Effect of Headstarting Eggstrands of the Endangered Houston Toad (Bufo = [Anaxyrus] houstonensis) from a Captive Assurance Colony on Native Breeding Pond Microbiomes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blaustein, A.R.; Urbina, J.; Snyder, P.W.; Reynolds, E.; Dang, T.; Hoverman, J.T.; Han, B.; Olson, D.H.; Searle, C.; Hambalek, N.M. Effects of emerging infectious diseases on amphibians: A review of experimental studies. Diversity 2018, 10, 81. [Google Scholar] [CrossRef]
- Bucciarelli, G.M.; Blaustein, A.R.; Garcia, T.S.; Kats, L.B. Invasion complexities: The diverse impacts of nonnative species on amphibians. Copeia 2014, 4, 611–632. [Google Scholar] [CrossRef]
- Hermann, C.; Gilbreath, H. Revised recovery plan for the Houston toad (Anaxyrus [Bufo] houstonensis). In Species Profile for Houston Toad (Bufo houstonensis); U.S. Fish and Wildlife Service: Albuquerque, NM, USA, 2022; pp. 1–78. [Google Scholar]
- Tornabene, B.J.; Blaustein, A.R.; Briggs, C.J.; Calhoun, D.M.; Johnson, P.T.J.; McDevitt-Galles, T.; Rohr, J.R.; Hoverman, J.T. The influence of landscape and environmental factors on ranavirus epidemiology in a California amphibian assemblage. Freshw. Biol. 2018, 63, 639–651. [Google Scholar] [CrossRef]
- Klaus, J.M.; Noss, R.F. Specialist and generalist amphibians respond to wetland restoration treatments. J. Wildl. Manag. 2016, 80, 1106–1119. [Google Scholar] [CrossRef]
- Duarte, A.; Brown, D.J.; Forstner, M.R.J. Documenting extinction in real time: Decline of the Houston toad on a primary recovery site. J. Fish. Wildl. Manag. 2014, 5, 363–371. [Google Scholar] [CrossRef]
- Brannelly, L.A.; Sharma, P.; Wallace, D.K. Captive breeding in the endangered alpine tree frog, Litoria verreauxii alpina. Peerj 2023, 11, e15179. [Google Scholar] [CrossRef]
- Clulow, J.; Trudeau, V.L.; Kouba, A.J. Amphibian Declines in the Twenty-First Century: Why We Need Assisted Reproductive Technologies. Adv. Exp. Med. Biol. 2014, 753, 275–316. [Google Scholar] [CrossRef]
- Silla, A.J.; Byrne, P.G. The role of reproductive technologies in amphibian conservation breeding programs. Annu. Rev. Anim. Biosci. 2019, 7, 499–519. [Google Scholar] [CrossRef]
- Forstner, M.R.J.; Crump, P. Houston toad population supplementation in Texas, USA. In Global Re-Introduction Perspectives; Soorae, P.S., Ed.; IUCN/SSC Re-introduction Specialist Group & Abu Dhabi Environmental Agency: Gland, Switzerland, 2011; pp. 71–76. [Google Scholar]
- Fratzke, A.; Howard, L.L.; Tocidlowski, M.E.; Armien, A.; Oliveira, F.; Ritchie, B.; Berlin, E.; Snook, E. Chlamydia pneumoniae Polioencephalomyelitis and Ganglionitis in Captive Houston Toads (Anaxyrus houstonensis). Vet. Pathol. 2019, 56, 789–793. [Google Scholar] [CrossRef]
- Browne, R.K.; Luo, Q.; Wang, P.; Mansour, N.; Kaurova, S.A.; Gakhova, E.N.; Shishova, N.V.; Uteshev, V.K.; Kramarova, L.I.; Venu, G.; et al. Ecological civilisation and amphibian sustainability through reproduction biotechnologies, biobanking, and conservation breeding programs (RBCs). Animals 2024, 14, 1455. [Google Scholar] [CrossRef]
- Calatayud, N.E.; Jacobs, L.E.; Williams, C.L.; Steiner, C.C.; Shier, D.M. Recovering an endangered frog species through integrative reproductive technologies. Theriogenology 2022, 191, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.; Fonseca, L.D.; Afonso, A.M.; da Silva, M.G.; Saad, M.H.; Lilenbaum, W. A report of mycobacteriosis caused by Mycobacterium marinum in bullfrogs (Rana catesbeiana). Vet. J. 2006, 171, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Martinho, F.; Heatley, J.J. Amphibian mycobacteriosis. Vet. Clin. North. Am. Exot. Anim. Pr. 2012, 15, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Morgado, J.M.; Gallagher, A.; Johnson, L.K. Mycobacterium gordonae infection in a colony of African clawed frogs (Xenopus tropicalis). Lab. Anim. 2009, 43, 300–303. [Google Scholar] [CrossRef]
- Pessier, A.P. An overview of amphibian skin disease. Semin. Avian Exot. Pet. 2002, 11, 162–174. [Google Scholar] [CrossRef]
