Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = Pistacia species

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3650 KiB  
Article
Seasonal Biochemical Variations in Mediterranean Halophytes and Salt-Tolerant Plants: Targeting Sustainable Innovations in Ruminant Health
by Marta Oliveira, Catarina Guerreiro Pereira, Viana Castañeda-Loaiza, Maria João Rodrigues, Nuno R. Neng, Hervé Hoste, Karim Ben Hamed and Luísa Custódio
Appl. Sci. 2025, 15(14), 7625; https://doi.org/10.3390/app15147625 - 8 Jul 2025
Viewed by 482
Abstract
Climate change intensifies water scarcity and soil salinization, threatening agriculture and livestock systems, especially in arid Mediterranean regions. Halophytes and salt-tolerant plants offer sustainable alternatives to support ruminant health and productivity where traditional crops fail, helping mitigate climate impacts. This work evaluated seasonality [...] Read more.
Climate change intensifies water scarcity and soil salinization, threatening agriculture and livestock systems, especially in arid Mediterranean regions. Halophytes and salt-tolerant plants offer sustainable alternatives to support ruminant health and productivity where traditional crops fail, helping mitigate climate impacts. This work evaluated seasonality effects on the biochemical properties, including proximate composition, minerals, antioxidant properties, and the phenolic composition of the aerial organs of halophytes and salt-tolerant species, aiming at their future exploitation in ruminant production as novel nutraceutical or phytotherapeutic products. Target species included four halophytic species according to the eHaloph database (Calystegia soldanella (L.) R. Br. 1810, Medicago marina L. 1753, Plantago coronopus L. 1753, and Limoniastrum monopetalum (L.) Boiss. 1848) and five salt-tolerant plants (Pistacia lentiscus L. 1753, Cladium mariscus (L.) Pohl 1809, Inula crithmoides L. (syn. Limbarda crithmoides Dumort. 1827), Helichrysum italicum subsp. picardii (Boiss. & Reut.) Franco 1984, and Crucianella maritima L. 1753). H. italicum, M. marina, and C. soldanella appear well-suited for nutraceutical applications, while P. lentiscus, L. monopetalum, and C. mariscus hold promise for the development of, for example, phytotherapeutic products. This research underscores the significance of seasonal and species-specific variations in nutrient and phytochemical composition, displaying a range of opportunities for novel, sustainable, and tailored solutions to ruminant production systems in arid environments. Full article
(This article belongs to the Special Issue Recent Advances in Halophytes Plants)
Show Figures

Figure 1

21 pages, 394 KiB  
Systematic Review
The Role of African Medicinal Plants in Dermatological Treatments: A Systematic Review of Antimicrobial, Wound-Healing and Melanogenesis Inhibition
by Lubna M. S. Elmahaishi, Farzana Fisher, Ahmed Hussein and Charlene W. J. Africa
Cosmetics 2025, 12(4), 132; https://doi.org/10.3390/cosmetics12040132 - 24 Jun 2025
Viewed by 647
Abstract
Background: Medicinal plants are widely used across the globe as complementary and alternative therapies for managing various health conditions. The use of medicinal plants is a fundamental component of the African traditional healthcare system and most diverse therapeutic practices. Africa harbors a variety [...] Read more.
Background: Medicinal plants are widely used across the globe as complementary and alternative therapies for managing various health conditions. The use of medicinal plants is a fundamental component of the African traditional healthcare system and most diverse therapeutic practices. Africa harbors a variety of plant species, many of which are estimated to be endemic, making it a rich source of medicinal plants with potential relevance to human health. Aim of the study: The study aimed to review and highlight the information in the literature related to the antimicrobial activity, wound-healing activity, and melanogenesis inhibition of African medicinal plants. Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines, a literature search was conducted on ScienceDirect, Google Scholar, Medline Ebscohost, and PubMed, which were searched for articles published between 2018 and 2024. Due to high heterogeneity and variability in study designs, data were synthesized using a narrative approach. Result: A total of 37 studies were included. Emilia coccinea, Entada africana, Trichilia dregeana, Physalis angulata, and Prunus africana demonstrated strong wound-healing activity (100%) at concentrations between 5 and 10%. For melanogenesis inhibition, Ormocarpum trichocarpum (IC50 = 2.95 µg/mL), Limonium cercinense (IC50 = 3 µg/mL), and L. boitardii (IC50 = 5 µg/mL) showed the most potent effects. The strongest antimicrobial effects were reported for Harpagophytum procumbens (MIC = 10 µg/mL) against Staphylococcus aureus and S. epidermidis and Pistacia atlantica (MIC = 78.1 µg/mL) against Listeria monocytogenes and Candida albicans (MIC = 39 µg/mL). Conclusions: This study highlights the broad therapeutic potential of African medicinal plant extracts in addressing various health conditions, including skin infections, wound management, and skin pigmentation. While several extracts demonstrated strong bioactivity, inconsistent reporting of statistical data limited quantitative synthesis. Future studies should adopt standardized methodologies and report complete statistical outcomes to enable robust meta-analyses and support clinical translation. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

