Mycobacteriaceae (1 to 3%). In the pond samples, Proteobacteria remained the most prominent phylum, comprising about 30% of all reads, though other phyla such as Acidobacteria, Actinobacteria, Bacteriodetes, Chloroflexi, Cyanobacteria, Firmicutes, Planctomycetes, Verrucomicrobia, and others were also well represented, ranging from 1% to 15%, with individual phyla peaking at specific sampling times. The prevalence of Actinobacteria sequences varied widely among ponds (<1 to 11% of all reads) and over time (10% and 1%). Most mycobacteria sequences retrieved from tank water were not detected in pond water. Thus, the potential introduction of opportunistic mycobacteria pathogens with tank water from holding facilities and eggstrands via headstarting does not seem to lead to the establishment of these bacteria in natal ponds. Full article
Show Figures

Figure 1

15 pages, 1588 KiB  
Article
Bacterial Community Dynamics in Oil-Contaminated Soils in the Hyper-Arid Arava Valley
by Varsik Martirosyan, Ilan Stavi, Tirza Doniger, Itaii Applebaum, Chen Sherman, May Levi and Yosef Steinberger
Agronomy 2025, 15(5), 1198; https://doi.org/10.3390/agronomy15051198 - 15 May 2025
Cited by 1 | Viewed by 535
Abstract
Petroleum pollution has become a substantial challenge in soil ecology. The soil bacterial consortia play a major role in the biodegradation of petroleum hydrocarbons. The main objective of this study was to assess changes in bacterial composition and diversity in oil-contaminated dryland soils. [...] Read more.
Petroleum pollution has become a substantial challenge in soil ecology. The soil bacterial consortia play a major role in the biodegradation of petroleum hydrocarbons. The main objective of this study was to assess changes in bacterial composition and diversity in oil-contaminated dryland soils. The Illumina MiSeq high-throughput sequencing technique was used to study the bacterial diversity and structural change in hyper-arid oil-contaminated soil in the Arava Valley of Israel. The diversity and abundance of soil bacteria declined significantly following oil pollution. The dominant phyla in the petroleum-contaminated soils were Proteobacteria (~33% higher vs. control soil) and Patescibacteria (~2.5% higher vs. control soil), which are oil-associated and hydrocarbon-degrading bacteria. An opposite trend was found for the Actinobacteria (~8%), Chloroflexi (12%), Gemmatimonadetes (3%), and Planctomycetes (2%) phyla, with the lower abundances in contaminated soil vs. control soil. Investigation of long-term contaminated sites revealed significant genus-level taxonomic restructuring in soil bacterial communities. The most evident changes were observed in Mycobacterium, Alkanindiges, and uncultured bacterium-145, which showed marked abundance shifts between spill and control soils across decades. Particularly, hydrocarbon-degrading genera such as Pseudoxanthomonas demonstrated persistent dominance in contaminated sites. While some genera (e.g., Frigoribacterium, Leifsonia) declined over time, others—particularly Nocardioides and Streptomyces—exhibited substantial increases by 2014, suggesting potential ecological succession or adaptive selection. Minor but consistent changes were also detected in stress-tolerant genera like Blastococcus and Quadrisphaera. The effect of oil contamination on species diversity was greater at the 1975 site compared to the 2014 site. These patterns highlight the dynamic response of bacterial communities to chronic contamination, with implications for bioremediation and ecosystem recovery. The study results provide new insights into oil contamination-induced changes in soil bacterial community and may assist in designing appropriate biodegradation strategies to alleviate the impacts of oil contamination in drylands. Full article
Show Figures

