Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = Piscirickettsia salmonis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1159 KiB  
Article
Know Your Enemy: Piscirickettsia salmonis and Phage Interactions Using an In Silico Perspective
by Carolina Ramírez and Jaime Romero
Antibiotics 2025, 14(6), 558; https://doi.org/10.3390/antibiotics14060558 - 30 May 2025
Viewed by 590
Abstract
Background: Aquaculture faces significant challenges due to bacterial infections, particularly Piscirickettsia salmonis, leading to extensive antibiotic use and raising concerns about antimicrobial resistance. In this context, bacteriophages and bacterial defense systems play a critical role in the evolutionary dynamics of P. salmonis [...] Read more.
Background: Aquaculture faces significant challenges due to bacterial infections, particularly Piscirickettsia salmonis, leading to extensive antibiotic use and raising concerns about antimicrobial resistance. In this context, bacteriophages and bacterial defense systems play a critical role in the evolutionary dynamics of P. salmonis. Objective. This study aimed to investigate the genomic landscape of prophage regions and antiphage defense systems in Piscirickettsia salmonis to better understand their co-evolutionary dynamics and explore their potential role in alternative disease control strategies for aquaculture. Methods: We analyzed 79 genomes of Piscirickettsia salmonis using bioinformatic tools to identify and characterize prophage regions and antiphage defense systems. Results: At the chromosomal level, 70% of the strains contained prophage regions, with a total of 92 identified regions, most of which were classified as intact. At the plasmid level, 75% of plasmids carried prophage regions, with a total of 426 identified regions, predominantly associated with Escherichia phage RCS47, Burkholderia phage Bcep176, and Enterobacteria phage mEp235. Prophage regions were enriched in transposases, head proteins, tail proteins, and phage-like proteins. The analysis of antiphage defense systems revealed that P. salmonis predominantly harbors dGTPase, AbidD, and SoFIC at the chromosomal level, whereas MazEF was the most frequent system in plasmids. A strong positive correlation was found between the number of prophage regions and defense systems in chromosomes (ρ = 0.72, p = 6.3 × 10−14), while a weaker correlation was observed in plasmids. These findings highlight the complex interplay between P. salmonis and its bacteriophages, with implications for disease control in aquaculture. Conclusions: Overall, these insights into the prophage and defense system dynamics provide potential avenues for developing alternative strategies to combat P. salmonis infections and reduce reliance on antibiotics in aquaculture systems. Full article
Show Figures

Figure 1

14 pages, 3772 KiB  
Article
Oxidative Stress Response of Liver Cell Culture in Atlantic Salmon Challenged Under Two Antibiotics: Oxytetracycline and Florfenicol
by Luis Vargas-Chacoff, Francisco Dann, Ricardo Oyarzún-Salazar, Daniela Nualart and José Luis P. Muñoz
Toxics 2025, 13(5), 361; https://doi.org/10.3390/toxics13050361 - 30 Apr 2025
Viewed by 468
Abstract
Aquaculture is currently the fastest-growing sector in animal production, with an average annual growth rate of 7.5% since 1970. In Chile, the industry is largely driven by salmonid farming, with Salmo salar (Atlantic salmon) accounting for over 65% of national production. This species [...] Read more.
Aquaculture is currently the fastest-growing sector in animal production, with an average annual growth rate of 7.5% since 1970. In Chile, the industry is largely driven by salmonid farming, with Salmo salar (Atlantic salmon) accounting for over 65% of national production. This species has shown the most significant growth within the sector. This growth is achieved by having high-density farming, which results in high levels of stress due to overcrowding and the appearance of pathogens such as the Infectious Salmon Anemia (ISA) virus, Bacterial Kidney Disease (BKD), Caligus sea lice (Caligus rogercresseyi), and Piscirickettsiosis (SRS) caused by Piscirickettsia salmonis, among others. This study evaluated the toxicity of the two most commonly used antibiotics in the salmon industry—oxytetracycline and florfenicol—at four concentrations each, using primary liver cell cultures of Atlantic salmon (Salmo salar). Oxidative stress was assessed through enzymatic activity and gene expression of oxidative markers, including cytochrome P450, catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), and glutathione peroxidase (GPx). Samples were analyzed at 1, 3, 6, 12, and 48 h post-exposure. These findings reveal time- and dose-dependent oxidative responses in salmon liver cells to OTC and FLO, providing critical insights into the sublethal cellular effects of antibiotics commonly used in aquaculture, which indicates the presence of a high amount of free radicals in the liver cells, indicating toxicity of both antibiotics. Full article
Show Figures