32 pages, 1396 KiB  
Review
An Analysis of Three Pistacia Species’ Phenolic Compounds and Their Potential Anticancer and Cytotoxic Activities on Cancer Cells—A Review
by Naser A. Alsharairi
Curr. Issues Mol. Biol. 2025, 47(6), 393; https://doi.org/10.3390/cimb47060393 - 26 May 2025
Viewed by 1222
Abstract
The genus Pistacia from the Anacardiaceae family contains species of wild flowering plants. The only species that produces edible nuts large enough for commercial sale is P. vera L. (pistachio). Other species, such as P. terebinthus L., P. atlantica L., and P. khinjuk [...] Read more.
The genus Pistacia from the Anacardiaceae family contains species of wild flowering plants. The only species that produces edible nuts large enough for commercial sale is P. vera L. (pistachio). Other species, such as P. terebinthus L., P. atlantica L., and P. khinjuk, are used as pistachio rootstocks. Pistacia species include phenolic compounds, such as flavonoids, essential oils, and tannins, which are responsible for a number of pharmacological properties. The species most commonly investigated for their anticancer and/or cytotoxic activities against cancer cells in experimental studies include P. lentiscus, P. atlantica subspecies, and P. chinensis subsp. integerrima. However, no review exists that evaluates the phenolic compounds of three other Pistacia species (P. vera L., P. terebinthus L., and P. khinjuk) and their anticancer and cytotoxic effects. Thus, this review aims to thoroughly assess the phenolic compounds that were isolated from these species and investigate any potential anticancer or cytotoxic effects on cancer cells. The findings show that pistacia species and their isolated phenolic compounds (phenolic acids, flavonoids, and essential oils) from different plant parts have anticancer activity against lung, cervical, prostate, gastric, colon, liver, renal, skin, and breast cancer cells. Additionally, certain phenolic compounds from pistacia species have cytotoxic activity; however, the degree of toxicity may vary based on the dosage and duration of use. Further experiments are required to fully understand the possible mechanisms underlying the anticancer and cytotoxic effects of pistacia species and their phenolic compounds on cancer cells. Full article
18 pages, 4186 KiB  
Article
Agro-Industrial Waste from Pistacia vera: Chemical Profile and Bioactive Properties
by Mauricio Piñeiro, Victoria Parera, Javier E. Ortiz, Olimpia Llalla-Cordova, Sofia Manrique, Brisa Castro, Maximiliano Ighani, Lorena C. Luna and Gabriela E. Feresin
Plants 2025, 14(10), 1420; https://doi.org/10.3390/plants14101420 - 9 May 2025
Viewed by 502
Abstract
In Argentina and globally, pistachio (Pistacia vera) production has significantly grown, driven by its high nutritional value and food industry demand. Its harvesting and processing generate about 40% of pistachio waste (PW), including leaves, twigs, seed coats, green, and empty kernels. [...] Read more.
In Argentina and globally, pistachio (Pistacia vera) production has significantly grown, driven by its high nutritional value and food industry demand. Its harvesting and processing generate about 40% of pistachio waste (PW), including leaves, twigs, seed coats, green, and empty kernels. Underutilized PW has led to environmental problems, including soil and water contamination by landfill accumulation. However, it could be a potential source of undiscovered bioactive compounds. This study aimed to characterize the chemical profile and to evaluate the bioactive properties of PW. The dried pistachio waste (dPW) was used to prepare the pistachio waste decoction (PWD) (10% w/v). The total phenolic content (TPC) and flavonoid content (FC) were quantified, and the chemical profile was analyzed using UPLC-DAD-ESI-MS/MS. Nematicidal activity against Meloidogyne incognita (J2), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition, antioxidant capacity (ABTS, DPPH, FRAP), and phytotoxicity on Allium cepa, Lactuca sativa, and Raphanus sativus were evaluated. The UPLC-DAD-ESI-MS/MS analysis identified 26 compounds, including phenolics, flavonoids, and unsaturated fatty acids. The main compounds were gallic acid, anacardic acid, and quercetin derivatives. The TPC and FC were 212.65 mg GAE/g dPW and 0.022 mg QE/g dPW, respectively, displaying strong antioxidant activity across the assays DPPH, ABTS, and FRAP. PWD exhibited nematicidal activity against M. incognita (J2) (LC50 = 0.12% at 24 h). Alterations in the cuticle were observed, including structural disorganization and detachment from internal tissues. Additionally, a remarkable cholinesterase inhibitory effect was detected at 2.0% PWD (42.65% for AChE and 58.90% for BuChE). PWD showed low phytotoxic effects across the tested species, and the germination percentage (GP) and the mean germination time (MGT) were not significantly affected (GP > 79%). These findings highlight the potential of PW as a sustainable alternative for M. incognita control, the remarkable nematicidal, anticholinesterase, and antioxidant properties, and the low phytotoxicity, supporting its use in sustainable agricultural practices. Full article
Show Figures