Figure 1

28 pages, 8874 KiB  
Article
Presence of Coliforms and Reduced Water Quality in the Second Biggest Reservoir in São Paulo, Brazil
by Andrezza Nascimento, Lorena A. Fernandes, Carlos A. O. de Biagi, Marta A. Marcondes and Sabri Saeed Sanabani
Life 2025, 15(5), 729; https://doi.org/10.3390/life15050729 - 30 Apr 2025
Viewed by 696
Abstract
(1) Background: The Guarapiranga reservoir, located in the metropolitan region of São Paulo (RMSP), plays an important role in supplying water to the population. However, the growing urbanization in the region, which has occurred in a disorderly manner and lacks basic sanitation infrastructure, [...] Read more.
(1) Background: The Guarapiranga reservoir, located in the metropolitan region of São Paulo (RMSP), plays an important role in supplying water to the population. However, the growing urbanization in the region, which has occurred in a disorderly manner and lacks basic sanitation infrastructure, has had a detrimental impact on the reservoir’s conditions. The aim of this study was to evaluate the physicochemical parameters and detect coliforms to determine the water quality of the Guarapiranga reservoir, as well as to characterize the microbial diversity and antimicrobial-resistance genes (ARGs) present in the reservoir water. (2) Methods: Four sampling campaigns of the Guarapiranga reservoir were carried out between October 2020 and July 2022. Physicochemical analyses, and selective microbiological culture for coliforms, as well as the extraction of bacterial DNA for subsequent sequencing and search for ARGs were carried out. (3) Results: Analysis of the physicochemical results showed a progressive reduction in the quality of the reservoir’s water, and the microbiological tests consistently showed the presence of Escherichia coli, Salmonella spp., Shigella spp. and Klebisiella spp. in the water samples collected from the reservoir. Analyses of the sequencing data showed the predominant presence of the phyla Proteobacteria, Cyanobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, and 12 ARGs were detected in the reservoir. (4) Conclusions: The increase in sewage discharge, mainly due to the growth of irregular housing, has affected the quality of the water, as indicated by the physicochemical analysis and detection of coliforms and ARGs. Full article
(This article belongs to the Collection Bacterial Infections, Treatment and Antibiotic Resistance)
Show Figures

Figure 1

18 pages, 6751 KiB  
Article
Effects of Deep Application of Fertilizer on Soil Carbon and Nitrogen Functions in Rice Paddies
by Qi-Huan Xie, Xiang-Bin Yao, Ya Yang, De-Jin Li and Jian-Ying Qi
Agronomy 2025, 15(4), 938; https://doi.org/10.3390/agronomy15040938 - 11 Apr 2025
Viewed by 605
Abstract
Efficient fertilization is vital for rice production and sustainable agriculture. Conventional fertilization (CK) suffers from low efficiency and environmental pollution, whereas side-deep fertilization (SF) offers an efficient, eco-friendly alternative. The changes in microbial carbon cycling functional genes induced by SF in paddy soils [...] Read more.
Efficient fertilization is vital for rice production and sustainable agriculture. Conventional fertilization (CK) suffers from low efficiency and environmental pollution, whereas side-deep fertilization (SF) offers an efficient, eco-friendly alternative. The changes in microbial carbon cycling functional genes induced by SF in paddy soils remain unclear. This study investigates the effects of SF and CK on soil organic carbon (SOC), total nitrogen (TN), microbial communities, and carbon- and nitrogen-cycling genes in double-cropping rice paddies through field experiments. Results reveal that SF significantly increases TN in deeper soil layers (10–20 cm), enhancing the expression of nitrogen fixation genes (e.g., K02591 and K02588) and nitrogen metabolism pathways, alongside boosting Chloroflexi and Planctomycetes abundance. In contrast, CK promotes SOC accumulation and upregulates carbon metabolism genes (e.g., K01179 and K01728) in surface layers (0–10 cm). In deeper layers, SF elevates nitrogen reduction gene abundance (e.g., K02591) while suppressing denitrification and assimilatory nitrate reduction, whereas CK enhances dissimilatory nitrate reduction (e.g., K02568). Redundancy analysis (RDA) shows that soil properties (pH, SOC, and TN) drive microbial community structure, with Actinobacteria positively linked to SOC and TN. These findings demonstrate that SF optimizes nitrogen cycling in deeper soil by improving nitrogen use efficiency and functional microbial growth, while CK favors shallow-layer carbon sequestration. This study provides a scientific foundation for tailoring fertilization strategies to soil depth, leveraging carbon- and nitrogen-cycling gene dynamics to enhance soil fertility and sustainability in rice production. Full article
Show Figures