Figure 1

15 pages, 4485 KiB  
Article
Pathogenomic Insights into Piscirickettsia salmonis with a Focus on Virulence Factors, Single-Nucleotide Polymorphism Identification, and Resistance Dynamics
by Sk Injamamul Islam, Khandker Shahed, Md Imtiaz Ahamed, Luu Tang Phuc Khang, Won-Kyo Jung, Papungkorn Sangsawad, Nguyen Dinh-Hung, Patima Permpoonpattana and Nguyen Vu Linh
Animals 2025, 15(8), 1176; https://doi.org/10.3390/ani15081176 - 20 Apr 2025
Cited by 1 | Viewed by 2507
Abstract
Effective control of bacterial infections remains a significant challenge in aquaculture. The marine bacterium Piscirickettsia salmonis (P. salmonis), responsible for piscirickettsiosis, causes widespread infections in various salmon species, leading to substantial mortality and economic losses. Despite efforts to genetically characterize P. [...] Read more.
Effective control of bacterial infections remains a significant challenge in aquaculture. The marine bacterium Piscirickettsia salmonis (P. salmonis), responsible for piscirickettsiosis, causes widespread infections in various salmon species, leading to substantial mortality and economic losses. Despite efforts to genetically characterize P. salmonis, critical gaps persist in understanding its virulence factors, antimicrobial resistance genes, and single-nucleotide polymorphisms (SNPs). This study addresses these gaps through a comparative analysis of the pan-genome and core genomes of 80 P. salmonis strains from different geographical regions and genogroups. P. salmonis had an open pan-genome consisting of 14,564 genes, with a core genome of 1257 conserved genes. Eleven virulence-related genes were identified in the pan-genome, categorized into five functional groups, providing new insights into the pathogenicity of P. salmonis. Unique SNPs were detected in four key genes (gyrA, dnaK, rpoB, and ftsZ), serving as robust molecular markers for distinguishing the LF and EM genogroups. Notably, AMR genes identified in four LF strains suggest evolutionary adaptations under selective pressure. Functional annotation of the core genomes using the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases demonstrated conserved gene clusters linked to essential intracellular survival mechanisms and bacterial pathogenicity. These findings suggest a direct association between core genome features and variations in pathogenesis and host–pathogen interactions across genogroups. Phylogenetic reconstruction further highlighted the influence of AMR genes on strain divergence. Collectively, this study enhances the genomic understanding of P. salmonis and lays the groundwork for improved diagnostic tools and targeted therapeutics to manage piscirickettsiosis in aquaculture. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

17 pages, 1309 KiB  
Article
Microchloropsis gaditana as a Natural Antimicrobial with a One Health Approach to Food Safety in Farmed Salmon
by Nelson Díaz, Susana Muñoz, Alberto Medina, Carlos Riquelme and Ivonne Lozano-Muñoz
Life 2025, 15(3), 455; https://doi.org/10.3390/life15030455 - 13 Mar 2025
Viewed by 1383
Abstract
Sustainably farmed Atlantic salmon could drive global food system solutions by contributing essential nutrients to the human diet while delivering high-quality protein. One of the biggest obstacles to sustainable salmon aquaculture in Chile is the prevalence of piscirickettsiosis disease caused by the Gram-negative [...] Read more.
Sustainably farmed Atlantic salmon could drive global food system solutions by contributing essential nutrients to the human diet while delivering high-quality protein. One of the biggest obstacles to sustainable salmon aquaculture in Chile is the prevalence of piscirickettsiosis disease caused by the Gram-negative bacteria Piscirickettsia salmonis and the excessive amount of antibiotics used to eradicate this disease. Farmed salmon products can be consumed without prior processing and therefore present a substantial risk for the transfer of resistant pathogens to humans. Antibiotics also carry the risk of antibiotic residues and damage to the environment. An alternative to antibiotics is the use of natural antimicrobials without the negative influence on the consumer’s microbiome. Here, we evaluate the potential antimicrobial activity against P. salmonis of the marine microalgae Microchloropsis gaditana. A non-genetically modified M. gaditana was grown with nitrogen deprivation to improve the synthesis of the eicosapentaenoic fatty acid (EPA). A spray-dried M. gaditana concentrate (Mg) was elaborated and given to Atlantic salmon for a period of 49 days, and serum and fillet samples were collected. Our results showed a significant increase in the nutritional quality improving the levels of EPA+ Docosapentaenoic acid (DPA) (23%) and Vitamin D3 (106%) of the fillets treated with Mg. Fish fed serum were challenged with P. salmonis, and serum antibacterial activity was measured. Sera from fish fed Mg-enriched diets showed a significant increase in antibacterial activity (85.68%) against P. salmonis. Our results indicate that Mg can be used as a viable alternative to address the critical problem of microbial resistance and to assure consumers that farm-raised Atlantic salmon is safe. Full article
Show Figures