Figure 1

18 pages, 3336 KiB  
Article
A Standardized Framework to Estimate Drought-Induced Vulnerability and Its Temporal Variation in Woody Plants Based on Growth
by Antonio Gazol, Elisa Tamudo-Minguez, Cristina Valeriano, Ester González de Andrés, Michele Colangelo and Jesús Julio Camarero
Forests 2025, 16(5), 760; https://doi.org/10.3390/f16050760 - 29 Apr 2025
Viewed by 577
Abstract
Forests and scrubland comprise a large proportion of terrestrial ecosystems and, due to the long lifespan of trees and shrubs, their capacity to grow and store carbon as lasting woody tissues is particularly sensitive to warming-enhanced drought occurrence. Climate change may trigger a [...] Read more.
Forests and scrubland comprise a large proportion of terrestrial ecosystems and, due to the long lifespan of trees and shrubs, their capacity to grow and store carbon as lasting woody tissues is particularly sensitive to warming-enhanced drought occurrence. Climate change may trigger a transition from forests to scrubland in many drylands during the coming decades due to the higher resilience of shrubs. However, we lack standardized frameworks to compare the response to drought of woody plants. We present a framework and develop an index to estimate the drought-induced vulnerability (DrVi) of trees and shrubs based on the radial growth trajectory and the response of growth variability to a drought index. We used tree-ring width series of three tree (Pinus halepensis Mill., Juniperus thurifera L., and Acer monspessulanum L.) and three shrub (Juniperus oxycedrus L., Pistacia lentiscus L., and Ephedra nebrodensis Tineo ex Guss.) species from semi-arid areas to test this framework. We compared the DrVi values between species and populations and explored their temporal changes. Across species, the strongest DrVi values were found in declining P. halepensis stands and J. oxycedrus from the same site, while the lowest DrVi values were found in A. monspessulanum, P. lentiscus, and E. nebrodensis. Across populations, J. oxycedrus presented higher vulnerability in one of the dry sites. The P. halepensis declining stand showed a steady increase in DrVi value after the 1980s as the climate shifted toward warmer and drier conditions. We conclude that the DrVi allows comparing species and populations using a standardized general framework. Full article
Show Figures