Figure 1

22 pages, 10215 KiB  
Article
Differences in Microbial Community Structure Determine the Functional Specialization of Gut Segments of Ligia exotica
by Zhao-Zhe Xin, Ke Ma, Yu-Zan Che, Ji-Lei Dong, Ya-Li Xu, Xin-Tong Zhang, Xi-Ye Li and Jin-Yong Zhang
Microorganisms 2025, 13(4), 808; https://doi.org/10.3390/microorganisms13040808 - 2 Apr 2025
Viewed by 661
Abstract
Ligia feed on seashore algae and remove organic debris from the coastal zone, thereby playing an important role in the intertidal ecosystem. Nevertheless, the specific roles of distinct gut segments in the gut transit remain unclear. We collected and identified Ligia exotica specimens [...] Read more.
Ligia feed on seashore algae and remove organic debris from the coastal zone, thereby playing an important role in the intertidal ecosystem. Nevertheless, the specific roles of distinct gut segments in the gut transit remain unclear. We collected and identified Ligia exotica specimens in the coast of Aoshanwei, Qingdao, Shandong Province, and analyzed their foreguts and hindguts for 16S rRNA, metagenomics, metabolomics, and proteomics. The concentrations of common metabolites, NO3-N and NH4+-N, and the contents of C and N were measured. The gut transit decreased the abundances of the dominant phyla Cyanobacteria but increased Proteobacteria, Firmicutes, and Actinobacteria, and Planctomycetes and Bacteroidetes remained relatively constant. The foregut gut microbiota is involved in the carbohydrates and amino acids metabolism, as well as the decomposition of polysaccharides. The hindgut gut microbiota performs a variety of functions, including carbohydrate and amino acid metabolism, fermentation, cell motility, intracellular transport, secretion, and vesicular translocation, and the decomposition of polysaccharides, disaccharides, and oligosaccharides. The results of omics analyses and molecular experiments demonstrated that the metabolic processes involving amino acids and carbohydrates are more active in the foregut, whereas the fermentation, absorption, and assimilation processes are more active in the hindgut. Taken together, the differences in microbial community structure determine the functional specialization of different gut segments, i.e., the foregut appears to be the primary site for digesting food, while the hindgut further processes and absorbs nutrients and then excretes them. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

15 pages, 2372 KiB  
Article
Microbiome of the Soil and Rhizosphere of the Halophyte Spergularia marina (L.) Griseb in the Saline Sites of Lake Kurgi, the South Urals: Metagenomic Analysis
by Anastasia S. Tugbaeva, Alexander A. Ermoshin, Gregory I. Shiryaev and Irina S. Kiseleva
Microbiol. Res. 2025, 16(3), 64; https://doi.org/10.3390/microbiolres16030064 - 10 Mar 2025
Viewed by 1076
Abstract
The study of the metagenomes of bacterial communities in saline areas is relevant in connection with the global salinization of agricultural lands. The aim of this study was to investigate the biodiversity and structure of rhizobacterial communities associated with the halophyte S. marina [...] Read more.
The study of the metagenomes of bacterial communities in saline areas is relevant in connection with the global salinization of agricultural lands. The aim of this study was to investigate the biodiversity and structure of rhizobacterial communities associated with the halophyte S. marina from low and moderate sulfate–chloride salinity habitats. The bacterial community of bulk and rhizosphere soil was analyzed using high-throughput sequencing of the V1–V9 region of 16S rRNA by Oxford Nanopore Technologies. Alpha and beta diversity indices were calculated. A total of 55 phyla and 309 genera of bacteria were identified, among which Proteobacteria and Bacteroidetes dominated. The occurrence of Planctomycetes, Verrucomicrobia, and Acidobacteria in the rhizosphere was higher than in the bulk soil. Bacterial alpha diversity in the bulk soil decreased with increasing salinity, while it increased in the rhizosphere. The proportion of the halotolerant bacteria of Flavobacterium and Alteromonas genera significantly grew with increasing salinity both in the bulk and rhizosphere soil. In addition, in the rhizosphere, the percentage of Comamonas, Methylibium, Lysobacter, Planctomyces, Sphingomonas, Stenotrophomonas, and Lewinella genera increased. Among them, several genera included plant growth promoting rhizobacteria (PGPR). In the more saline bulk soil, the proportion of halotolerant genera Bacillus, Salinimicrobium, Marinobacter, Clostridium, Euzebya, KSA1, Marinobacter, Clostridium, Salinimicrobium, and Halorhodospira was also higher compared to the low saline site. Thus, increasing the salinity changed the taxonomic structure of the bacterial communities of both bulk soil and rhizosphere. Full article
Show Figures