Figure 1

19 pages, 4287 KiB  
Article
Quercetin and Silybin Decrease Intracellular Replication of Piscirickettsia salmonis in SHK-1 Cell
by Mick Parra, Katherin Izquierdo, Meraiot Rubio, Antonia de la Fuente, Mario Tello and Brenda Modak
Int. J. Mol. Sci. 2025, 26(3), 1184; https://doi.org/10.3390/ijms26031184 - 29 Jan 2025
Cited by 1 | Viewed by 1391
Abstract
Piscirickettsia salmonis is the pathogen that has most affected the Chilean salmon industry for over 30 years. Considering the problems of excessive use of antibiotics, it is necessary to find new strategies to control this pathogen. Antivirulence therapy is an alternative to reduce [...] Read more.
Piscirickettsia salmonis is the pathogen that has most affected the Chilean salmon industry for over 30 years. Considering the problems of excessive use of antibiotics, it is necessary to find new strategies to control this pathogen. Antivirulence therapy is an alternative to reduce the virulence of pathogens without affecting their growth. Polyphenolic compounds have been studied for their antiviral capacity. In this study, the capacity of quercetin and silybin to reduce the intracellular replication of P. salmonis in SHK-1 cells was evaluated. For this, three different infection protocols in Salmon Head Kidney-1(SHK-1) cells were used: co-incubation for 24 h, pre-incubation for 24 h prior to infection, and post-incubation for 24 h after infection. In addition, the effect of co-incubation in rainbow trout intestinal epithelial cells (RTgutGC) and the effect on the phagocytic capacity of SHK-1 cells were evaluated. The results obtained showed that quercetin and silybin decreased the intracellular replication of P. salmonis in SHK-1 cells when they were co-incubated for 24 h; however, they did not have the same effect in RTgutGC cells. On the other hand, both compounds decreased the phagocytosis of SHK-1 cells during co-incubation. These results are promising for the study of new treatments against P. salmonis. Full article
(This article belongs to the Special Issue Pathogenic Microorganisms, Viruses and Therapeutic Strategies)
Show Figures

Figure 1

8 pages, 1692 KiB  
Communication
Differential Transcriptomic Profile of Piscirickettsia salmonis LF-89 and EM-90 During an In Vivo Spatial Separation Co-Culture in Atlantic Salmon
by Gabriela Carril, Hanne C. Winther-Larsen, Marie Løvoll and Henning Sørum
Microorganisms 2024, 12(12), 2480; https://doi.org/10.3390/microorganisms12122480 - 2 Dec 2024
Viewed by 1564
Abstract
Salmonid rickettsial septicemia (SRS) is a critical sanitary problem in the Chilean aquaculture industry since it induces the highest mortality rate in salmonids among all infectious diseases. Piscirickettsia salmonis, a facultative intracellular bacterium, is the biological agent of SRS. In Chile, two [...] Read more.
Salmonid rickettsial septicemia (SRS) is a critical sanitary problem in the Chilean aquaculture industry since it induces the highest mortality rate in salmonids among all infectious diseases. Piscirickettsia salmonis, a facultative intracellular bacterium, is the biological agent of SRS. In Chile, two genogroups of P. salmonis, designated as LF-89 and EM-90, have been identified. Previous studies suggested that their cohabitation triggers the expression of virulence effectors, which may be related to a higher pathogenicity in salmonids during co-infection with both P. salmonis genogroups. Therefore, we aimed to evaluate if the physical contact between two isolates from LF-89 and EM-90 is necessary to activate this effect. Through a spatially separated in vivo co-culture inside Atlantic salmon (Salmo salar) post smolts and RNA-seq analysis, we compared the differentially expressed genes (DEGs) with previous results from an in vivo mixed co-culture. The results showed that although the LF-89-like isolate and the EM-90-like isolate had a similar DEG profile under both co-culture conditions, important virulence factors observed during the mixed co-cultures (i.e., flagellar-related genes, CydD, and NCS2) were absent in the spatially separated co-cultures. Hence, the synergistic effect linked to increased pathogenicity to the host may be driven by the physical co-localization and contact between the P. salmonis LF-89-like and EM-90-like isolates. Full article
(This article belongs to the Special Issue Pathogens and Aquaculture)
Show Figures