- Vemulapally, S.; Villamizar, A.; Guerra, T.; Tocidlowski, M.E.; Spradley, M.; Mays, S.; Forstner, M.R.J.; Hahn, D. Mycobacteria in skin lesions and the habitat of the endangered Houston Toad (Anaxyrus houstonensis). J. Wildl. Dis. 2021, 57, 503–514. [Google Scholar] [CrossRef]
- Samant, S.; Sha, Q.; Iyer, A.; Dhabekar, P.; Hahn, D. Quantification of Frankia in soils using SYBR Green based qPCR. Syst. Appl. Microbiol. 2012, 35, 191–197. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M.; et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. Isme J. 2012, 6, 1621–1624. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Jansson, J.K.; Knight, R. The Earth Microbiome project: Successes and aspirations. BMC Biol. 2014, 12, 69. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; p. 571. [Google Scholar]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Pearson, W.R.; Lipman, D.J. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 1988, 85, 2444–2448. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The Neighbor-joining Method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef]
- Hasegawa, M.; Kishino, H.; Yano, T. Dating of human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 1985, 22, 160–174. [Google Scholar] [CrossRef]
- Tavaré, S. Some probabilistic and statistical problems in the analysis of DNA sequences. Am. Math. Soc. Lect. Math. Life Sci. 1986, 17, 57–86. [Google Scholar]
- Felsenstein, J. Confidence limits of phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Schulzerobbecke, R. Mycobacteria in the Environment. Immun. Infekt. 1993, 21, 126–131. [Google Scholar]
- Schulzerobbecke, R.; Janning, B.; Fischeder, R. Occurrence of Mycobacteria in biofilm samples. Tuber. Lung Dis. 1992, 73, 141–144. [Google Scholar] [CrossRef]
- Dovriki, E.; Gerogianni, I.; Petinaki, E.; Hadjichristodoulou, C.; Papaioannou, A.; Gourgoulianis, K. Isolation and identification of nontuberculous mycobacteria from hospitalized patients and drinking water samples-examination of their correlation by chemometrics. Environ. Monit. Assess. 2016, 188, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Modra, H.; Bartos, M.; Hribova, P.; Ulmann, V.; Hubelova, D.; Konecny, O.; Gersl, M.; Kudelka, J.; Voros, D.; Pavlik, I. Detection of mycobacteria in the environment of the Moravian Karst (Bull Rock Cave and the relevant water catchment area): The impact of water sediment, earthworm castings and bat guano. Vet. Med Czech 2017, 62, 153–168. [Google Scholar] [CrossRef]
- Peeters, C.; Depoorter, E.; Praet, J.; Vandamme, P. Extensive cultivation of soil and water samples yields various pathogens in patients with cystic fibrosis but not Burkholderia multivorans. J. Cyst. Fibros. 2016, 15, 769–775. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Fischeder, R.; Schulzerobbecke, R.; Weber, A. Occurrence of Mycobacteria in drinking-water samples. Zbl Hyg. Umweltmed. 1991, 192, 154–158. [Google Scholar]
- Hruska, K.; Kaevska, M. Mycobacteria in water, soil, plants and air: A review. Vet. Med. Czech 2012, 57, 623–679. [Google Scholar] [CrossRef]
- Roguet, A.; Therial, C.; Saad, M.; Boudahmane, L.; Moulin, L.; Lucas, F.S. High mycobacterial diversity in recreational lakes. Antonie Leeuwenhoek 2016, 109, 619–631. [Google Scholar] [CrossRef] [PubMed]
- Villamizar, A.; Vemulapally, S.; Guerra, T.; Tocidlowski, M.E.; Forstner, M.R.J.; Hahn, D. Quantification of members of the Mycobacterium chelonae-abscessus complex in lesions of the endangered Houston toad (Anaxyrus houstonensis). Syst. Appl. Microbiol. 2022, 45, 126342. [Google Scholar] [CrossRef] [PubMed]
- Nishiuchi, Y.; Iwamoto, T.; Maruyama, F. Infection sources of a common non-tuberculous mycobacterial pathogen, Mycobacterium avium complex. Front Med. (Lausanne) 2017, 4, 27. [Google Scholar] [CrossRef]
- Feazel, L.M.; Baumgartner, L.K.; Peterson, K.L.; Frank, D.N.; Harris, J.K.; Pace, N.R. Opportunistic pathogens enriched in showerhead biofilms. Proc. Natl. Acad. Sci. USA 2009, 106, 16393–16399. [Google Scholar] [CrossRef]
- Gomez-Smith, C.K.; LaPara, T.M.; Hozalski, R.M. Sulfate reducing bacteria and Mycobacteria dominate the biofilm communities in a chloraminated drinking water distribution system. Environ. Sci. Technol. 2015, 49, 8432–8440. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Hu, G.; Qiu, L.; Meng, S.; Wu, W.; Zheng, Y.; Song, C.; Li, D.; Chen, J. Variations in bacterioplankton communities in aquaculture ponds and the influencing factors during the peak period of culture. Environ. Pollut. 2020, 258, 113656. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.Y.; Ham, J.H. Comparative analysis of the microbial community in the sediments of two constructed wetlands differentially influenced by the concentrated poultry feeding operations. J. Soils Sediments 2017, 17, 557–566. [Google Scholar] [CrossRef]
- Mania, I.; Gorra, R.; Colombo, N.; Freppaz, M.; Martin, M.; Anesio, A.M. Prokaryotic diversity and distribution in different habitats of an alpine rock glacier-pond system. Microb. Ecol. 2019, 78, 70–84. [Google Scholar] [CrossRef]
- Barrows, M.; Koeppel, K.; Michel, A.; Mitchell, E. Mycobacterial arthritis and synovitis in Painted reed frogs (Hyperolius marmoratus). J. Comp. Pathol. 2017, 156, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Green, S.L.; Lifland, B.D.; Bouley, D.M.; Brown, B.A.; Wallace, R.J.; Ferrell, J.E. Disease attributed to Mycobacterium chelonae in South African clawed frogs (Xenopus laevis). Comp. Med. 2000, 50, 675–679. [Google Scholar]
- Haridy, M.; Tachikawal, Y.; Yoshida, S.; Tsuyuguchi, K.; Tomita, M.; Maeda, S.; Wada, T.; Ibi, K.; Sakai, H.; Yanai, T. Mycobacterium marinum infection in Japanese forest green tree frogs (Rhacophorus arboreus). J. Comp. Pathol. 2014, 151, 277–289. [Google Scholar] [CrossRef]
- Gcebe, N.; Michel, A.L.; Hlokwe, T.M. Non-tuberculous Mycobacterium species causing mycobacteriosis in farmed aquatic animals of South Africa. Bmc Microbiol. 2018, 18, 1–11. [Google Scholar] [CrossRef]
- Dong, W.; Zhang, X.; Yang, C.; An, J.; Qin, J.; Song, F.; Zeng, W. Iridovirus Infection in Chinese Giant Salamanders, China, 2010. Emerg. Infect. Dis. 2011, 17, 2388–2389. [Google Scholar] [CrossRef]
- Chen, Z.; Gui, J.; Gao, X.; Pei, C.; Hong, Y.; Zhang, Q. Genome architecture changes and major gene variations of Andrias davidianus ranavirus (ADRV). Vet Res. 2013, 44, 101. [Google Scholar] [CrossRef]
- Lisachova, L.S.; Lisachov, A.P.; Ermakov, O.A.; Svinin, A.O.; Chernigova, P.I.; Lyapkov, S.M.; Zamaletdinov, R.I.; Pavlov, A.V.; Zaks, S.S.; Fayzulin, A.I.; et al. Continent-Wide Distribution of CMTV-Like Ranavirus, from the Urals to the Atlantic Ocean. Ecohealth, 2025; 1–12, Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villamizar, A.; Vemulapally, S.; Guerra, T.; Tocidlowski, M.E.; Forstner, M.R.J.; Hahn, D. Effect of Headstarting Eggstrands of the Endangered Houston Toad (Bufo = [Anaxyrus] houstonensis) from a Captive Assurance Colony on Native Breeding Pond Microbiomes. Conservation 2025, 5, 25. https://doi.org/10.3390/conservation5020025
Villamizar A, Vemulapally S, Guerra T, Tocidlowski ME, Forstner MRJ, Hahn D. Effect of Headstarting Eggstrands of the Endangered Houston Toad (Bufo = [Anaxyrus] houstonensis) from a Captive Assurance Colony on Native Breeding Pond Microbiomes. Conservation. 2025; 5(2):25. https://doi.org/10.3390/conservation5020025
Chicago/Turabian StyleVillamizar, Andrea, Spandana Vemulapally, Trina Guerra, Maryanne E. Tocidlowski, Michael R. J. Forstner, and Dittmar Hahn. 2025. "Effect of Headstarting Eggstrands of the Endangered Houston Toad (Bufo = [Anaxyrus] houstonensis) from a Captive Assurance Colony on Native Breeding Pond Microbiomes" Conservation 5, no. 2: 25. https://doi.org/10.3390/conservation5020025
APA StyleVillamizar, A., Vemulapally, S., Guerra, T., Tocidlowski, M. E., Forstner, M. R. J., & Hahn, D. (2025). Effect of Headstarting Eggstrands of the Endangered Houston Toad (Bufo = [Anaxyrus] houstonensis) from a Captive Assurance Colony on Native Breeding Pond Microbiomes. Conservation, 5(2), 25. https://doi.org/10.3390/conservation5020025