Figure 1

16 pages, 1100 KiB  
Article
The Influence of Planting Method and Short-Term Organic Amendments on Rhizosphere Microbial Communities in Paddies: Preliminary Results
by Ziqi Liu, Zhiqiang Tang, Lili Wang, Li Wen, Yi Liang, Changhua Wang and Hui Wang
Agronomy 2025, 15(3), 540; https://doi.org/10.3390/agronomy15030540 - 23 Feb 2025
Viewed by 569
Abstract
This study assessed the impact of planting techniques and short-term organic additions on soil quality, enzyme activity, and bacterial community composition. Biochar (BC) amendment substantially enhanced the ACE, Chao 1, and Shannon indices in direct-seeded rice (DS). Principal coordinate analysis (PCoA) and dissimilarity [...] Read more.
This study assessed the impact of planting techniques and short-term organic additions on soil quality, enzyme activity, and bacterial community composition. Biochar (BC) amendment substantially enhanced the ACE, Chao 1, and Shannon indices in direct-seeded rice (DS). Principal coordinate analysis (PCoA) and dissimilarity distances confirmed significant differences in the rhizosphere bacterial community composition associated with planting methods and organic applications. At the phylum level, transplanting (TT) significantly increased the abundance of Proteobacteria, Planctomycetes, Bacteroidetes, Firmicutes, and Verrucomicrobia, whereas DS significantly reduced the abundance of Acidobacteria, Chloroflexi, Actinobacteria, Gemmatimonadetes, and WPS-2. Rice straw (RS) application was associated with increased Proteobacteria, Acidobacteria, Chloroflexi, and Gammaproteobacteria, while BC application improved Bacteroidetes, Firmicutes, and Verrucomicrobia. Planting methods and organic amendments were also observed to affect soil enzyme activities and physicochemical properties. DS was associated with an increase in microbial biomass nitrogen (MBN) and carbon (MBC), cellulase activities (CA), total phosphorus (TP), available nitrogen (AN), and available potassium (AK), while TT significantly increased urease activities (UA). Compared to BC and the control (CK), RS significantly increased CA, AN, and available phosphorus (AP). RDA ordination plots were used to examine the interactions between soil bacterial communities and soil physicochemical properties; planting techniques and organic additions had different effects on soil bacterial communities. Compared to RS and CK, BC enhanced MBN, MBC, UA, and AK. According to Pearson’s correlation analysis, Chloroflexi levels were positively associated with those of organic carbon (OC), MBN, and MBC. OC, TP, MBN, and CA positively correlated with gemmatimonadetes. In conclusion, these data reveal that planting practices and short-term organic inputs alter soil’s physicochemical parameters, enzyme activity, and microbial community composition. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