Figure 1

16 pages, 571 KiB  
Review
Advancing Pistacia terebinthus L. (Anacardiaceae) Research: Food Preservation, Functional Foods, and Nutraceutical Potential
by Daniela Batovska
Foods 2025, 14(7), 1245; https://doi.org/10.3390/foods14071245 - 2 Apr 2025
Cited by 2 | Viewed by 896
Abstract
Pistacia terebinthus L., commonly known as the turpentine tree, is a wild-growing species with a well-documented history of use in traditional medicine and ethnobotany. Various parts of the plant—fruits, seeds, resin, leaves, and galls—have demonstrated significant bioactive potential, particularly antioxidant, antimicrobial, and functional [...] Read more.
Pistacia terebinthus L., commonly known as the turpentine tree, is a wild-growing species with a well-documented history of use in traditional medicine and ethnobotany. Various parts of the plant—fruits, seeds, resin, leaves, and galls—have demonstrated significant bioactive potential, particularly antioxidant, antimicrobial, and functional properties. Despite these promising attributes, the industrial application of P. terebinthus L. in contemporary food and nutraceutical systems remains limited and underexplored. Recent advances have employed a range of technological strategies—including encapsulation, active food packaging, emulsion stabilization, probiotic immobilization, and fermentation—to improve the stability, bioavailability, and functional performance of P. terebinthus L.-derived extracts within food matrices. These approaches have shown potential in enhancing aroma retention, extending shelf life, and supporting probiotic viability, thereby positioning P. terebinthus L. as a promising candidate for use in functional formulations and natural food preservation. Nevertheless, further investigation is required to optimize processing parameters, assess the long-term stability of bioactive compounds, and establish standardized regulatory frameworks. Addressing these challenges will be essential for facilitating the broader integration of P. terebinthus L. into the functional food, nutraceutical, and food preservation industries. Full article
(This article belongs to the Special Issue Feature Review on Food Nutrition)
Show Figures

Figure 1

20 pages, 3618 KiB  
Article
Evaluation of the Anti-Aging Properties of Ethanolic Extracts from Selected Plant Species and Propolis by Enzyme Inhibition Assays and 2D/3D Cell Culture Methods
by F. Sezer Senol Deniz, Ilkay Erdogan Orhan, Przemyslaw Andrzej Filipek, Abdulselam Ertas, Ronald Gstir, Thomas Jakschitz and Günther Karl Bonn
Pharmaceuticals 2025, 18(3), 439; https://doi.org/10.3390/ph18030439 - 20 Mar 2025
Cited by 2 | Viewed by 760
Abstract
Background: Skin aging is a complex biological process affected by internal and external factors that disrupt the skin structure, especially in sun-exposed areas. Elastin and collagen in the dermis layer, responsible for the skin’s resistance and elasticity, have been the main subject [...] Read more.
Background: Skin aging is a complex biological process affected by internal and external factors that disrupt the skin structure, especially in sun-exposed areas. Elastin and collagen in the dermis layer, responsible for the skin’s resistance and elasticity, have been the main subject of research. Since tyrosinase (TYR) is an enzyme found in different organisms and plays an essential role in melanogenesis, inhibitors of this enzyme have been the target mechanism for skin-bleaching product research. Methods: We selected the plant species Cotinus coggygria Scop., Garcinia mangostana L., Pistacia vera L., Vitis vinifera L., and propolis, which exhibited activity against a minimum of three target enzymes—elastase, collagenase, and TYR—in our previous screening study to find the suitable raw material for a cosmetic product. In the current research, the extracts from these samples were tested through a cell-free enzyme assay using validated elastase, collagenase, and TYR inhibition kits. We also performed the safety and efficacy tests of the selected extracts with 2D/3D cell culture methods. Results: Our data revealed the propolis extract among the tested ones displayed remarkable anti-inflammatory activity in the 2D (NF-κB induction: 10.81%) and 3D assays. Cotinus coggygria leaf and Garcinia mangostana shell extracts exhibited anti-inflammatory activity in the 2D luciferase reporter assay via TNFα addition. C. coggygria leaf, V. vinifera (grape) seed, and propolis extracts were selected for testing in 3D cell culture methods based on the 2D cytotoxicity results with cell viability values of 54.75%, 93.19%, and 98.64% at 34.25 µg/mL, respectively. The general phytochemical profiles of these three extracts were examined in terms of 53 phenolic compounds with LC-MS/MS, revealing that quinic acid, epicatechin, and acacetin were the dominant phenolics among the tested ones. Conclusions: It is the first study conducted to evaluate the use of the extracts indicated above in cosmetics by employing procedures involving 3D cell culture. Full article
Show Figures