Figure 1

16 pages, 2784 KiB  
Article
Salmon-IgM Functionalized-PLGA Nanosystem for Florfenicol Delivery as an Antimicrobial Strategy against Piscirickettsia salmonis
by Felipe Velásquez, Mateus Frazao, Arturo Diez, Felipe Villegas, Marcelo Álvarez-Bidwell, J. Andrés Rivas-Pardo, Eva Vallejos-Vidal, Felipe Reyes-López, Daniela Toro-Ascuy, Manuel Ahumada and Sebastián Reyes-Cerpa
Nanomaterials 2024, 14(20), 1658; https://doi.org/10.3390/nano14201658 - 16 Oct 2024
Cited by 1 | Viewed by 1760
Abstract
Salmonid rickettsial septicemia (SRS), caused by Piscirickettsia salmonis, has been the most severe health concern for the Chilean salmon industry. The efforts to control P. salmonis infections have focused on using antibiotics and vaccines. However, infected salmonids exhibit limited responses to the [...] Read more.
Salmonid rickettsial septicemia (SRS), caused by Piscirickettsia salmonis, has been the most severe health concern for the Chilean salmon industry. The efforts to control P. salmonis infections have focused on using antibiotics and vaccines. However, infected salmonids exhibit limited responses to the treatments. Here, we developed a poly (D, L-lactide-glycolic acid) (PLGA)-nanosystem functionalized with Atlantic salmon IgM (PLGA-IgM) to specifically deliver florfenicol into infected cells. Polymeric nanoparticles (NPs) were prepared via the double emulsion solvent-evaporation method in the presence of florfenicol. Later, the PLGA-NPs were functionalized with Atlantic salmon IgM through carbodiimide chemistry. The nanosystem showed an average size of ~380–410 nm and a negative surface charge. Further, florfenicol encapsulation efficiency was close to 10%. We evaluated the internalization of the nanosystem and its impact on bacterial load in SHK-1 cells by using confocal microscopy and qPCR. The results suggest that stimulation with the nanosystem elicits a decrease in the bacterial load of P. salmonis when it infects Atlantic salmon macrophages. Overall, the IgM-functionalized PLGA-based nanosystem represents an alternative to the administration of antibiotics in salmon farming, complementing the delivery of antibiotics with the stimulation of the immune response of infected macrophages. Full article
(This article belongs to the Special Issue Antimicrobial and Antioxidant Activity of Nanoparticles)
Show Figures