15 pages, 6152 KiB  
Article
The Effects of Biomass Materials and Nitrogen Application on the Composition of the Microbial Community in Moderately Saline Soils
by Chunyan Yin, Hu Liu, Ju Zhao, Liang Feng, Shuchun Guo, Yu Li and Xiaoqi Li
Agronomy 2025, 15(1), 114; https://doi.org/10.3390/agronomy15010114 - 4 Jan 2025
Viewed by 1181
Abstract
[Objective] Soil microorganisms are the most active parts in soil and are sensitive to soil additives. This study aimed to clarify the impacts of the addition of biomass materials (corn straw and biochar) and nitrogen application on the compositions of the soil microbial [...] Read more.
[Objective] Soil microorganisms are the most active parts in soil and are sensitive to soil additives. This study aimed to clarify the impacts of the addition of biomass materials (corn straw and biochar) and nitrogen application on the compositions of the soil microbial community in moderately saline soils (salt content was 0.4%). [Method] Indoor constant-temperature cultivation experiments were conducted to study the effects of biomass materials and nitrogen application on the microbial diversity and community structure in moderately saline soils. This experiment had a two-way factorial design, with the biomass materials and nitrogen application rates as the treatments. The biomass materials included no addition of biomass materials as a control (C0), corn straw (C1, 0.64 g/pot), and biochar (C2, 0.85 g/pot), and the nitrogen application rates included 0 g N (N0), 0.015 g N (N1), and 0.03 g N (N2). There were nine treatments, as follows: C0N0, C0N1, C0N2, C1N0, C1N1, C1N2, C2N0, C2N1, and C2N2. [Results] (1) The different biomass materials and nitrogen application levels significantly influenced the α-diversity and composition of the bacterial community. At the initial stage of cultivation, the soil bacterial diversity was relatively high, and it significantly decreased after 35 days of cultivation. Moreover, the improvement of the bacterial community structure by the biochar treatment was better than that of corn straw. After 35 days of cultivation, the relative abundance of Actinobacteria, Bacteroidetes, and Firmicutes in the soil significantly increased, while the relative abundance of Gemmatimonadete, Chloroflexi, Acidobacteria, Planctomycetes, and Patescibacteria significantly decreased. Ammonium nitrogen, nitrate nitrogen, and nitrate reductase were the main environmental factors affecting the bacterial community. (2) The different biomass materials and nitrogen treatments significantly affected the richness of the fungal communities. The fungal richness index significantly increased after adding the corn straw and biochar treatments, and the addition of corn straw promoted an increase in the beneficial bacterial abundance in the moderately saline soil. Soil nitrate reductase and ammonium nitrogen were the main environmental factors affecting the fungal community. [Conclusions] In summary, biomass materials and nitrogen application can effectively increase the diversity of soil microbial communities and optimize the structure of microbial communities, thereby ameliorating the ecosystem health of moderately saline soil. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

16 pages, 7312 KiB  
Article
Spatial Distribution and Driving Factors of Nitrogen Cycle Genes in Urban Landscape Lake
by Hua Zhong, Peng Li, Xin Xu, Maoting Ma, Chengjun Zhang, Lianfeng Du and Xuan Guo
Sustainability 2025, 17(1), 186; https://doi.org/10.3390/su17010186 - 30 Dec 2024
Cited by 1 | Viewed by 999
Abstract
Urban landscape lakes are increasingly at risk of nitrogen-induced eutrophication. Microbial nitrogen transformation plays a crucial role in reducing nitrogen levels in these lakes. However, the relationships between microbial communities, nitrogen functional genes, and nitrogen dynamics in water and sediment, along with their [...] Read more.
Urban landscape lakes are increasingly at risk of nitrogen-induced eutrophication. Microbial nitrogen transformation plays a crucial role in reducing nitrogen levels in these lakes. However, the relationships between microbial communities, nitrogen functional genes, and nitrogen dynamics in water and sediment, along with their underlying mechanisms, remain unclear. In this study, we systemically investigated the spatial distributions of physicochemical indicators in the overlying water and sediment in a typical urban landscape lake, Zizhuyuan Park, and the microbial communities and nitrogen cycling genes in the surface sediments of the lake connection (CO), side (SI), and center (CE) were evaluated via macrogenetic sequencing technology to analyze their relationships with environmental factors. The results revealed that the concentrations of TN, NO3, and NH4+ in the lake water were within the ranges of 1.36~2.84, 0.98~1.92, and 0.01~0.29 mg·L−1, respectively. The concentrations of TN, NO3, and NH4+ in the sediments ranged from 1.17~3.47 g·kg−1, 0.88~1.94 mg·kg−1, and 5.61~10.09 mg·kg−1, respectively. The contents of NH4+ in water, TN and NO3 in sediments were significantly different in spatial distribution (p < 0.05). At the CE site, the Shannon diversity index was the highest and differed significantly from the values at the SI and CO sites (p < 0.01).The sediments of Central Lake contained a total of 36 phyla and 1303 genera of microorganisms. Proteobacteria (62.88–64.83%) and Actinobacteria (24.84–26.62%) accounted for more than 85% of the microorganisms. Nitrospirae, Ignavibacteriae, and Bacteroidetes were significantly different (p < 0.05) at the CE, and Planctomycetes were significantly different (p < 0.05) at the CO. The functional gene nrfA exhibited the highest abundance, followed by napA, nosZ, nirS, hao, ureC, norB, nifH, nirK, hdhA, nifB, and amoA. The abundances of hao and nifH differed significantly at various locations in Central Lake (p < 0.05). The key nitrogen transformation processes in the sediments, ranked by contribution rate, were DNRA, denitrification, nitrification, ammoniation, nitrogen fixation, and anammox. The six nitrogen processes showed significant differences (p < 0.01) in spatial distribution. The pH, TN, NO3, NH4+, C/N ratio of the sediment, and NH4+ in the lake water impact the microbial community and nitrogen conversion process. The sediment should be cleaned regularly, and the water cycle should be strengthened in urban landscape lakes to regulate microorganisms and genes and ultimately reduce nitrogen and control eutrophic water. This study can provide a reference for improving and managing lake water environments in urban landscapes. Full article
Show Figures