Graphical abstract

18 pages, 3568 KiB  
Article
Chemical, Mineralogical, and Biological Properties of Pistacia atlantica subsp. atlantica Essential Oils from the Middle Atlas of Morocco
by Mohammed Bassouya, Mohamed Chedadi, Mohamed El fadili, Jawhari Fatima Zahra, Younesse El-byari, Abdelaaty A. Shahat, Sonia Morya, Abdelfattah El Moussaoui, Mohammed Kara and Amina Bari
Horticulturae 2025, 11(3), 265; https://doi.org/10.3390/horticulturae11030265 - 1 Mar 2025
Viewed by 1119
Abstract
This study focused on Atlas pistachio (Pistacia atlantica subsp. atlantica), an endangered species from the Moroccan Middle Atlas, analyzing its leaves to assess their antioxidant and antimicrobial activity. Essential oils (EOPA) were extracted by distillation using a Clevenger apparatus, and their [...] Read more.
This study focused on Atlas pistachio (Pistacia atlantica subsp. atlantica), an endangered species from the Moroccan Middle Atlas, analyzing its leaves to assess their antioxidant and antimicrobial activity. Essential oils (EOPA) were extracted by distillation using a Clevenger apparatus, and their phytochemical compounds were identified by gas chromatography–mass spectrometry (GC/MS). Antioxidant activity tests were carried out using the DPPH and FRAP methods. In addition, antimicrobial activity was tested against Candida albicans to determine its antifungal effect, and against two Gram-positive strains (Staphylococcus aureus and Bacillus subtilis) and three Gram-negative strains (Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae) to determine the antibacterial effect. The results show that the essential oils contained between 23 and 49 compounds, depending on the extraction area, with (-)-germacrene D as the main compound. Antioxidant activity varied by study area, with IC50 ranging from 0.414 mg/mL (Amghas) to 1.520 mg/mL (Ait Naamane), and EC50 from 2.132 mg/mL to 5.4 mg/mL. In terms of antimicrobial activity, Afourgah essential oils showed the best results, with significant inhibition diameters against bacteria and low MIC. In particular, Amghas essential oils inhibited Staphylococcus aureus well, while Ait Naamane essential oils were less effective. This variability in phytochemical composition, as well as antioxidant and antimicrobial activities, may be attributed to climatic differences specific to the distribution zones of the Atlas pistachio tree. This study contributes to a better understanding of the botanical and chemical characterization of the Pistacia genus, and highlights its potential as a source of bioactive agents. Full article
Show Figures

Figure 1

19 pages, 5125 KiB  
Article
Association Between Gall Structural and Metabolic Complexity: Evidence from Pistacia palaestina
by Daniela Batovska, Mirena Chakarova, Monica Dines, Ivayla Dincheva, Ilian Badjakov and Moshe Inbar
Plants 2025, 14(5), 721; https://doi.org/10.3390/plants14050721 - 26 Feb 2025
Viewed by 780
Abstract
Pistacia palaestina hosts several Fordini gall-forming aphid species, which manipulate its anatomy and metabolism, creating galls that provide nutrients and protection. This study compared the extended metabolic profiles of P. palaestina leaves and galls induced by Baizongia pistaciae, Paracletus cimiciformis, and [...] Read more.
Pistacia palaestina hosts several Fordini gall-forming aphid species, which manipulate its anatomy and metabolism, creating galls that provide nutrients and protection. This study compared the extended metabolic profiles of P. palaestina leaves and galls induced by Baizongia pistaciae, Paracletus cimiciformis, and Geoica spp. GC–MS analysis of ethyl acetate (EtOAc) and methanol (MeOH) extracts revealed a high abundance of shikimic acid and quinic acid isomers, along with diverse hydrocarbons, lipids, terpenoids, phenolics, and carbohydrates, each showing distinct distributions across gall types. Paracletus cimiciformis galls closely resembled intact leaves, exhibiting limited metabolic disruption. In contrast, the larger, more complex galls of Baizongia and Geoica underwent profound metabolic modifications. These aphids manipulate host metabolism, leading to triterpenoid and phenolics accumulation, which likely fortifies gall structure and enhances chemical defense. The considerable variation among individual trees suggests that specific host plant templates significantly influence the metabolic profile of the galls. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