Figure 1

24 pages, 6241 KiB  
Article
Discovery and Characterization of the ddx41 Gene in Atlantic Salmon: Evolutionary Implications, Structural Functions, and Innate Immune Responses to Piscirickettsia salmonis and Renibacterium salmoninarum Infections
by Alejandro J. Yañez, Claudia A. Barrientos, Adolfo Isla, Marcelo Aguilar, Sandra N. Flores-Martin, Yassef Yuivar, Adriana Ojeda, Pablo Ibieta, Mauricio Hernández, Jaime Figueroa, Rubén Avendaño-Herrera and Marcos Mancilla
Int. J. Mol. Sci. 2024, 25(12), 6346; https://doi.org/10.3390/ijms25126346 - 8 Jun 2024
Cited by 2 | Viewed by 2477
Abstract
The innate immune response in Salmo salar, mediated by pattern recognition receptors (PRRs), is crucial for defending against pathogens. This study examined DDX41 protein functions as a cytosolic/nuclear sensor for cyclic dinucleotides, RNA, and DNA from invasive intracellular bacteria. The investigation determined [...] Read more.
The innate immune response in Salmo salar, mediated by pattern recognition receptors (PRRs), is crucial for defending against pathogens. This study examined DDX41 protein functions as a cytosolic/nuclear sensor for cyclic dinucleotides, RNA, and DNA from invasive intracellular bacteria. The investigation determined the existence, conservation, and functional expression of the ddx41 gene in S. salar. In silico predictions and experimental validations identified a single ddx41 gene on chromosome 5 in S. salar, showing 83.92% homology with its human counterpart. Transcriptomic analysis in salmon head kidney confirmed gene transcriptional integrity. Proteomic identification through mass spectrometry characterized three unique peptides with 99.99% statistical confidence. Phylogenetic analysis demonstrated significant evolutionary conservation across species. Functional gene expression analysis in SHK-1 cells infected by Piscirickettsia salmonis and Renibacterium salmoninarum indicated significant upregulation of DDX41, correlated with increased proinflammatory cytokine levels and activation of irf3 and interferon signaling pathways. In vivo studies corroborated DDX41 activation in immune responses, particularly when S. salar was challenged with P. salmonis, underscoring its potential in enhancing disease resistance. This is the first study to identify the DDX41 pathway as a key component in S. salar innate immune response to invading pathogens, establishing a basis for future research in salmonid disease resistance. Full article
Show Figures

Figure 1

16 pages, 2645 KiB  
Article
Blends of Organic Acids Are Weaponizing the Host iNOS and Nitric Oxide to Reduce Infection of Piscirickettsia salmonis in vitro
by Nicolae Corcionivoschi, Igori Balta, David McCleery, Ioan Pet, Tiberiu Iancu, Calin Julean, Adela Marcu, Lavinia Stef and Sorin Morariu
Antioxidants 2024, 13(5), 542; https://doi.org/10.3390/antiox13050542 - 28 Apr 2024
Cited by 1 | Viewed by 1872
Abstract
For the last 30 years, Piscirickettsia salmonis has caused major economic losses to the aquaculture industry as the aetiological agent for the piscirickettsiosis disease. Replacing the current interventions, based on antibiotics, with natural alternatives (e.g., organic acids) represents a priority. With this study, [...] Read more.
For the last 30 years, Piscirickettsia salmonis has caused major economic losses to the aquaculture industry as the aetiological agent for the piscirickettsiosis disease. Replacing the current interventions, based on antibiotics, with natural alternatives (e.g., organic acids) represents a priority. With this study, we aimed to better understand their biological mechanism of action in an in vitro model of infection with salmon epithelial cells (CHSE-214). Our first observation revealed that at the sub-inhibitory concentration of 0.5%, the organic acid blend (Aq) protected epithelial cell integrity and significantly reduced P. salmonis invasion. The MIC was established at 1% Aq and the MBC at 2% against P. salmonis. The sub-inhibitory concentration significantly increased the expression of the antimicrobial peptides Cath2 and Hepcidin1, and stimulated the activity of the innate immune effector iNOS. The increase in iNOS activity also led to higher levels of nitric oxide (NO) being released in the extracellular space. The exposure of P. salmonis to the endogenous NO caused an increase in bacterial lipid peroxidation levels, a damaging effect which can ultimately reduce the pathogen’s ability to attach or multiply intracellularly. We also demonstrate that the increased NO release by the host CHSE-214 cells is a consequence of direct exposure to Aq and is not dependent on P. salmonis infection. Additionally, the presence of Aq during P. salmonis infection of CHSE-214 cells significantly mitigated the expression of the pro-inflammatory cytokines IL-1β, IL-8, IL-12, and IFNγ. Taken together, these results indicate that, unlike antibiotics, natural antimicrobials can weaponize the iNOS pathway and secreted nitric oxide to reduce infection and inflammation in a Piscirickettsia salmonis in vitro model of infection. Full article
Show Figures