Figure 1

11 pages, 1606 KiB  
Communication
Genetic Background and Phenotypic Aspects of Light-Induced Carotenoid Biosynthesis in Isosphaeraceae Planctomycetes
by Anastasia A. Ivanova, Igor Y. Oshkin, Aleksandr A. Ashikhmin, Olga V. Danilova and Svetlana N. Dedysh
Microbiol. Res. 2025, 16(1), 5; https://doi.org/10.3390/microbiolres16010005 - 29 Dec 2024
Cited by 1 | Viewed by 922
Abstract
Nearly half of the currently described planctomycetes display pink, red, or orange pigmentation. Until recently, however, carotenoid biosynthesis in these bacteria remained largely unexplored. We examined the carotenogenesis and its genetic background in a novel planctomycete of the family Isosphaeraceae, Singulisphaera sp. [...] Read more.
Nearly half of the currently described planctomycetes display pink, red, or orange pigmentation. Until recently, however, carotenoid biosynthesis in these bacteria remained largely unexplored. We examined the carotenogenesis and its genetic background in a novel planctomycete of the family Isosphaeraceae, Singulisphaera sp. Ch08. This bacterium changed its color from white to pink when exposed to light during cultivation. Major components of the pigment extract from strain Ch08 were derivatives of the C30 carotenoid 4,4′-diapolycopene. The genes involved in the carotenoid biosynthetic pathways of strain Ch08, a non-pigmented planctomycete Singulisphaera acidiphila MOB10T, and all described Isosphaeraceae members with determined genome sequences were analyzed. The biosynthesis of C30 carotenoids via squalene, as evidenced by the presence of hpnCDE and crtNPQO gene clusters, was encoded in genomes of all pigmented Singulisphaera, Aquisphaera, and Paludisphaera species. Non-pigmented Singulisphaera acidiphila MOB10T and Tautonia sociabilis GM2012T lacked full sets of genes required for carotenoid biosynthesis. Isosphaera pallida IS1BT and pigmented Tautonia species possessed crtB and crtI genes, enabling production of C40 carotenoids, but the key genes associated with C30 carotenoid biosynthesis were absent. Notably, some Isosphaeraceae genomes, including that of Singulisphaera sp. Ch08, harbor the putative carH gene, which is involved in B12-dependent photoregulation of carotenogenesis. Full article
Show Figures