18 pages, 8948 KiB  
Article
Heat Shock Proteins of Pistacia chinensis Could Promote Floral Development Under Drought Stress
by Yu Zhang, Hao Li, Guanghui Cao, Jingjing Dong, Man Lv, Shuchai Su and Qian Bai
Forests 2025, 16(3), 395; https://doi.org/10.3390/f16030395 - 23 Feb 2025
Viewed by 1922
Abstract
Understanding the complex mechanisms underlying sex differentiation in dioecious plants is fundamental to elucidating plant reproductive strategies and their adaptive responses to environmental stresses. Pistacia chinensis, previously considered a strictly dioecious species, has been found to exhibit monoecy, with sex differentiation closely [...] Read more.
Understanding the complex mechanisms underlying sex differentiation in dioecious plants is fundamental to elucidating plant reproductive strategies and their adaptive responses to environmental stresses. Pistacia chinensis, previously considered a strictly dioecious species, has been found to exhibit monoecy, with sex differentiation closely linked to environmental stress during floral development. However, the underlying molecular mechanisms remain poorly understood. This study explores the influence of environmental stress on sex differentiation with a focus on heat shock proteins (Hsps). Biochemical analyses revealed higher proline content and SOD activity in dioecious and monoecious females compared to males during the sex differentiation phase. Two key genes, PcHsp70-1 and PcHsp90, were identified as differentially expressed between sexes. Subcellular localization analysis showed that these proteins are present in both the nucleus and cytoplasm. Overexpression of PcHsp70-1 in Arabidopsis promoted bolting and flowering by upregulating flowering-related genes and also enhanced drought resistance. Similarly, PcHsp90 contributed to drought tolerance through multiple mechanisms. These findings suggest that Hsps play a key role in linking environmental stress responses to sex differentiation, thus laying the foundation for further research on plant–environment interactions and stress-adaptive mechanisms in P. chinensis. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

22 pages, 9989 KiB  
Article
Leaf Water Potential in a Mixed Mediterranean Forest from Machine Learning and Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Imaging
by Netanel Fishman, Yehuda Yungstein, Assaf Yaakobi, Sophie Obersteiner, Laura Rez, Gabriel Mulero, Yaron Michael, Tamir Klein and David Helman
Remote Sens. 2025, 17(1), 106; https://doi.org/10.3390/rs17010106 - 31 Dec 2024
Cited by 1 | Viewed by 1320
Abstract
Leaf water potential (ψleaf) is a key indicator of plant water status, but its measurement is labor-intensive and limited in spatial coverage. While remote sensing has emerged as a useful tool for estimating vegetation water status, ψleaf remains unexplored, [...] Read more.
Leaf water potential (ψleaf) is a key indicator of plant water status, but its measurement is labor-intensive and limited in spatial coverage. While remote sensing has emerged as a useful tool for estimating vegetation water status, ψleaf remains unexplored, particularly in mixed forests. Here, we use spectral indices derived from unmanned aerial vehicle-based hyperspectral imaging and machine learning algorithms to assess ψleaf in a mixed, multi-species Mediterranean forest comprised of five key woody species: Pinus halepensis, Quercus calliprinos, Cupressus sempervirens, Ceratonia siliqua, and Pistacia lentiscus. Hyperspectral images (400–1000 nm) were acquired monthly over one year, concurrent with ψleaf measurements in each species. Twelve spectral indices and thousands of normalized difference spectral index (NDSI) combinations were evaluated. Three machine learning algorithms—random forest (RF), extreme gradient boosting (XGBoost), and support vector machine (SVM)—were used to model ψleaf. We compared the machine learning model results with linear models based on spectral indices and the NDSI. SVM, using species information as a feature, performed the best with a relatively good ψleaf assessment (R2 = 0.53; RMSE = 0.67 MPa; rRMSE = 28%), especially considering the small seasonal variance in ψleaf (±σ = 0.8 MPa). Predictions were best for Cupressus sempervirens (R2 = 0.80) and Pistacia lentiscus (R2 = 0.49), which had the largest ψleaf variances (±σ > 1 MPa). Aggregating data at the plot scale in a ‘general’ model markedly improved the ψleaf model (R2 = 0.79, RMSE = 0.31 MPa; rRMSE = 13%), providing a promising tool for monitoring mixed forest ψleaf. The fact that a non-species-specific, ‘general’ model could predict ψleaf implies that such a model can also be used with coarser resolution satellite data. Our study demonstrates the potential of combining hyperspectral imagery with machine learning for non-invasive ψleaf estimation in mixed forests while highlighting challenges in capturing interspecies variability. Full article
Show Figures