Figure 1

12 pages, 1831 KiB  
Article
The Effect of an Attenuated Live Vaccine against Salmonid Rickettsial Septicemia in Atlantic Salmon (Salmo salar) Is Highly Dependent on Water Temperature during Immunization
by Rolf Hetlelid Olsen, Frode Finne-Fridell, Marianne Bordevik, Anja Nygaard, Binoy Rajan and Marius Karlsen
Vaccines 2024, 12(4), 416; https://doi.org/10.3390/vaccines12040416 - 15 Apr 2024
Cited by 3 | Viewed by 2862
Abstract
Salmonid Rickettsial Septicemia (SRS), caused by the bacterium Piscirickettsia salmonis, is the main reason for antibiotic usage in the Chilean aquaculture industry. In 2016, a live attenuated vaccine (ALPHA JECT LiVac® SRS, PHARMAQ AS) was licensed in Chile and has been [...] Read more.
Salmonid Rickettsial Septicemia (SRS), caused by the bacterium Piscirickettsia salmonis, is the main reason for antibiotic usage in the Chilean aquaculture industry. In 2016, a live attenuated vaccine (ALPHA JECT LiVac® SRS, PHARMAQ AS) was licensed in Chile and has been widely used in farmed salmonids since then. In experimental injection and cohabitation laboratory challenge models, we found that the vaccine is effective in protecting Atlantic salmon (Salmo salar) for at least 15 months against P. salmonis-induced mortality. However, the protection offered by the vaccine is sensitive to temperature during immunization. Fish vaccinated and immunized at 10 °C and above were well protected, but those immunized at 7 °C and 8 °C (the lower end of the temperature range commonly found in Chile) experienced a significant loss of protection. This temperature-dependent loss of effect correlated with the amount of vaccine-strain RNA detected in the liver the first week after vaccination and with in vitro growth curves, which failed to detect any growth at 8 °C. We found that good vaccine efficacy can be restored by exposing fish to 15 °C for the first five days after vaccination before lowering the temperature to 7 °C for the remaining immunization period. This suggests that maintaining the correct temperature during the first few days after vaccination is crucial for achieving a protective immune response with ALPHA JECT LiVac® SRS. Our results emphasize the importance of temperature control when vaccinating poikilothermic animals with live vaccines. Full article
(This article belongs to the Section Vaccine Design, Development, and Delivery)
Show Figures

Figure 1

16 pages, 3315 KiB  
Article
[Cu(NN1)2]ClO4, a Copper (I) Complex as an Antimicrobial Agent for the Treatment of Piscirickettsiosis in Atlantic Salmon
by Mick Parra, Maialen Aldabaldetrecu, Pablo Arce, Sarita Soto-Aguilera, Rodrigo Vargas, Juan Guerrero, Mario Tello and Brenda Modak
Int. J. Mol. Sci. 2024, 25(7), 3700; https://doi.org/10.3390/ijms25073700 - 26 Mar 2024
Cited by 1 | Viewed by 1443
Abstract
Piscirickettsia salmonis is the pathogen that most affects the salmon industry in Chile. Large quantities of antibiotics have been used to control it. In search of alternatives, we have developed [Cu(NN1)2]ClO4 where NN1 = 6-((quinolin-2-ylmethylene)amino)-2H-chromen-2-one. The antibacterial [...] Read more.
Piscirickettsia salmonis is the pathogen that most affects the salmon industry in Chile. Large quantities of antibiotics have been used to control it. In search of alternatives, we have developed [Cu(NN1)2]ClO4 where NN1 = 6-((quinolin-2-ylmethylene)amino)-2H-chromen-2-one. The antibacterial capacity of [Cu(NN1)2]ClO4 was determined. Subsequently, the effect of the administration of [Cu(NN1)2]ClO4 on the growth of S. salar, modulation of the immune system and the intestinal microbiota was studied. Finally, the ability to protect against a challenge with P. salmonis was evaluated. The results obtained showed that the compound has an MIC between 15 and 33.9 μg/mL in four isolates. On the other hand, the compound did not affect the growth of the fish; however, an increase in the transcript levels of IFN-γ, IL-12, IL-1β, CD4, lysozyme and perforin was observed in fish treated with 40 μg/g of fish. Furthermore, modulation of the intestinal microbiota was observed, increasing the genera of beneficial bacteria such as Lactobacillus and Bacillus as well as potential pathogens such as Vibrio and Piscirickettsia. Finally, the treatment increased survival in fish challenged with P. salmonis by more than 60%. These results demonstrate that the compound is capable of protecting fish against P. salmonis, probably by modulating the immune system and the composition of the intestinal microbiota. Full article
(This article belongs to the Special Issue Recent Research on Antimicrobial Agents)
Show Figures