Figure 1

14 pages, 2028 KiB  
Article
Effects of Chinese Fir Retention Density on Soil Bacterial Community Structure in Chinese Fir and Betula luminifera Mixed Forests Plantations in China
by Meiman Zhang, Zhibing Wan, Wenhui Gao and Ye Zhang
Forests 2024, 15(12), 2107; https://doi.org/10.3390/f15122107 - 28 Nov 2024
Cited by 1 | Viewed by 990
Abstract
Mixed broad-leaved trees are particularly effective in addressing ecological issues such as soil degradation and biodiversity loss caused by the dense planting of Chinese fir. Understanding the changes in soil bacterial communities in fir–broadleaf mixed forests as a function of fir retention density [...] Read more.
Mixed broad-leaved trees are particularly effective in addressing ecological issues such as soil degradation and biodiversity loss caused by the dense planting of Chinese fir. Understanding the changes in soil bacterial communities in fir–broadleaf mixed forests as a function of fir retention density may offer new insights for optimizing management practices and enhancing the ecological functions of the underground components of forest ecosystems. In this study, the diversity and composition of soil bacterial communities in mixed Cunninghamia lanceolata and Betula luminifera forests (CFBFs) with diverse retention densities of Chinese fir (1250, 1560, and 1690 trees/hm2) were analyzed. The results suggested that the soil characteristics and microbial communities’ diversity and structure are significantly influenced by the retention densities of Chinese fir in CFBFs. At the aggregate scale, the CFBFs with a retention density of 1560 trees/hm2 presented the greatest soil bacterial community diversity (based on the Chao 1 (3562.75) and Shannon indices (6.58)), and the diversity and richness of soil bacteria initially increase and then decrease as the retention density decreases. In CFBFs, regardless of the retention density, bacterial communities in soil were mainly composed of Acidobacteria, Proteobacteria, and Planctomycetes. The relative abundance of soil Acidobacteria first elevated and afterwards decreased as the retention density decreased, with the highest levels (47.15%) observed in the stand with 1560 trees/hm2 of Chinese fir. The Principal Coordinates Analysis (PCoA) showed that the soil microbial community structure in CFBEs with a retention density of 1560 trees/hm2 is significantly different from CFBEs with a retention density of 1260, and 1690 trees/hm2. Moreover, with different retention densities of Chinese fir, soil organic C, total N concentrations, and soil pH also significantly affected the diversity and composition of CFBF soil bacterial communities. Our results show that the choice of retention densities significantly influences soil microbial diversity and composition in CFBFs. Optimal retention densities (1560 trees/hm2) of Chinese fir in CFBFs can maximize bacterial diversity and stability, providing management guidance for thinning for sustainable management of the soil microenvironment of CFBFs. Full article
Show Figures

Figure 1

19 pages, 2769 KiB  
Article
The Effects of Model Insoluble Copper Compounds in a Sedimentary Environment on Denitrifying Anaerobic Methane Oxidation (DAMO) Enrichment
by Longfei Xia, Yong Wang, Peiru Yao, Hodon Ryu, Zhengzhong Dong, Chen Tan, Shihai Deng, Hongjian Liao and Yaohuan Gao
Microorganisms 2024, 12(11), 2259; https://doi.org/10.3390/microorganisms12112259 - 7 Nov 2024
Cited by 1 | Viewed by 1432
Abstract
The contribution of denitrifying anaerobic methane oxidation (DAMO) as a methane sink across different habitats, especially those affected by anthropogenic activities, remains unclear. Mining and industrial and domestic use of metals/metal-containing compounds can all cause metal contamination in freshwater ecosystems. Precipitation of metal [...] Read more.
The contribution of denitrifying anaerobic methane oxidation (DAMO) as a methane sink across different habitats, especially those affected by anthropogenic activities, remains unclear. Mining and industrial and domestic use of metals/metal-containing compounds can all cause metal contamination in freshwater ecosystems. Precipitation of metal ions often limits their toxicity to local microorganisms, yet microbial activity may also cause the redissolution of various precipitates. In contrast to most other studies that apply soluble metal compounds, this study investigated the responses of enriched DAMO culture to model insoluble copper compounds, malachite and covellite, in simulated sedimentary environments. Copper ≤ 0.22 µm from covellite appeared to cause immediate inhibition in 10 h. Long-term tests (54 days) showed that apparent methane consumption was less impacted by various levels of malachite and covellite than soluble copper. However, the medium-/high-level malachite and covellite caused a 46.6–77.4% decline in denitrification and also induced significant death of the representative DAMO microorganisms. Some enriched species, such as Methylobacter tundripaludum, may have conducted DAMO or they may have oxidized methane aerobically using oxygen released by DAMO bacteria. Quantitative polymerase chain reaction analysis suggests that Candidatus Methanoperedens spp. were less affected by covellite as compared to malachite while Candidatus Methylomirabilis spp. responded similarly to the two compounds. Under the stress induced by copper, DAMO archaea, Planctomycetes spp. or Phenylobacterium spp. synthesized PHA/PHB-like compounds, rendering incomplete methane oxidation. Overall, the findings suggest that while DAMO activity may persist in ecosystems previously exposed to copper pollution, long-term methane abatement capability may be impaired due to a shift of the microbial community or the inhibition of representative DAMO microorganisms. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

Back to TopTop