Figure 1

18 pages, 7920 KiB  
Article
The Relationship Standardized Precipitation Evapotranspiration Index (SPEI) and Forage Value of Rubus Species Collected from Türkiye’s Flora
by Gülcan Demiroğlu Topçu, Nur Koç Koyun and Ayşegül Korkmaz
Sustainability 2024, 16(21), 9278; https://doi.org/10.3390/su16219278 - 25 Oct 2024
Viewed by 1147
Abstract
The increasing drought caused by climate change makes it difficult for rural areas reliant on pasture-based livestock farming to sustain their agricultural practices. Blackberries, a spreading species, have been selected as the material for this study due to their perennial shrub nature and [...] Read more.
The increasing drought caused by climate change makes it difficult for rural areas reliant on pasture-based livestock farming to sustain their agricultural practices. Blackberries, a spreading species, have been selected as the material for this study due to their perennial shrub nature and their tolerance to adverse environmental conditions. Türkiye, the gene center for blackberries, is part of the Mediterranean belt and is located at the intersection of three flora regions—Mediterranean, Euro-Siberian, and Irano-Turanian. This study aims to determine the forage value of the Rubus species and other shrub/tree species (Quercus, Pistacia, and Rosa) collected and identified from these flora regions. Furthermore, a linear regression analysis established a relationship between the forage values and the SPEI, a drought index, considering the combined effects of rainfall and temperature in the collection regions. Among the Rubus species, the highest organic matter content (887.8 g kg−1) was obtained from R. pruinosus. In comparison, the highest protein content (240.1 g kg−1) was found in cultivated blackberries in the Euro-Siberian flora region. P. lentiscus had the highest Ca content (14.4 g kg−1) and offered feed at the “Prime” level with 154 of RFV. The SPEI explained 87% of the variation in fructan, 89% in Mg, and 92% in ADF. Due to the perennial nature of the species studied, a strong relationship was found between their growth and forage values over a 48-month time scale using the SPEI. Consequently, the equations related to ADF, Mg, and fructan content obtained in this study can be recommended for woody species. Full article
Show Figures

Figure 1

19 pages, 2677 KiB  
Review
Beyond the Nut: Pistacia Leaves as Natural Food Preservatives
by Daniela Batovska and Moshe Inbar
Foods 2024, 13(19), 3138; https://doi.org/10.3390/foods13193138 - 30 Sep 2024
Cited by 4 | Viewed by 1489
Abstract
The pistachio tree (Pistacia vera) is globally renowned for its nutritious nuts, while its leaves remain an underutilized source of chemicals with significant potential value as food preservatives. Similar value may be found in the leaves of other wild Pistacia species [...] Read more.
The pistachio tree (Pistacia vera) is globally renowned for its nutritious nuts, while its leaves remain an underutilized source of chemicals with significant potential value as food preservatives. Similar value may be found in the leaves of other wild Pistacia species common in Central Asia, the Levant, and around the Mediterranean. Some species’ leaves have been used as natural preservatives, demonstrating their effectiveness and highlighting their rich bioactive components. This review investigates the antioxidant and antimicrobial properties of Pistacia leaves, comparing both cultivated and wild species. A comprehensive search was performed across several scientific databases, including PubMed, Scopus, Web of Science, and Google Scholar, utilizing a combination of keywords related to Pistacia species and their bioactive compounds. The inclusion criteria focused on articles published in English from 2017 till the end of June 2024, analyzing the antioxidant and antimicrobial activities of Pistacia leaves and employing relevant extraction methods. A total of 71 literature sources were included, covering species such as P. vera, P. atlantica, P. terebinthus, and others sourced from countries such as Iran, Turkey, and Italy. This review found that Pistacia leaves are rich in polyphenolic compounds and exhibit robust antioxidant and antimicrobial properties, with certain wild species outperforming P. vera, suggesting species-specific traits that enhance their preservative potential. The major findings indicate that extracts from wild species exhibit superior bioactivity, which could be harnessed for food preservation. These insights underscore the promising role of Pistacia leaves as natural food preservatives, with further research needed to address challenges in extraction and application. Exploring their synergistic effects with other preservatives could lead to innovative solutions in food preservation while fostering local economic growth. Full article
(This article belongs to the Special Issue Bioactive and Aroma Compounds in Food Products)
Show Figures