Figure 1

24 pages, 13620 KiB  
Article
Salmo salar Skin and Gill Microbiome during Piscirickettsia salmonis Infection
by Marcos Godoy, Yoandy Coca, Rudy Suárez, Marco Montes de Oca, Jacob W. Bledsoe, Ian Burbulis, Diego Caro, Juan Pablo Pontigo, Vinicius Maracaja-Coutinho, Raúl Arias-Carrasco, Leonardo Rodríguez-Córdova and César Sáez-Navarrete
Animals 2024, 14(1), 97; https://doi.org/10.3390/ani14010097 - 27 Dec 2023
Cited by 8 | Viewed by 4355
Abstract
Maintaining the high overall health of farmed animals is a central tenant of their well-being and care. Intense animal crowding in aquaculture promotes animal morbidity especially in the absence of straightforward methods for monitoring their health. Here, we used bacterial 16S ribosomal RNA [...] Read more.
Maintaining the high overall health of farmed animals is a central tenant of their well-being and care. Intense animal crowding in aquaculture promotes animal morbidity especially in the absence of straightforward methods for monitoring their health. Here, we used bacterial 16S ribosomal RNA gene sequencing to measure bacterial population dynamics during P. salmonis infection. We observed a complex bacterial community consisting of a previously undescribed core pathobiome. Notably, we detected Aliivibrio wodanis and Tenacibaculum dicentrarchi on the skin ulcers of salmon infected with P. salmonis, while Vibrio spp. were enriched on infected gills. The prevalence of these co-occurring networks indicated that coinfection with other pathogens may enhance P. salmonis pathogenicity. Full article
Show Figures

Figure 1

17 pages, 4207 KiB  
Article
In Vivo Efficacy of Purified Quillaja Saponin Extracts in Protecting against Piscirickettsia salmonis Infections in Atlantic Salmon (Salmo salar)
by Hernán Cortés, Mario Castillo-Ruiz, Hernán Cañon-Jones, Trinidad Schlotterbeck, Ricardo San Martín and Leandro Padilla
Animals 2023, 13(18), 2845; https://doi.org/10.3390/ani13182845 - 7 Sep 2023
Cited by 5 | Viewed by 2465
Abstract
Piscirickettsiosis, the main infectious disease affecting salmon farming in Chile, still has no efficient control measures. Piscirickettsia salmonis is a facultative intracellular bacterium that can survive and replicate within the host macrophages, evading the immune response. Triterpenic saponins obtained from the Quillaja saponaria [...] Read more.
Piscirickettsiosis, the main infectious disease affecting salmon farming in Chile, still has no efficient control measures. Piscirickettsia salmonis is a facultative intracellular bacterium that can survive and replicate within the host macrophages, evading the immune response. Triterpenic saponins obtained from the Quillaja saponaria tree have been widely studied, and have been shown to be immunomodulatory agents, suitable for feed and vaccine applications for veterinary and human uses. The impact of the oral administration of two extracts of Quillaja saponins on the infection of P. salmonis in Salmo salar and the corresponding gene expressions of immunomarkers were studied under three in vivo models. In the intraperitoneal challenge model, the group fed with Quillaja extracts showed lower mortality (29.1% treated vs. 37.5% control). Similar results were obtained in the cohabitation model trial (36.3% vs. 60.0%). In the commercial pilot trial, the results showed a significant reduction of 71.3% in mortality caused by P. salmonis (0.51% vs. 1.78%) and antibiotic use (reduction of 66.6% compared to untreated control). Also, Quillaja extracts significantly modulated the expression of IFN-II and CD8. These results represent evidence supporting the future use of purified Quillaja extracts as a natural non-pharmacological strategy for the prevention and control of P. salmonis infections in salmon. Full article
(This article belongs to the Special Issue Aquaculture: Prevention, Control, and Impact of Diseases)
Show Figures

Figure 1

15 pages, 687 KiB  
Article
Co-Infection by LF-89-Like and EM-90-Like Genogroups of Piscirickettsia Salmonis in Farmed Atlantic Salmon in Chile: Implications for Surveillance and Control of Piscirickettsiosis
by Marco Rozas-Serri, Andrea Peña, Ian Gardner, Estefanía Peñaloza, Lucerina Maldonado, Ariel Muñoz, Fernando O. Mardones, Catalina Rodríguez, Ricardo Ildefonso, Carolina Senn and Felipe Aranis
Pathogens 2023, 12(3), 450; https://doi.org/10.3390/pathogens12030450 - 13 Mar 2023
Cited by 7 | Viewed by 2860
Abstract
Piscirickettsiosis (SRS), caused by Piscirickettsia salmonis, is the main infectious disease that affects farmed Atlantic salmon in Chile. Currently, the official surveillance and control plan for SRS in Chile is based only on the detection of P. salmonis, but neither of [...] Read more.
Piscirickettsiosis (SRS), caused by Piscirickettsia salmonis, is the main infectious disease that affects farmed Atlantic salmon in Chile. Currently, the official surveillance and control plan for SRS in Chile is based only on the detection of P. salmonis, but neither of its genogroups (LF-89-like and EM-90-like) are included. Surveillance at the genogroup level is essential not only for defining and evaluating the vaccination strategy against SRS, but it is also of utmost importance for early diagnosis, clinical prognosis in the field, treatment, and control of the disease. The objectives of this study were to characterize the spatio-temporal distribution of P. salmonis genogroups using genogroup-specific real-time probe-based polymerase chain reaction (qPCR) to discriminate between LF-89-like and EM-90-like within and between seawater farms, individual fish, and tissues/organs during early infection in Atlantic salmon under field conditions. The spatio-temporal distribution of LF-89-like and EM-90-like was shown to be highly variable within and between seawater farms. P. salmonis infection was also proven to be caused by both genogroups at farm, fish, and tissue levels. Our study demonstrated for the first time a complex co-infection by P. salmonis LF-89-like and EM-90-like in Atlantic salmon. Liver nodules (moderate and severe) were strongly associated with EM-90-like infection, but this phenotype was not detected by infection with LF-89-like or co-infection of both genogroups. The detection rate of P. salmonis LF-89-like increased significantly between 2017 and 2021 and was the most prevalent genogroup in Chilean salmon aquaculture during this period. Lastly, a novel strategy to identify P. salmonis genogroups based on novel genogroup-specific qPCR for LF-89-like and EM-90-like genogroups is suggested. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

11 pages, 1404 KiB  
Article
Evidence of the Autophagic Process during the Fish Immune Response of Skeletal Muscle Cells against Piscirickettsia salmonis
by Cristián A. Valenzuela, Marco Azúa, Claudio A. Álvarez, Paulina Schmitt, Nicolás Ojeda and Luis Mercado
Animals 2023, 13(5), 880; https://doi.org/10.3390/ani13050880 - 28 Feb 2023
Cited by 7 | Viewed by 2761
Abstract
Autophagy is a fundamental cellular process implicated in the health of the cell, acting as a cytoplasmatic quality control machinery by self-eating unfunctional organelles and protein aggregates. In mammals, autophagy can participate in the clearance of intracellular pathogens from the cell, and the [...] Read more.
Autophagy is a fundamental cellular process implicated in the health of the cell, acting as a cytoplasmatic quality control machinery by self-eating unfunctional organelles and protein aggregates. In mammals, autophagy can participate in the clearance of intracellular pathogens from the cell, and the activity of the toll-like receptors mediates its activation. However, in fish, the modulation of autophagy by these receptors in the muscle is unknown. This study describes and characterizes autophagic modulation during the immune response of fish muscle cells after a challenge with intracellular pathogen Piscirickettsia salmonis. For this, primary cultures of muscle cells were challenged with P. salmonis, and the expressions of immune markers il-1β, tnfα, il-8, hepcidin, tlr3, tlr9, mhc-I and mhc-II were analyzed through RT-qPCR. The expressions of several genes involved in autophagy (becn1, atg9, atg5, atg12, lc3, gabarap and atg4) were also evaluated with RT-qPCR to understand the autophagic modulation during an immune response. In addition, LC3-II protein content was measured via Western blot. The challenge of trout muscle cells with P. salmonis triggered a concomitant immune response to the activation of the autophagic process, suggesting a close relationship between these two processes. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Graphical abstract

Back to TopTop