Graphical abstract

13 pages, 2519 KiB  
Article
Blooming Phenograms, Pollen Production, and Pollen Quality during Storage of Pistachio Cultivars in New Mediterranean Growing Areas
by Giuseppe Lillo, Claudio Calia, Danilo Cice, Milena Petriccione and Salvatore Camposeo
Plants 2024, 13(18), 2606; https://doi.org/10.3390/plants13182606 - 18 Sep 2024
Viewed by 1545
Abstract
Pistachio (Pistacia vera L.) is a dioecious, anemophilous, and drought-resistant fruit tree species. It is cultivated in new Mediterranean areas, including the regions of southern Italy (Apulia and Basilicata). It has been estimated that over 40,000 ha are suitable for pistachio cultivation [...] Read more.
Pistachio (Pistacia vera L.) is a dioecious, anemophilous, and drought-resistant fruit tree species. It is cultivated in new Mediterranean areas, including the regions of southern Italy (Apulia and Basilicata). It has been estimated that over 40,000 ha are suitable for pistachio cultivation in areas infected by Xylella fastidiosa subsp. pauca. As a newly introduced species, knowledge of its biological reproductive behaviors in its new areas of spreading is essential for appropriate agronomic planning and management. This two-year study (2022 and 2023), carried out in the countryside of Stigliano (MT, Italy), had the objective of evaluating the flowering phenograms, pollen production, and assessing protocols for the conservation and extension of pollen viability, of the most widespread cultivars. A slight delay was observed in the blooming phenograms, compared to other cultivation Mediterranean areas, such as Spain or Sicily. Furthermore, the overlap between female and male phenograms was partial. No significant differences were observed in the polliniferous aptitude of the two male cultivars. Among the different protocols tested, the pollen storage at 33% relative humidity and a temperature of −80 °C maintained the pollen germinability above 50% for up to three weeks. These findings highlight the importance of controlled environmental conditions in preserving pollen viability over extended periods, providing valuable insights for agricultural and botanical research that relies on maintaining pollen viability for breeding and genetic studies. Full article
(This article belongs to the Special Issue Floral Biology 3.0)
Show Figures

Figure 1

22 pages, 3332 KiB  
Article
Identification of Sex-Associated Genetic Markers in Pistacia lentiscus var. chia for Early Male Detection
by Evangelia Stavridou, Ioanna Karamichali, Evangelos Siskas, Irini Bosmali, Maslin Osanthanunkul and Panagiotis Madesis
Genes 2024, 15(5), 632; https://doi.org/10.3390/genes15050632 - 16 May 2024
Cited by 1 | Viewed by 2189
Abstract
Pistacia lentiscus var. chia is a valuable crop for its high-added-value mastic, a resin with proven pharmaceutical and cosmeceutical properties harvested from the male tree trunk. To achieve the maximum economic benefits from the cultivation of male mastic trees, it is important to [...] Read more.
Pistacia lentiscus var. chia is a valuable crop for its high-added-value mastic, a resin with proven pharmaceutical and cosmeceutical properties harvested from the male tree trunk. To achieve the maximum economic benefits from the cultivation of male mastic trees, it is important to develop early sex diagnosis molecular tools for distinguishing the sex type. Thus far, the work on sex identification has focused on Pistacia vera with promising results; however, the low transferability rates of these markers in P. lentiscus necessitates the development of species-specific sex-linked markers for P. lentiscus var. chia. To our knowledge, this is the first report regarding: (i) the development of species-specific novel transcriptome-based markers for P. lentiscus var. chia and their assessment on male, female and monoecious individuals using PCR-HRM analysis, thus, introducing a cost-effective method for sex identification with high accuracy that can be applied with minimum infrastructure, (ii) the effective sex identification in mastic tree using a combination of different sex-linked ISSR and SCAR markers with 100% accuracy, and (iii) the impact evaluation of sex type on the genetic diversity of different P. lentiscus var. chia cultivars. The results of this study are expected to provide species-specific markers for accurate sex identification that could contribute to the selection process of male mastic trees at an early stage for mass propagation systems and to facilitate future breeding efforts related to sex-linked productivity and quality of mastic resin. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop